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Abstract

The emergence of machine learning, image and audio processing on edge devices has mo-

tivated research towards power-efficient custom hardware accelerators. Though FPGAs

are an ideal target for custom accelerators, the difficulty of hardware design and the lack

of vendor-agnostic, standardized hardware compilation infrastructure has hindered their

adoption. High-level synthesis (HLS) offers a more compiler-centric alternative to the

traditional Verilog-based hardware design improving developer productivity.

Though HLS offers many advantages over traditional HDL-based hardware design

flow, it is still not a mature ecosystem. There is a need for research in both program-

ming abstraction for hardware design and compiler optimizations to meet the efficiency of

hand-optimized HDL designs. In the software world, LLVM has enabled rapid prototyp-

ing of programming languages. A new programming language can target the LLVM com-

piler and benefit from the existing optimizations and backend code generation. LLVM

also enables the development of new compiler optimizations. A new optimization pass

can be plugged into the existing compiler pipeline to evaluate its benefits on existing pro-

gramming languages and benchmarks. This decoupling of different stages of the compiler

pipeline can be largely attributed to the LLVM intermediate representation.

The high-level synthesis ecosystem still lacks such extensible modular compiler infras-

tructure which could be used for the development of new HLS programming languages

and optimizations. In this work, we propose an MLIR based end-to-end HLS compiler

and an intermediate representation that is suitable for the design and implementation

of domain-specific accelerators for affine workloads. Our compiler brings similar levels

of modularity and extensibility to the HLS compilation domain, which LLVM brought

iv
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in the area of software compilation. A modular compiler infrastructure offers the ad-

vantage of incrementally introducing new language frontends and optimization passes

without the need to reinvent the whole HLS compiler stack.

Our compiler converts a high-level description of the accelerator specified in the C pro-

gramming language into a register-transfer-level(RTL) design (SystemVerilog). We use

memory dependence analysis and integer-linear-program(ILP) based automatic schedul-

ing to improve loop pipelining, and introduce parallelization between producer-consumer

kernels. Our ILP-based optimizer beats the state-of-the-art Vitis HLS compiler by 1.3x

in performance over a representative set of benchmarks, while requiring fewer FPGA

resources.
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Chapter 1

Introduction

The interest in specialized hardware accelerators has seen a steady rise in the past decade.

The growing compute demand for machine learning and image processing in data centers

and edge devices, coupled with the need for high energy efficiency, has motivated both

industry and academia to explore domain-specific accelerators that can outperform tra-

ditional general-purpose compute hardware. To that end, many new accelerators have

been proposed by both industry [Jouppi et al. (2017); Choquette et al. (2021); Fricker

(2022); Gaide et al. (2019)] and academia [Chen, Yu-Hsin and Krishna, Tushar and

Emer, Joel and Sze, Vivienne (2016); Wang et al. (2021); Chen et al. (2014); Kwon et al.

(2018); Liu et al. (2015)]. Even General purpose GPUs (GPGPUs), which are designed

for efficient execution of highly parallel workloads, introduced specialized accelerators

[Markidis et al. (2018)] to address the growing compute demand of machine learning

workloads.

Accelerators can optimize the compute and the memory hierarchy to better match

the requirements of the workload compared to a general-purpose processor. For in-

stance, both CPUs and GPUs employ hardware-managed caches to capture data reuse.

In addition, prefetchers are often used in the hardware to predict complex data access

patterns and fetch them to the caches. Prefetchers help in overlapping the compute with

the data transfer to/from the memory. This reduces the compute stalls and improves

performance. The extra logic required to manage these hardware structures consumes

1



Chapter 1. Introduction 2

hardware resources and extra power. On the other hand, accelerators are designed for

specific workloads. This simplifies the caching and prefetching mechanisms a lot. Accel-

erators often use scratchpad memories as software-managed caches and the software/-

firmware takes care of the prefetching based on the known data access pattern of the

target workload. This results in comparable or better data reuse in accelerators while

using fewer hardware resources. Similarly, depending on the workload, accelerators may

not require special function units (in GPUs) or support for out-of-order execution. All

these application-specific optimizations yield more power and area efficient architectures.

Prior work [Chen, Yu-Hsin and Krishna, Tushar and Emer, Joel and Sze, Vivienne

(2016)] has shown that different types of on-chip memory accesses can have very differ-

ent energy costs. Accessing smaller memories such as registers may require an order of

magnitude less energy compared to scratchpad memories even though both are on-chip

SRAMs. This is attributed to the greater wire length and wider multiplexers for data se-

lection. Systolic arrays are a great example of utilizing this observation to improve power

efficiency. The streaming data in a systolic array move from register to register along

the width (or height) of the systolic array, reducing the number of scratchpad memory

accesses. This improves the power efficiency of the architecture. Such optimizations are

not always possible in general-purpose architectures.

With the advantages of these accelerators, comes certain disadvantages as well. Ac-

celerators are not as adaptable as CPUs and GPGPUs. The exact algorithms used for a

given workload change/improve over time. For instance, many researchers are trying to

improve the performance of machine learning models by exploiting sparsity in the weight

and activation matrices. Models are trained to increase sparsity without losing accuracy.

These sparsity-related algorithmic improvements do not benefit the actual performance

of the neural network if an architecture is not designed to exploit the sparsity and im-

prove memory bandwidth utilization or compute efficiency (by skipping zeroes). CPUs

and GPUs require only changes in the software, but accelerators need to be redesigned

from scratch to take advantage of these algorithmic advances. In case of ASIC imple-

mentations [Jouppi et al. (2017)], designing a new accelerator for modest algorithmic
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improvements may not even be an economically feasible approach.

The other disadvantage of accelerators is becoming prominent with the increase in

heterogeneity of modern system-on-chips (SOCs). Current generation processors employ

dozens of accelerators for different workloads such as image processing, video encod-

ing/decoding, encryption and video compression/decompression. Even though not all

the accelerators are used at all times, they consume valuable die area. This partially

negates the advantage of area efficiency of custom accelerators over general-purpose ar-

chitectures.

FPGAs offer an interesting tradeoff between the generality of CPUs and GPUs and

the efficiency of custom-designed accelerators. They are more power efficient and have

more parallelism than CPUs while being completely reconfigurable. They achieve this

at the cost of greater die area and lesser operating frequency compared to an ASIC or

CPU. Though FPGAs can never compete in performance or power efficiency with an

ASIC, when we factor in the previously discussed issues of adapting to iterative algo-

rithmic improvements and taking advantage of the complete die area in the presence

of accelerator heterogeneity, the FPGAs offer a promising alternative. As FPGAs can

be reconfigured any number of times, architectures can better adapt to algorithmic im-

provements. This also incentivizes further research into algorithmic improvements such

as increased sparsity, block sparse and low-precision compute. Additionally, different

accelerators can time share the whole FPGA instead of statically partitioning the die

area among all accelerators.

Custom accelerators on reconfigurable computing platforms such as FPGAs are able

to achieve high power efficiency [Zhang et al. (2016)] and performance but the difficulty

associated with programming them is seen as a major roadblock towards their mass

adoption. High-level synthesis [Canis et al. (2011a)] offers a promising solution towards

making custom accelerator design more approachable. DSLs for hardware design can

offer an even higher level of abstraction to the algorithm developers and benefit from

being able to employ the right high-level synthesis (HLS) pipelines.

Numerous domains-specific as well as general-purpose languages and tools supporting
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HLS have been built over the past two decades by the academia and industry [Auerbach

et al. (2012); Hegarty et al. (2014, 2016); Reiche et al. (2014); Chugh et al. (2016a);

Inc. ([n. d.]); matlab-hdl-coder ([n. d.]); Dase et al. (2006); Najjar et al. (2003); Cong

et al. (2011)]. Nearly all electronic design automation vendors now provide suites sup-

porting HLS, examples of which include Xilinx Vivado, Cadence C-to-silicon, Synopsys

Synphony, and Mentor Graphics Catapult HLS. A comprehensive survey of various HLS

approaches were conducted by Bacon et al. (2013) and Cong et al. (2022).

All these HLS compilers have to create their intermediate representations, thus dupli-

cating and re-implementing a lot of the representation and transformation infrastructure

that could otherwise have been shared. Similarly, DSLs [Nigam et al. (2020); Hegarty

et al. (2014); Koeplinger et al. (2018); Durst et al. (2020)] either rely on vendor-provided

HLS tools or require reimplementing the compiler pipeline, including many standard

optimizations, to translate the design into a hardware description language (HDL) like

Verilog or Chisel [Bachrach et al. (2012a)].

The problem is even more pronounced while developing new optimizations. Due

to lack of a standard compiler infrastructure, any new optimization work [Wang et al.

(2021)] has to implement its language frontend and code generator.

The availability of an open IR standard for hardware design would help in decoupling

the problem of designing suitable language abstractions for high level synthesis from the

problem of optimization and code generation. LLVM [Lattner and Adve (2004)] is a

great example of applying this approach to software compilation flow.

In this thesis, we propose the HIR compiler infrastructure and the HIR intermediate

representation for high-level synthesis of affine workloads. Affine kernels are present in

both image and audio processing as well as machine learning workloads. Often these

affine kernels are the performance bottleneck in these workloads. For instance, the

majority of the computation in both convolutional neural networks and neural networks

for language processing such as transformers are from matrix multiplications. Affine

memory accesses also enable the compiler to perform a more precise memory dependence

analysis.
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The HIR intermediate representation is designed to represent hardware accelerators.

It decouples the functional design from the exact schedule giving the compiler greater

freedom to choose the implementation for the state-machine-based controller. The IR

has a custom data type to represent multi-ported, banked tensors and high-level control

flow operations such as loops and if-else statements.

We also implement an ILP-based scheduler for automatic parallelization of the input

sequential hardware description in C language. Our scheduler can perform multi-level

loop pipelining. It uses the memory dependence analysis to pipeline across producer-

consumer loop nests. We also implemented a backend code generator to generate the

accelerator in SystemVerilog from the HIR description. Overall, our compiler takes a

sequential C implementation of the accelerator with directives for the level of pipelining

and parallelism from the programmer and generates a parallel hardware design in Sys-

temVerilog. We have open-sourced the implementation of the HIR compiler [Majumder

and Bondhugula (2022)].

The rest of the thesis is organized as follows. In Chapter 2, we provide the necessary

background on MLIR, HLS compilers and FPGAs. Chapter 3 introduces the HIR inter-

mediate representation, the optimization passes and the backend. Chapter 4 provides a

detailed discussion on our ILP-based automatic scheduler. We evaluate our HLS com-

piler against Vitis HLS in Chapter 5. We discuss the related work in Chapter 6. Finally,

we conclude our thesis in Chapter 7.



Chapter 2

Background

In this chapter, we will cover the necessary background for this thesis. Section 2.1

describes the internal design of FPGAs and the challenges in programming them. In

Section 2.4, we discuss the Vitis HLS compiler and its dataflow optimization.

2.1 FPGA

Field programmable gate arrays (FPGAs) are used to implement hardware design. An

FPGA contains multiple types of hardware resources such as arithmetic and logic units,

block RAMs, registers, multiplexers and lookup tables in a grid. These components are

connected via an on-chip reconfigurable network as shown in Figure 2.1. The FPGA can

Figure 2.1: Internal design of an FPGA.
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Chapter 2. Background 7

be configured to connect any component to any other component. A hardware design

can be implemented on the FPGA by connecting various hardware components using

the on-chip network.

The FPGAs differ from CPUs and GPUs in a few important ways. FPGAs do not

have any hardware-managed caches. All the on-chip memory is exposed as scratchpad

buffers and registers. CPUs and GPUs have a unified address space. Each memory

location is associated with a unique address and any part of the program can access

any memory location using its address. FPGAs do not have a unified address space.

As a result, memory locations do not have a unique global address. In a hardware de-

sign, each operation is usually connected to only a subset of the scratchpad memories

and can only access these memories. The optimal memory hierarchy is dependent on

the dataflow patterns of an application. For instance, certain image-processing applica-

tions may require point-to-point communication between functional units [Hegarty et al.

(2014, 2016)] and matrix multiplication may require scratchpad memories and registers

to capture temporal reuse of the input matrices [Chen, Yu-Hsin and Krishna, Tushar

and Emer, Joel and Sze, Vivienne (2016); Jouppi et al. (2017)].

In CPUs and GPUs, the hardware components such as on-chip memory (caches, reg-

isters and scratchpad memories), arithmetic and logic units and the on-chip interconnect

are abstracted away from the programmer. The instruction set architecture (ISA) ex-

poses a well-defined, and restricted view of the processor internals. As a result, the

software can target the CPU/GPU without caring about the internal components. For

instance, in modern CPUs, the ISA exposes a set of logical registers. But the number

of physical registers available in the processor is far greater than that. The processor

internally maps the architectural registers to the physical registers during the program

execution. Similarly, many details such as the number of execution cores, the synchro-

nization latency between cores and the size of caches are not exposed as part of the pro-

gramming model of GPUs. The programmer may use this information to do additional

optimizations on the GPU, but it is not required to write correct parallel programs.

FPGAs do not have an instruction set. All the hardware components such as registers,
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on-chip memories, arithmetic and logic units, on-chip interconnect and their latencies

(number of cycles) are exposed as a part of the FPGA’s programming model. A hardware

designer needs to specify the exact connection between different hardware components

to realize a specific accelerator design.

Since, hardware is inherently parallel, ordering between the execution of different op-

erations must be enforced using state machines. In contrast, each thread in a CPU/GPU

program is guaranteed to execute its instructions sequentially. An FPGA design has to

schedule different operations in parallel to exploit the instruction level parallelism in the

design. CPUs and GPUs also exploit instruction-level parallelism but do not expose it to

the programmer. While FPGAs offer fine-grained parallelism, CPU and GPU programs

have coarse-grained parallelism in the form of threads.

An FPGA design usually has two components. The datapath specifies how data

moves and what operations are performed and how the logic elements are connected to

the on-chip buffers. The controller is responsible for specifying the time at which any

operation in the datapath is triggered. It is implemented as a finite state machine (FSM).

Another important goal of a hardware design is to achieve a high frequency. Unlike,

CPUs and GPUs, the connection between different hardware components is not fixed in

an FPGA. As a result, the maximum frequency achieved by an FPGA design depends

on which components are connected and on the length of the connecting wires.

Figure 2.2 shows an example of a Verilog module implementing the multiply-accumulate

operation. The registers are assigned in an always block. For example, the register a1 is

assigned from the wire a. The value in a will propagate to a1 at the next positive edge

of the clock. In contrast, the assignment to out from acc3 happens immediately (in the

same clock cycle). The whole operation of multiply-accumulate takes 3 cycles. The vari-

ables a and b are expected to arrive at the first clock cycle. Input variable c is expected

to arrive after one clock cycle delay. Verilog modules do not capture this information

about the expected arrival time of each input and the time at which the output is ready.

As a result, in a larger design, one multiply-accumulate unit can not be replaced with

another unit of different latency even though they are functionally equivalent.
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module multiply_accumulate(

input wire [31:0] a,

input wire [31:0] b,

input wire [31:0] c,

output wire [31:0] out ,

input wire clk

);

reg [31:0] a1;

reg [31:0] b1;

reg [31:0] ab2;

reg [31:0] c2;

reg [31:0] acc3;

always @(posedge clk) begin

a1 <= a;

b1 <= b;

end

wire [31:0] ab = a1 * b1;

always @(posedge clk) begin

ab2 <= ab;

c2 <= c;

end

wire acc = ab2 + c2;

always @(posedge clk) begin

acc3 <= acc;

end

assign out = acc3;

endmodule

Figure 2.2: Verilog module for the multiply-accumulate operation.
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2.2 MLIR

In this section, we will provide a background on the MLIR compiler infrastructure [Lat-

tner et al. (2021)]. There are a lot of common building blocks that can be reused across

different compilers. Every compiler requires intermediate representations (IR), pass in-

frastructure for analysis and transformation and printing and parsing support for the

IR. Providing a common infrastructure for developing IRs and analysis/transformation

passes on these IRs reduces the effort in developing new compilers. MLIR is a compiler

infrastructure that can be used to design custom intermediate representations for com-

pilers. It provides a pass infrastructure to develop custom passes of the IR and support

for custom parsing and pretty-printing.

An intermediate representation in MLIR is called a dialect. MLIR allows combin-

ing multiple dialects in a single program. Figure 2.3 shows an example code snippet in

theAffine dialect of MLIR along with some operations from the Func and Arith dialects.

An MLIR program consists of operations such as arith.addf in Figure 2.3a. Each oper-

ation can have input arguments (%arg2 and %2 for arith.addf operation). Operations

can produce one or more results. The input operands and the results are static-single-

assignment (SSA) variables, i.e. the variable can not be reassigned. In addition to the

input operands, an MLIR operation may have attributes. These attributes provide extra

information for the operation. For instance, the constant value of 0 in the arith.constant

operation in Figure 2.3a is an attribute. The operation name is always qualified by the

dialect name, i.e. the operation arith.constant belongs to the Arith dialect.

Operations can have their own regions. This allows MLIR dialects to have high-level

control flow operations. For example, the affine.for operation in Figure 2.3a has one

region that contains all the operations in its body. Other operations such as if-else may

require multiple regions. Regions are allowed to nest - the func.func operation defines its

own region for its body and the affine.for op defines a region nested inside this region.

In addition to custom operations, dialects may define their custom data types. The

memref type in Figure 2.3a shows an example of a custom data type. The memref

type is not qualified by a dialect name because it is part of the builtin dialect. Types
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module {

func.func @reduce (%arg0: memref <1024xf32 >) -> f32 {

%cst = arith.constant 0.000000e +00 : f32

%0 = affine.for %arg1 = 0 to 10 step 2 iter_args (%arg2 = %cst) -> (f32) {

%1 = affine.load %arg0[%arg1] : memref <1024 xf32 >

%2 = arith.addf %arg2 , %1 : f32

affine.yield %2 : f32

}

return %0 : f32

}

}

(a) Custom pretty printer.

#map0 = affine_map <(d0) -> (d0)>

#map1 = affine_map <() -> (0)>

#map2 = affine_map <() -> (10)>

"builtin.module "() ({

"func.func "() ({

^bb0(%arg0: memref <1024xf32 >):

%0 = "arith.constant "() {value = 0.000000e +00 : f32} : () -> f32

%1 = "affine.for "(%0) ({

^bb0(%arg1: index , %arg2: f32):

%2 = "affine.load "(%arg0 , %arg1) {map = #map0} : (memref <1024 xf32 >, index) -> f32

%3 = "arith.addf "(%arg2 , %2) : (f32 , f32) -> f32

"affine.yield "(%3) : (f32) -> ()

}) {lower_bound = #map1 , step = 2 : index , upper_bound = #map2} : (f32) -> f32

"func.return "(%1) : (f32) -> ()

}) {function_type = (memref <1024 xf32 >) -> f32 , sym_name = "reduce "} : () -> ()

}) : () -> ()

(b) Generic printer.

Figure 2.3: Example of MLIR Affine dialect.
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defined in any other dialect are qualified by the dialect name similar to the dialect

operations. Types may contain attributes. For instance, the memref type stores the

tensor dimensions and the element’s datatype as attributes.

MLIR provides a generic parser and printer for each dialect. In addition to this, it

also provides necessary infrastructure such as lexers and printing/parsing-related helper

functions to write custom parsers and printers for each dialect. Dialects may want

to define their pretty printing format for improved readability. Figure 2.3b shows the

generic printer output for the program in Figure 2.3a. It is easier to understand the

input operands and attributes of a function from the generic format. For instance,

arith.constant operation has no operands and one attribute named value, and affine.load

has two operands (%arg0 and %2 ) and one attribute named map (an affine-map at-

tribute).

MLIR uses LLVM’s tablegen infrastructure to allow defining dialects, operations,

types, printers and parsers for the operations and types in a succinct domain-specific

language. The tablegen infrastructure generates the necessary class definitions from the

tablegen description. Tablegen is also used to define custom passes. A pass recursively

visits the operations in the program for analysis and transformation. MLIR also provides

pattern-based graph rewriting for simple transformations such as peephole optimization.

Many of the MLIR passes can be reused by custom dialects. For instance, dialects can

provide custom implementation of certain interfaces for its operations to allow transfor-

mation passes such as canonicalization and constant subexpression elimination to run

on the dialect operations. This reduces the duplicate effort required to implement these

basic passes for each dialect.

Overall MLIR provides a robust infrastructure to develop intermediate representa-

tions and compilers. It reduces the programmer’s effort by providing many of the com-

mon building blocks for compiler development. We built our HLS compiler on top of the

MLIR compiler infrastructure.



Chapter 2. Background 13

//Producer loop-nest.

for (int i = 0; i < 3; i++) {

for (int j = 0; j < 3; j++)

#pragma pipeline

for (int u = 0; u < 2; u++)

#pragma unroll

for (int v = 0; v < 2; v++)

#pragma unroll

convX[i][j] += image[i+u][j+v] * wx[u][v];

}

//Consumer loop-nest.

for (int i = 0; i < 3; i++) {

for (int j = 0; j < 3; j++)

#pragma pipeline

for (int u = 0; u < 2; u++)

#pragma unroll

for (int v = 0; v < 2; v++)

#pragma unroll

convY[i][j] += convX[i+u][j+v] * wy[u][v];

}

(a) Two convolution operations in a series.

convX array

convY array
intra-loop
pipelining

inter-loop
pipelining

Time

The second
convolution

can start now.

convX[0,0] ready

convX[1,1] ready

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

convY[0,0] ready

(b) Data dependence & Timing diagram.

Figure 2.4: Example of a producer and consumer loop nest. The consumer loop can start

execution when the producer has written the first two pixels in row R1 of array convX.

2.3 Dataflow optimization

Image-processing and machine-learning workloads are often composed of multiple

smaller kernels such as convolution and matrix multiplication. For example, the Unsharp

mask algorithm contains a series of convolution operations. Machine learning models also

often chain multiple window-based (such as convolution or max-pooling) and point-wise

(such as RELU) operations together. These tensor operations, represented as a loop

nest, may have a producer-consumer relationship among them. Figure 2.4a shows an

example of two convolution operations applied on an image successively. The second

convolution is dependent on the output of the first convolution. The output of the first

convolution loop-nest is written to the convX array by the first loop-nest. The second

loop-nest consumes the convX array as input for the second convolution. To improve

performance, we unroll the inner two loops and pipeline the j-loop in both convolutions.

Figure 2.4b highlights the elements of the array convX that are required to calculate

the first element of the convY array. It also shows the timing diagram of iterations of

the j-loop. Each iteration of the j-loop is independent of the previous iterations. Thus,
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before an iteration of the loop completes, the next iteration can be started as shown in

the timing diagram. Overlapping the execution of multiple j-loop iterations improves

parallelism. In addition to pipelining between loop iterations (intra-loop pipelining),

there is also an opportunity to pipeline between the producer and consumer loop nests

(inter-loop pipelining). The second convolution (consumer loop nest) does not have

to wait for the first convolution to complete. It can start as soon as enough data is

written to the convX matrix to calculate the first convY value. Pipelining between the

producer and consumer convolutions overlaps their execution as shown in Figure 2.4b,

which further improves parallelism.

2.4 Vitis HLS

Vitis HLS (also known as Vivado HLS) is a high-level synthesis compiler toolchain from

Xilinx for their FPGAs. We compare our work against Vitis HLS in this thesis due to its

widespread use and maturity. Vitis HLS takes C/C++ as input and generates Verilog as

its output. Vitis HLS is built on top of the LLVM infrastructure and utilizes the LLVM

IR for many of its optimizations and lowering passes.

The hardware design is expressed as a single-threaded C/C++ program. Vitis HLS

supports adding pragmas to control the generated hardware. For instance, there are

pragmas for loop unrolling and pipelining. These pragmas help the hardware designer

choose the required parallelism and resource usage. An unrolled loop will duplicate the

resources (such as multipliers and adders) used inside the loop, but may offer greater

parallelism and hence performance. Pragmas are also used to specify the kind of hardware

buffers used to realize arrays in hardware - such as block RAMs, ultra RAMs and LUT

RAMs.

2.4.1 Limitations of dataflow optimization

Vitis HLS offers support for both intra-loop pipelining, as well as pipelining across

producer-consumer loops. However, the dataflow optimization feature of Vitis HLS for
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pipelining the execution of producer-consumer loops within a single function invocation

has certain limitations:

• The consumer must read the data in the same order in which the producer generates

it.

• Single-producer-single-consumer (SPSC) The intermediate arrays used to

communicate between the producer and consumer tasks must have only one pro-

ducer (i.e., only one task can write to it) and one consumer (only one task can read

from it).

• The intermediate arrays must be instantiated in the function itself. Array argu-

ments to a function can not be used to write the intermediate values.

In Figure 2.4a, the single-producer-single-consumer (SPSC) constraint is satisfied

since the intermediate array, convX, is produced by the first convolution and consumed

by the second. However, the second convolution does not read the convX array in the

same order in which the first convolution writes to it. In fact, as the consumer task is a

stencil operation, the number of reads on convX is more than the number of writes. Due

to the abundance of stencil operations in both image processing and machine learning

applications, this is a very common scenario.

To understand the reason behind the above limitations dataflow optimization, we first

need to discuss how Vitis HLS implements it. For each producer-consumer task pair,

Vitis HLS dataflow optimization checks the memory accesses patterns of the intermediate

array. If the elements of the intermediate array are read by the consumer in the order

in which they are written by the producer, then Vitis HLS can replace the array with

a FIFO without altering the program’s behavior. The FIFO ensures that the consumer

gets the data in the same order in which the producer is generating it. Now, Vitis

HLS can start the execution of the consumer loop along with the producer loop without

having to worry about data dependence violation. If the producer has not generated and

pushed the next value to the FIFO, the consumer automatically stalls while attempting

to read that value from the empty FIFO. Thus the read-after-write dependence between
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(a) FIFO (b) Ping-Pong buffer

Figure 2.5: Dataflow optimization of Vitis HLS - Vitis HLS adds (a) FIFO to

pipeline/overlap within a single function call (improves latency) if the producer and the

consumer read the data in the same order. (b) Otherwise, it adds a ping-pong buffer for

pipelining between consecutive function calls (improves throughput).

the producer and consumer tasks in the original program is enforced at runtime by

the FIFO’s synchronization logic. If, in the original program, the order of reads and

writes to the intermediate buffer do not match, then Vitis HLS can not replace the

intermediate array with a FIFO. In such cases, it instantiates a ping-pong buffer to

replace the intermediate array. This optimization helps in pipelining between multiple

invocations of the function but does not pipeline between the producer and consumer

tasks within a single function invocation. Thus, in the absence of the same read and

write order, the dataflow optimization does not improve the overall performance/latency

of a single function invocation.

When multiple consumer loops read from the same intermediate array, each consumer

loop has to wait unless all other consumers have read the current data before reading

the next value. As a result, using a single FIFO with multiple consumers may lead

to unexpected stalls, and even deadlock in the presence of additional data dependencies

between the consumers. Vitis HLS does not duplicate the FIFOs for multiple consumers.

This is probably to ensure that the BRAM usage does not explode after the dataflow

optimization. The FIFO-based implementation can not handle multiple producers either

since at runtime, two producers running in parallel will insert the data in arbitrary order,
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and the consumer will not be able to read the data in the expected order. Due to the

above-mentioned limitations of the FIFO-based approach, dataflow optimization in Vitis

HLS is limited to single-producer-single-consumer (SPSC) workloads.

Similarly, if the intermediate array was accessed via function argument, the optimizer

would not have access to the array and would not be able to replace it with a FIFO,

leading to the third constraint. This leads to the two hard constraints for dataflow

optimization.

Based on the above discussion, we can identify two key attributes of the dataflow

optimization,

• Vitis HLS performs a very basic static analysis just to check if the producer and

consumer access the intermediate array in the same order. Its static analysis does

not handle more complex data access patterns.

• The dataflow optimization relies on runtime synchronization to enforce read-after-

write dependencies between producer and consumer tasks.

While the lack of better static analysis leads to missed parallelization opportunities

for Vitis HLS in the presence of complex memory access patterns, enforcing memory

dependence using runtime synchronization can lead to more resource usage. We quantify

the effect of these design decisions on the performance and resource usage in Chapter 5.

2.5 Summary

In this chapter, we discussed the necessary background to understand the high-level

synthesis compiler landscape. We gave a brief overview of the FPGA internals and

discussed the problems associated with designing FPGA accelerators using traditional

hardware description language. We also discussed the MLIR compiler infrastructure

which we use for developing our own HLS compiler. Finally, we discussed the Vitis HLS

compiler and its dataflow optimizations.
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HIR Intermediate Representation

An intermediate representation (IR) helps in decoupling the different stages of a compiler

pipeline. We need an IR for our compiler that can capture the important properties of

a hardware design. A hardware design has three major components, the algorithm,

the schedule of computation and the resource binding. Among these, the schedule and

the resource binding are unique to a hardware design. The schedule of a computation

specifies the time at which each computation is executed. It captures the parallelism in

the design and ensures that data dependencies are not violated. The IR must capture

a precise schedule after scheduling to synthesize the state machines that control the

data path in the hardware design. An FPGA has many different resources such as

multipliers, multi-ported block RAMs and registers. For the backend to generate the

hardware design, the IR needs to capture the resource binding information, i.e. which

resources are used for which operations? For instance, a tensor may be implemented

using a single or dual-ported RAM. Similarly, two multiplications scheduled at different

clock cycles can reuse the same multiplier.

A single intermediate representation is not suitable at every stage of a compiler

pipeline. Transformations at different stages of the compiler pipeline require different

levels of abstraction. For instance, certain transformations (such as operator strength

reduction) may occur before the scheduling pass. These do not require the scheduling

information. Other optimizations such as resource sharing will require a precise schedule

18
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to identify which resources can be reused between two computations. We introduce a

new IR called HIR to capture scheduled design with resource-binding information.

In Section 3.1, we discuss the design of the HIR intermediate language in detail. We

also discuss various types of undefined behavior in our compiler. We discuss the strengths

of HIR in Section . Section 3.3 explains how different types of parallelizations can be

captured in HIR. In Section 3.4.2, we discuss the different optimizations applied to an

HIR design. Section 3.4.3 discusses the schedule verification pass. Finally, we explain

the details of the compiler backend that lowers HIR to SystemVerilog in Section 3.4.4.

3.1 HIR Design

The HIR intermediate representation is implemented as a dialect in the MLIR [Lattner

et al. (2021)] compiler infrastructure. As such, it inherits all the usual benefits provided

by the core MLIR infrastructure, such as a human-readable textual representation that

could be parsed, printed, and verified [Lattner et al. (2020)]. All the HIR operations have

a custom pretty-printed form for readability and the convenience of compiler developers.

HIR borrows its syntax from software programming languages. Like LLVM, all variables

in HIR are SSA variables.

The HIR IR looks very similar to a high-level software IR. It has multi-dimensional ar-

rays and high-level control flow operations such as for/while loops and if-else statements.

HIR enhances a software-style IR in two important ways. The first is an abstraction of

memory that is suitable for hardware. HIR supports memory banking (mapping a logical

memory to multiple physical memories for parallel access) and multi-port RAMs. The

second feature that distinguishes it from a software IR is that all HIR designs contain

an explicit schedule of all computations. The fine-grained schedule allows the IR to rep-

resent different types of parallelism such as instruction-level parallelism, loop pipelining

and task-level parallelism. As a part of the MLIR infrastructure, HIR can interoperate

with other MLIR dialects. The HIR IR allows arithmetic, logical, slicing and casting

operations from hw and comb dialect inside the function body. This allows us to reuse
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Figure 3.1: Matrix increment and transpose.

the canonicalization and constant folding function hooks of these operations.

3.1.1 Time variable and schedules

The HIR compiler generates a hardware design with a single clock domain. All operations

in the hardware design are synchronized with the positive edge of the hardware clock.

This clock provides the notion of time in the hardware design. Each tick (positive edge)

of the clock represents a time instant. Each operation in the HIR kernel is called a

static instance of the operation. A static instance is uniquely identified by its syntactic

position in the kernel. A dynamic instance of an operation is one execution of the

operation. A specific operation may execute multiple times during the execution of the

kernel. Thus, a static instance of an operation may be associated with multiple dynamic

instances. For example, the load operation in line number 16 of Figure 3.1 is a static

instance. Since the operation is inside a loop, each iteration of the loop would execute

the load operation. Each of these executions of the operation corresponds to a dynamic

instance of the operation. Similarly, multiple calls to the enclosing function also lead to

multiple dynamic instances for each operation inside the function body. A schedule maps

dynamic instances of each operation to a time instant of the clock. The corresponding

dynamic instance of the operation is executed at that clock edge. A naive way to define

a schedule is to specify the absolute time instant of each operation using an integer. But
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this would create a mapping from static instances of the operations to time instants. It

does not allow us to map different dynamic instances of the same operation to different

time instants.

To solve this problem, we introduce the concept of time-variables. Each region (en-

closed in curly braces) in an HIR kernel is associated with a time variable. This time

variable represents the time at which the region starts its execution. All operations within

the region must execute after this time. A region may be executed multiple times. For

instance, a function’s body is a region and each call to the function would execute the

operations within the region. Thus, just like operations, a single region is also associated

with multiple dynamic instances, each corresponding to one execution of the region. For

each such dynamic instance of the region, the time variable represents the time instant

at which the region started execution. For example, in Figure 3.1, the transpose func-

tion defines its start time as %t and the i-loop defines the iteration start time with the

time variable %ti. For each function call, the time variable %t would correspond to a

different start time. Similarly, for each iteration of the loop within the function call, the

time variable %ti would correspond to the start time of the specific iteration within the

specific function call. The schedule for each operation within a region is defined as a con-

stant delay from the region’s start time. Since the region’s start-time for each dynamic

execution of the region is different, the dynamic instances of the operations within the

region are also mapped to different time instants. In this way, the time variables allow

HIR to associate different time instants to different dynamic instances of an operation.

A time variable can be defined in two ways. Each region defines its own start time

variable. In Figure 3.1, the function definition operation (hir.func) defines the time

variable %t using the at syntax, and the j-loop defines the time variable %tj using the

iter time syntax. The %t time variable specifies the time at which the function execution

starts and %tj specifies the time at which an individual iteration of the j-loop starts.

The value of %tj is different for each iteration of the j-loop: %tj = %ti+ 1 for iteration

(i = 0, j = 0) and %tj = %ti + 2 for iteration (i = 0, j = 1). In addition, loops return

a time variable as an output value. This time variable represents the time at which
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hir.next iter was called in the last loop iteration. The time variable %tf in line number

12 is the time time variable returned by the j-loop. A time variable can be accessed only

within the region in which it is defined. Time variables of outer regions are not accessible

in the inner regions. For example, %t is not accessible to operations in the i-loop’s body.

They can only access %ti and %tf time variables defined in the i-loop’s body. Similarly,

operations in the j-loop’s body can only access the %tj time variable.

Time variables are used to schedule the start time of operations. The ‘at’ keyword

represents a use of a time variable except in the function definition. In the function

definition, the at keyword defines the time variable to represent the time at which the

function starts its execution. In any other operation, the at keyword represents the use

of a time variable. The time specified after the at keyword is the time at which the

operation is scheduled to start. An optional delay maybe added to a time variable at

the use site. For instance, the load and store operations in Figure 3.1 are scheduled to

start at time %tj and %tj + 1, where the time variable %tj is defined within the body

of the j-loop and represents the start time of each loop iteration.

In addition to operations, all SSA variables of integer and float types are also associ-

ated with a time instant. The SSA variables contain a valid value only at the specified

time instant. SSA variables of hir.memref type do not have any specific time instant

associated with them. Memory elements can be read from or written to at any time

instant. Each operation that produces an output value in HIR also specifies the delay

from the start of the operation to the time at which the output is available. The SSA

variable %u in Figure 3.1 has a valid value at time %tj + 1 because the load operation

starts at time %tj and it requires a delay of one cycle to load the value from the memory.

The HIR dialect utilizes operations from other MLIR dialects as well. For example, it

uses the comb dialect for combinatorial operations (operations that complete in the same

clock cycle) such as integer arithmetic and logical operations, multiplexing and extracting

bit-vectors from larger bit-vectors. This allows us to reuse existing dialect operations

and operation-specific canonicalization functions without having to reimplement them

for the HIR dialect. To schedule a hardware design, only the operations in the HIR
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dialect need to be scheduled explicitly. Since combinatorial operations complete their

execution within the same clock cycle, their schedule can be calculated from their input

values. For example, in Figure 3.1, the comb.add operation takes %u as input which

is valid at time %tj + 1. Thus, the comb.add operation is scheduled at the same clock

cycle. In addition, the output %v is also produced in the same clock cycle %tj + 1. In

this way, we can extrapolate the schedule of combinatorial operations from their input

values.

The hir.delay operation adds a delay of specified clock cycles to the input. As shown

in line number 18 of Figure 3.1, the value %j i4 is valid at time %tj. It is delayed by

one clock cycle to generate the value %j1 which is valid at time %tj + 1.

3.1.2 Functions

// Function s i gna tu r e captures input and output de lays r e l a t i v e

// to the s t a r t t ime .

hir.func @multiplyAccumulate at %t

(%a : i32 , %b : i32 , %c : i32 delay 3) −> ( i32 delay 4) {

//Func body. Time va r i ab l e %t i s a v a i l a b l e i n s i d e the body.

}

// RAM port parameter s .

#bram rw = { rd l a t en cy = 1 : i64 , wr la tency = 1 : i64}

#bram rd = { rd l a t en cy = 1 : i64}

// Memref args have port parameters to s yn th e s i z e the r i g h t bu s e s .

hir.func @conv at %t (%img : ! hir.memref<16x16xf32> ports [#bram rw ] ,

%ke rne l : ! hir.memref<3x3xf32> ports [#bram rd ]{

//Func body. Time va r i ab l e %t i s a v a i l a b l e i n s i d e the body.

}

Figure 3.2: HIR function definition.

Function signatures capture the time at which the input values (of integer and float

type) are expected by this function (callee) and the time at which the output values are

available to the caller. Figure 3.2 shows the function definition of a multiply-accumulate
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operation. The function signature implies that the function starts executing at time

instant %t. The inputs %a and %b are read when the function starts. Input %c is read

after a delay of three clock cycles i.e., at time %t + 3. The function returns the output

after four clock cycles (at %t + 4). Capturing the schedule of function arguments and

results enables us to verify the schedule of the complete design without performing an

inter-procedural analysis. Analogous to how a function’s signature captures sufficient

type information for the caller to perform type-checking without inspecting the callee’s

body, capturing the schedule allows the caller to verify the schedule of operations in its

body without analyzing the callee’s body. Memory (memref type) arguments specify a

list of ports as shown in the conv function’s signature. The port parameter (captured in

the attributes bram rw and bram rd) specifies the delay in clock cycles associated with

each operation. Each port can be a read-only port (ex: bram rd), a write-only port or

a read-write port (ex: bram rw). Function arguments of memref type do not have a

delay associated with them because on-chip memory buffers (such as BRAM) are read

in multiple clock cycles whereas values can be read in one clock cycle. Thus, we can not

associate a single time instant with them.

3.1.3 Control Flow Operations

HIR provides multiple primitives to capture the control flow in a design. The HIR

compiler automatically synthesizes state machines to implement the control flow.

Figure 3.3 shows the syntax of control flow operations in HIR. The for loop takes a

lower bound, an upper bound and a step size. The iter time syntax specifies that the

loop starts at the time %t+1. The next iter operation determines the initiation interval

of the loop by specifying the start time of the next iteration relative to the current

iteration. The for loops in HIR can be either temporal loops (multiple iterations on

the same hardware at different times) or spatial loops (loop body unrolled). Since index

type represents compile time constant integers in HIR, spatial loops are represented by

specifying the loop induction variable as index type.

The if statement takes two input variables. The boolean condition variable (%cond)
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//%t end : time at which l a s t i t e r a t i o n c a l l s n e x t i t e r .

%t end = hir.for %i : i32 = %lb to %ub step %c1 i 3 2

iter time(% t i = %t + 1) {

// The f i r s t i t e r a t i o n s t a r t s at time %t i=%t + 1 ,

// I n i t i a t i o n i n t e r v a l i s 5 c l o ck c y l e s .

hir.next_iter at %t i + 5

}

%re s = hir.if %cond at time(%t i nn e r = %t ) −> ( i1 ) {

%true 0 = hw.constant t rue

hir.yield(%t rue 0 ) : ( i1 )

} e l s e {

%f a l s e = hw.constant f a l s e

hir.yield(% f a l s e ) : ( i1 )

}

Figure 3.3: Control flow ops in HIR.

and a time variable (%t) to represent the time at which the condition is checked. It also

defines a new time variable (%t inner), which is available inside the then and else bodies

to schedule operations inside them.

3.1.4 Types

HIR supports primitive data types such as arbitrary bit-width integers and single and

double-precision floating-point types. It uses index type to represent constant integers

and hir.time type to represent the type of time variables. In addition to these sim-

ple datatypes, HIR defines a container type to represent multidimensional memories in

hardware.

All the available memory resources in hardware are represented via the hir.memref

data type. A memref can be viewed as a pointer or reference to a multi-dimensional

tensor. The tensor may be placed in an array of buffers (such as distributed or block

RAM) or registers. The memref type abstracts its implementation details away and

provides a uniform interface for memory access.

Figure 3.4 shows two alloca operations that allocate new memory elements (block
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#bram r = {” rd l a t en cy ”=1}

#bram w = {” wr la tency ”=1}

#bram rw = {” rd l a t en cy ”=1, ”wr la tency ”=1}

#reg r = {” rd l a t en cy ”=0}

#reg w = {” wr la tency ”=1}

// s i n g l e port b lock ram.

%bram 1p = hir.alloca ”bram”

: ! hir.memref<8x8xi32> ports [#bram rw ]

// s imple dual port b lock ram.

%bram s2p = hir.alloca ”bram”

: ! hir.memref<(bank 4) x8xi32> ports [#bram r , #bram w ]

%reg = hir.alloca ” reg ”

: ! hir.memref<(bank 2) xi8> ports [# reg r ,#reg w ]

//%0 i s o f Index type .

%v = hir.load %bram s2p [ port 0 ] [%0 , %i ] at %t

: ! hir.memref<(bank 4) x8xi32>

hir.store %v to %bram 1p [ port 0] [% i , %j ] at %t + 1

: ! hir.memref<8x8xi32>

Figure 3.4: HIR memref type.

RAMs and registers). The memref datatype defines the dimensions of the tensor, the

data type of its elements and memory banking. The ports of the memory are specified

using MLIR’s dictionary attributes. These attributes (bram r, bram w) specify the type

of the port and the latencies of the read/write operations. If a port attribute specifies

both read and write latencies then it is treated as a read/write port with a common

address bus. Each port has a dedicated address bus. This approach of representing

memory ports gives HIR the flexibility to instantiate memories with an arbitrary number

of ports of different types. For example, block RAMs in Xilinx FPGAs are dual ported.

A memref can specify separate read and write ports to instantiate a simple dual port

RAM or have read+write permission in both ports for a true dual port RAM.

The memref can optionally choose to distribute its elements in multiple banks. The

dimension(s) to be banked are marked using the bank keyword. The banked dimensions
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of a memref can only be indexed using index type which is guaranteed to have a constant

value. This ensures that the compiler knows which specific bank is accessed. We discuss

the advantages of memory banking in Section 3.3.4. Only one load/store operation can

be scheduled every cycle for a given port of a bank.

3.1.5 Undefined Behavior

HIR also borrows the concept of undefined behavior from software programming lan-

guages. The HIR compiler makes the following assumptions:

• Lower bound of a for-loop is never greater than the upper bound. We use this to

simplify the for-loop state machine. Also, our scheduler can only handle constant

loop bounds, which makes this condition always true.

• A new instance of a for-loop is not scheduled unless the previous instance has

completed all iterations. Each instance of a loop requires its loop counter. Since

only one counter is instantiated per loop, the hardware can not execute multiple

loop instances in parallel. Note that multiple in-flight iterations of a single loop

instance, i.e. loop-pipelining, is a perfectly valid optimization.

• There will never be multiple accesses to a memref in the same clock cycle unless

they occur in different banks or different ports. A memory port has only one

address bus. Thus, it can only handle one memory request every cycle. This

constraint ensures that there will never be a port conflict in the hardware.

• All load operations happen on initialized memory, i.e., the memory must be written

to before reading a value from it. Each call to a function resets all memory elements

(such as registers and RAMs) instantiated in the function to an uninitialized state.

The HIR language does not support persistent state (equivalent to static variables

in C) across function calls. Uninitialized memory may have any values, including

values from the previous run of the function. We do not zero-initialize buffers on

every function call since that would lead to multi-cycle delay overhead for each call.



Chapter 3. HIR Intermediate Representation 28

Thus, a program that reads from uninitialized memory may execute in unexpected

ways.

• The timing behavior of external Verilog modules captured in a forward function

declaration must match with the implementation. There is no way for the com-

piler to analyze external Verilog modules. Thus, the compiler relies on the timing

information in the function signature (such as when the inputs are expected by the

callee and when the output should be ready) to generate correct schedules.

Violation of any of the above assumptions is treated as undefined behavior. optimizers

can exploit the undefined behavior to implement more aggressive optimizations that

do not violate the semantics. Section 3.4.2 shows one such optimization pass exploits

undefined behavior to reduce bitwidth of loop induction variables. All of these undefined

behaviors, except the undefined behavior related to external Verilog modules, can be

checked during simulation. Our compiler optionally (enabled by a compilation flag)

adds extra assertions to check undefined behavior during simulation. This is equivalent

to undefined-behavior sanitizers available for languages like C++. These checks improve

the functional verification of the final design. We can only perform these checks during

the simulation as these assertions are not synthesizable.

3.2 Strengths of HIR Intermediate Language

In this section, we discuss the advantages of using HIR as an intermediate language for

HLS compilers.

3.2.1 High-Level Design

HIR borrows control flow constructs such as loops, function calls and conditional state-

ments directly from imperative programming languages. These features make it easy

to convert software algorithms into hardware designs. They also help in representing

high-level optimizations such as loop pipelining and overlapped kernel execution.
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3.2.2 Explicit Scheduling

Previous work Durst et al. (2020) has shown that statically scheduled designs are more

efficient in their hardware utilization since they do not have to implement extra control

logic to dynamically communicate between hardware modules. Although such designs

are more efficient, the IRs that precisely capture the schedule are usually designed at

the abstraction level of hardware description languages. Thus, like HDLs, they require

state machines that generate the control signals to determine the order of execution

of operations in the data path. Without these control signals, every operation in the

hardware will execute every cycle.

Instead of describing a hardware design as datapath + FSM, HIR describes it as

datapath + schedule. The hardware design specifies the relative time of execution of

each operation and the compiler automatically generates the required FSM. Explicit

schedules simplify code generation after automatic scheduling. The scheduling pass does

not have to create FSM logic to implement the parallel schedule.

3.2.3 Deterministic Parallelism

Many HLS languages [Nikhil (2004)] and latency insensitive IRs [Nigam et al. (2021)]

borrow non-deterministic parallelism from software programming languages. This kind

of parallelism often requires a synchronization mechanism. For example, in Vivado HLS

a producer and a consumer task can execute in parallel if the producer is transferring its

outputs to the consumer via streams (implemented as FIFOs in hardware). This requires

handshaking (a form of synchronization) between the producer and consumer. If the

two tasks are working in lock-step, i.e., every fixed number of cycles with the producer

task generating one output and the consumer task consuming it, then there is no need

for synchronization between the two tasks. Both HIR and low-level IRs [Schuiki et al.

(2020)] can express this kind of deterministic, synchronization-free, task-level parallelism.

Section 3.3.3 shows an example of synchronization-free task-level parallelism.
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3.2.4 External Hardware Modules

The ability to use externally defined hardware circuits is essential to specialize a design for

the given hardware platform. FPGA vendors provide custom libraries for many common

circuits such as floating-point arithmetic and multi-ported RAMs. Additionally, several

third-party libraries may need to be reused or inter-operated with.

HIR’s ability to capture precise scheduling information in the function signature

makes it easier to integrate external Verilog modules with HIR’s design. In languages

where the schedule is not a part of the language semantics, external modules usually

require additional handshake signals. External modules that have fixed latency can

interface with HIR without the overhead of handshaking.

3.2.5 Predictable QoR

A predictable quality of result (QoR) is essential for a hardware intermediate repre-

sentation. This allows DSL/HLS compilers to generate hardware with a predictable

performance and resource usage. Control over resource usage is also important when the

generated accelerator has to share the FPGA with other Verilog IPs such as PCIe con-

trollers, DRAM controllers and soft CPU cores. An HIR design contains a description of

the precise schedule of all operations. Additionally, all resources are explicitly instanti-

ated in the design. Together, these ensure that the performance (amount of parallelism)

and resource usage are predictable.

3.3 Expressing Different Types Of Parallelism In HIR

HLS compilers are expected to exploit domain knowledge to find potential optimization

opportunities [Hegarty et al. (2014)]. A good intermediate language should provide

mechanisms to express these optimizations so that the compiler backend can generate

the desired circuit. In this section, we discuss various standard hardware optimization

techniques and how they can be expressed in HIR.
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hir.func.extern @stenc i l A at %t (

%Ai : ! hir.memref<64xi32> ports [#bram r ] ,

%Bw: ! hir.memref<64xi32> ports [#bram w ] )

hir.func.extern @stenc i l B at %t (

%Br : ! hir.memref<64xi32> ports [#bram r ] ,

%Co : ! hir.memref<64xi32> ports [#bram w ] )

hir.func @ta sk pa r a l l e l at %t (

%Ai : ! hir.memref<64xi32> ports [#bram r ] ,

%Co : ! hir.memref<64xi32> ports [#bram w ] ) {

%B = hir.alloca ”bram”

: ! hir.memref<64xi32> ports [ #bram r , #bram w ]

%Br = hir.memref.extract %B[ port 0 ]

: ! hir.memref<64xi32> port [ #bram r ]

%Bw = hir.memref.extract %B[ port 1 ]

: ! hir.memref<64xi32> port [ #bram w ]

// Execution o f s t en c i lB i s over lapped with s t e n c i lA .

hir.call @stenc i l A(%Ai , %Bw) at %t

: ! hir.func <(!hir.memref<64xi32> ports [#bram r ] ,

! hir.memref<64xi32> ports [#bram w ] )>

hir.call @stenc i l B(%Br , %Co) at %t + 8

: ! hir.func <(!hir.memref<64xi32> ports [#bram r ] ,

! hir.memref<64xi32> ports [#bram w ] )>

hir.return

}

Figure 3.5: Overlapped execution of tasks.
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3.3.1 Instruction Level Parallelism

The HIR IR can capture fine-grained instruction-level parallelism. For instance, multiple

independent operations can be scheduled at the same time to improve parallelism. Sim-

ilarly, operator chaining can be used to schedule multiple dependent operations in the

same clock cycle, which would otherwise span multiple cycles. In case multiple dependent

operations can not be scheduled at the same cycle to meet frequency targets, pipeline

registers can be added between instructions. An HIR design uses hir.delay operation to

add pipeline registers between dependent operations.

3.3.2 Loop Pipelining And Unrolling

Loop pipelining is a key optimization in high-level synthesis. In loop pipelining, the next

iteration of the for loop starts before the previous iteration completes. This allows mul-

tiple loop iterations to execute in parallel. Loop pipelining does not add extra hardware

overhead. A for loop with a constant initiation interval is shown in Figure 3.3.

Unrolling replicates the loop body in hardware. This allows an HIR design to scale

with available hardware resources if there is enough loop parallelism. Unrolling can often

be combined with pipelining to further improve parallelism. A loop where the induction

variable is of Index type is unrolled fully. HIR does not support the partial unrolling of

loops. Partial unrolling can be represented by strip-mining the for loop and completely

unrolling the resultant inner loop.

3.3.3 Task Level Parallelism

In addition to exploiting parallelism in loops, multiple tasks can be executed in parallel

to further improve performance. The ”task parallel” function in Figure 3.5 shows an

example of task-level parallelism expressed in the HIR dialect. Since the stencils read the

input array and write to the output sequentially, the second stencil does not have to wait

for the first stencil to complete. It can start its operation as soon as there is enough data

to calculate its first output. After that both the stencil run in lock steps i.e. in each cycle
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A[0,0]

A[1,0]

A[2,0]

A[0,1]

A[1,1]

A[2,1]

Bank 0 Bank 1

A is of type hir.memref< 3 x (bank 2) x i32>

Figure 3.6: Memory banking in a memref type.

stencilA produces one value and stencilB consumes one value. Overlapping the execution

of the tasks reduces the overall latency of the top-level function. Like loop pipelining,

overlapped execution of multiple tasks does not need any runtime synchronization. The

explicit schedule ensures that both loops run in lockstep.

3.3.4 Memory Banking And Multi-Port RAMs

Hardware accelerators use on-chip buffers to reduce DRAM accesses. To execute opera-

tions in parallel, these designs may perform multiple read and write operations at every

cycle. FPGAs offer multi-ported on-chip RAMs to support parallel access. An HIR

design can instantiate multi-ported RAMs for parallel memory accesses. For workloads

where the parallel memory accesses are usually guaranteed to be separated by a fixed

stride, an HIR design may employ memory banking instead. In this approach, the data is

distributed among multiple buffers in such a way that parallel accesses occur on distinct

buffers. Figure 3.6 shows how elements of a banked memref are spread across multiple

buffers.

3.4 The compiler pipeline

Figure 3.7 depicts the comprehensive compiler pipeline based on MLIR. We utilize the

Polygeist Moses et al. (2021) C/C++ frontend to lower C programs to the affine dialect.
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Figure 3.7: HLS compilation flow.
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The programmer specifies the target pipelining and hardware resources using pragmas

in the C program. In case the programmer does not provide explicit specifications,

we have implemented a basic auto-tuner to search for different loop pipelining options.

Additionally, we have implemented an affine-to-HIR pass to lower the program to the

HIR dialect. The HIR backend is then used to optimize the design, such as bit-width

optimization, and generate SystemVerilog.

3.4.1 Polygeist frontend

We utilize the C language as the input programming language for our compiler toolchain.

The Polygeist Moses et al. (2021) frontend is employed to lower C programs into MLIR.

We have extended the Polygeist compiler to include support for HLS-related pragmas,

akin to those found in Vitis HLS. We support the following pragmas in our compiler:

• pipeline pragma is used to specify the loop initiation interval.

• unroll pragma is used to specify whether a loop is unrolled or not. We only support

complete unrolling at present. Partial unrolling can be achieved by manually strip-

mining the loop and unrolling the resulting inner loop completely.

• bind storage pragma is used to specify the type of hardware buffer such as block

RAM or LUT used to implement an array and the number of ports.

• array partition pragma is used to specify memory banking along a specific di-

mension of a multidimensional array. We only support complete partitioning of a

dimension. Block and cyclic partitioning are not supported yet.

• interface pragma defines the type of interface used to implement a function argu-

ment. We use this pragma with array arguments to specify the number of memory

ports and latency of the read/write operation.

• bind op pragma is used to specify the latency of an arithmetic operation. This

information is required by the scheduler later to calculate a valid schedule. This
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allows us to use external FPGA vendor-specific IPs for efficient implementation of

floating point arithmetic.

• extern func pragma specifies the latency of external functions. We can use this

pragma to call external Verilog modules. Currently, we only support external

modules with one output and a constant latency.

We use the one-dimensional convolution kernel shown in Figure 3.8 as our running

example to explain the compiler pipeline.

The bind op pragma specifies the latency of the floating-point addition (five clock

cycles) and multiplication (four clock cycles) operations. The interface pragma specifies

the type of memory interface that will be generated for the function arguments. The

pipeline pragma specifies the pipelining initiation interval (seven cycles) for the j-loop.

The scop pragma instructs the Polygeist frontend to generate Affine dialect operations

for the loops and load/store operations inside the scop.

The Polygeist frontend generates programs in the affine dialect, with pragma infor-

mation preserved as attributes. Following that, a preprocessing pass is applied to convert

all floating-point operations into function calls, utilizing information from the bind op

pragma. It also inserts appropriate function declarations into the affine program. The

implementations for these function declarations are provided by external Verilog floating

point modules. The frontend also inlines function calls for which definitions are avail-

able. The resulting output of the preprocessing for the one-dimensional convolution is

depicted in Figure 3.9.

Next, we proceed with scheduling, aiming to identify a schedule that satisfies the

programmer-specified initiation intervals (II) without altering the semantics of the input

sequential affine program. The autotuner employs a simple binary search technique to

determine the optimal II for each loop that lacks a programmer-specified II. For each

target II, the scheduler is executed to verify if the design can be feasibly scheduled. The

outcome of this step is a parallel program.

The affine-to-HIR pass transforms the affine program to HIR using the scheduling

information, and the binding pragma attributes which determine the type of hardware
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#pragma HLS bind_op op = add_f32 latency = 5

#pragma HLS bind_op op = mul_f32 latency = 4

void conv(float outp[16], float inp[16], float wt[2]){

#pragma HLS interface port= outp storage_type=ram_1p \

rd_latency=1 wr_latency=1

#pragma HLS interface port= inp storage_type= ram_1p rd_latency = 1

#pragma HLS interface port= wt storage_type= ram_1p rd_latency = 1

#pragma scop

for (int i = 0; i < 16; i++) {

for (int j = 0; j < 2; j++) {

#pragma HLS pipeline II = 7

outp[i] = outp[i] + inp[i + j] * wt[j];

}

}

#pragma endscop

}

Figure 3.8: One-dimensional convolution kernel with HLS specific pragmas.

buffers to be used for each multi-dimensional array. Figure 3.10 illustrates the scheduled

HIR design for the one-dimensional convolution. The initiation interval of this design

cannot be reduced below seven clock cycles due to a loop carried dependence between

the store and the load operations on %arg0. Within the same iteration of the j-loop,

there is a six-cycle gap between a load and a store on %arg0, resulting from a one-cycle

load delay and a five-cycle delay of the floating point add operation. To maintain the

read-after-write dependence between the load and store operations, the next iteration’s

load cannot be scheduled before the current iteration’s store is completed, which requires

an additional clock cycle. As a result, the next iteration can only commence after a delay

of seven clock cycles. For the sake of brevity, certain operations such as delay and casting
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func.func private @mul_f32(f32 , f32)

-> (f32 {hir.delay = 4})

func.func private @add_f32(f32 , f32)

-> (f32 {hir.delay = 5})

func.func @conv (%arg0: memref <16xf32 >

{hir.memref.ports = [{ rd_latency = 1 : i64 , wr_latency = 1 : i64}]},

%arg1: memref <16xf32 >{ hir.memref.ports = [{ rd_latency = 1 : i64 , wr_latency = 1

: i64}]},

%arg2: memref <2xf32 >{ hir.memref.ports = [{ rd_latency = 1 : i64 , wr_latency = 1 :

i64 }]}){

affine.for %arg3 = 0 to 16 {

affine.for %arg4 = 0 to 2 {

%0 = affine.load %arg0[%arg3]

%1 = affine.load %arg1[%arg3 + %arg4]

%2 = affine.load %arg2[%arg4]

%3 = func.call @mul_f32 (%1, %2)

%4 = func.call @add_f32 (%0, %3)

affine.store %4, %arg0[%arg3]

} {II = 7 : i64}

} {II = 14 : i64}

return

}

Figure 3.9: After preprocessing.
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hir.func.extern @mul_f32 at %arg2 (%arg0 : i32 , %arg1 : i32) -> (%out : i32 delay 4)

hir.func @conv at %arg3 (%arg0 : !hir.memref <16xi32 >

ports [{ rd_latency = 1 : i64 , wr_latency = 1 : i64}],

%arg1: ... , %arg2: ...){

%t_end = hir.for %i = %c0 to %c16 step %c1 iter_time( %arg5 = %arg3){

%res , %t_end_0 = hir.for %j = %c0 to %c2 step %c1 iter_time( %arg8 = %arg5){

%4 = hir.load %arg0[port 0] [%i] at %arg8+4

%s = comb.add %i, %j : i4

%8 = hir.load %arg1[port 0] [%s] at %arg8

%10 = hir.load %arg2[port 0] [%j] at %arg8

%12 = hir.call @mul_f32 (%8, %10) at %arg8+1

%sum= hir.call @add_f32 (%4, %12) at %arg8+5

hir.store %sum to %arg0[port 0] [%i] at %arg8 + 10

hir.next_iter at %arg8 + 7 : (i64)

}

hir.next_iter at %arg5 +14

}

hir.return

}

Figure 3.10: After scheduling and lowering to HIR.

operations are omitted in Figure 3.10.

3.4.2 Optimizer

The optimizer lowers the affine IR into HIR and optimizes the generated HIR IR. All

programs in the HIR dialect have an explicitly specified schedule which may capture

different types of parallelism in the design, but the affine dialect assumes sequential ex-

ecution. To lower the Affine dialect to HIR, we use an ILP-based automatic scheduler

that generates a parallel schedule.

Peep-hole optimization Currently our compiler supports one peep-hole optimiza-

tion. Before scheduling, we look for multiply-accumulate patterns and replace them

with a single function call to an external multiply-accumulate Verilog module. Vivado

offers IP for fused-multiply-add (FMA) operation which consume fewer resources. The

FMA IP from Vivado provides the implementation of the external Verilog module for
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the multiply-accumulate operation.

Auto-Scheduling Our compiler uses an ILP-based automatic scheduler to calculate

a parallel schedule for the input sequential affine program. The objective of the scheduler

is to find the additional delays for each operation, relative to the start time of its parent

region. The scheduler performs scheduling in two steps. In the first step, it formulates

an ILP to find actual dependencies and the required delay between dependent operations

in clock cycles. For each pair of load/store operations that may have a dependence, the

scheduler formulates an ILP which calculates the required delay between the source and

sink operations of the dependence. This dependence may be intra-loop, loop-carried

or between two loop nests. Since ILP uses the affine memory access subscripts in the

constraints to test for dependence, if a pair of load/store operations never access the

same memory location, the ILP yields no solution. The scheduler ignores these false

dependencies.

In the second step, the scheduler formulates a combined ILP to calculate the sched-

ule. This ILP uses the previously calculated delays between source and sink operations

of actual dependencies as constraints. In addition to memory dependencies, the sched-

uler also captures dependencies between the def and use operations of SSA variables of

integer and float types. For example, if the output of a function call is used by a load

operation, and the function call takes 3 cycles to calculate the output, then there is an

additional constraint that the load operation must execute at least 3 cycles after call

operation. It also captures the user-provided loop initiation intervals as constraints in

the ILP formulation to satisfy the performance constraints. The ILP solution provides

a valid schedule (i.e. a schedule that does not violate any memory dependencies) of all

HIR operations such that all the loops are pipelined with the user-provided initiation

intervals. The affine-to-HIR lowering pass uses the schedule to lower from the Affine

dialect to the HIR dialect. The lowering pass also inserts additional delay operations if

the delay between the def and use operations is more than the required delay. In the

previous example, if the load operation is scheduled 5 cycles after the call operation then
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Figure 3.11: Optimizations after the automatic scheduling.

an hir.delay operation would be inserted to ensure that the output of the call opera-

tion is available when the load operation executes. We discuss our ILP-based automatic

scheduler in greater detail in Chapter 4.

Delay Coalescing: The affine-to-HIR lowering pass may insert a lot of delay opera-

tions to eliminate pipeline imbalance. These delays are implemented using shift registers

in hardware that consumes extra registers and lookup tables. We implement a delay

coalescing pass to reduce the depth of the shift registers. Figure 3.11 shows an exam-

ple program before and after optimization. In this code, the two delay ops generating

%d1 and %d2 use the same input %d. The delay coalescing pass reuses the first delay

operation’s output in the second delay. As a result of this optimization, the delay op

corresponding to %d2 only requires a shift register of depth 4 instead of 104.

In addition to this, we can also reduce the number of shift registers required to

implement a delay operation. If the loop initiation interval of the i-loop in Figure 3.11(b)

was two instead of one, we could implement the second hir.delay operation using only

one shift register. Instead of shifting every cycle, the shift register would shift values

every two cycles. To the shift register, it is as if the hardware clock is ticking at half the

frequency. Thus it can realize a four-cycle delay of the original clock by using just two

shift registers. Note that the output of the shift register now holds each value for two

clock cycles instead of one cycle. In the general case, if a delay operation with delay d
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is inside a region with an initiation interval of II, the number of shift registers required

to realize the delay can be calculated using the formula:

num shift registers =

⌈
d

II

⌉

This optimization further reduces the required number of shift registers in the final de-

sign.

BitWidth Reduction: Another optimization performed on the generated IR is re-

ducing the bitwidth of loop induction variables (IVs). The input C program to Polygeist

uses int type for loop IVs. As a result, the generated HIR code uses 64-bit integers for

the loop IVs. This pass analyzes all loop bounds and all the uses of the loop IVs and

based on that determines if the bitwidth of the IV can be reduced. The i-loop in Fig-

ure 3.11 initially uses a 64-bit integer for the loop induction variable, but based on the

loop bounds, the pass decides to reduce the bitwidth to 6 bits. Note that even if the loop

bounds were not constants, the pass can still reduce the bitwidth of i variable because

its only use is to downcast it to a 5-bit integer and the nowrap attribute guarantees that

there will be no integer wrapping during the cast (else its undefined behavior). This is

another example of exploiting undefined behavior to enable new optimizations. In ad-

dition, the compiler reuses the constant folding, constant subexpression elimination and

canonicalization passes from the MLIR infrastructure. The bitwidth reduction pass does

not require scheduling information. Thus, it could be applied on the unscheduled IR

before lowering into HIR. But this would imply that if a DSL with its custom scheduler

(such as DarkroomHegarty et al. (2014)) directly lowers to HIR dialect, it will have to

reimplement the bitwidth reduction pass in its frontend. Thus, it is better to perform an

optimization at the lowest level IR possible. We can not go below HIR because SV and

HW dialects do not have a notion of for-loops. The combination of high-level control

flow and explicit schedule allows HIR to implement the bitwidth reduction optimization

at an abstraction level where both unscheduled HLS languages and DSLs with custom
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schedulers can benefit from the optimization.

Loop unrolling: Hardware resources can be replicated to increase the amount of avail-

able parallelism in a design. Loop unrolling replicates the hardware blocks associated

with the loop body so that loop iterations can execute in parallel. The loop unrolling

pass unrolls a loop completely. We do not support partial unrolling. Partial unrolling

may be realized before lowering to HIR by strip-mining a loop and fully unrolling the re-

sulting inner loop of a smaller trip count. We perform loop unrolling after the scheduling

pass to reduce the number of ILP constraints and variables. Unrolling before scheduling

(for example, unrolling loops in the affine dialect itself) may lead to duplication of ILP

constraints and variables related to the loop body.

3.4.3 Schedule verification

Verification is a key aspect of hardware design. For an IR designed to enable LLVM-like

open compiler infrastructure, which can be targeted by many HLS/DSL frontends of

different levels of maturity, it is important to perform verification on the generated IR.

One major source of error in hardware design is the wrong scheduling of operations.

A schedule is invalid if the design may read invalid data. For example, reading an output

of an operation before the operation completes or reading from a memory location that

is not initialized yet.

Figure 3.12 illustrates this with an example design of a multiply-accumulate operation

where a two-stage integer multiplier is replaced (commented out in the code) with a

multiplier that has three pipeline stages. This kind of optimization may be required in

the final design to meet the frequency requirements. For the adder to work properly,

both its inputs must arrive at the same clock cycle. The added pipeline stage in the

multiplier delays %m by one cycle leading to a malfunctioning design. Since function

signatures in HIR embed the delays of each input and output value w.r.t a start time,

the schedule verification pass can calculate the time instant (relative to the start time

of the function) when the SSA vars have valid values, and use this information to detect
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// Two stage mu l t i p l i e r

// h i r . f u n c . e x t e r n @mult 2stage at %t

// (%a : i32 , %b : i 32 )−>(%r e s u l t : i 32 de lay 2)

// Three s tage mu l t i p l i e r

hir.func.extern @mult 3stage at %t

(%a : i32 , %b : i32 )−>(%r e s u l t : i32 delay 3)

hir.func @mac at %t

(%a : i32 , %b : i32 , %c : i32 ) −> (% r e s u l t : i32 delay 3) {

// Previous 2−s tage mu l t i p l i e r .

//%m = h i r . c a l l @mult 2stage (%a,%b) at %t

// : ! h i r . f un c <( i32 , i 32 ) −> ( i 32 de lay 2)>

//Replaced with a 3−s tage mu l t i p l i e r .

%m = hir.call @mult 3stage (%a,%b) at %t

: ! hir.func<(i32 , i32 ) −> ( i32 delay 3)>

%c2= hir.delay %c by 2 at %t : i32

%re s = comb.add %m, %c2 : i32

%res1 = hir.delay %re s by 1 at %t + 2 : i32

hir.return (%re s1 ) : ( i32 )

}

Figure 3.12: Example of a pipeline imbalance.

pipeline mismatches.

As a part of our compiler, we implemented a schedule verification pass. Our verifier

checks the valid use of SSA values (integer and float variables). But it does not check

memory operations. Thus, it can catch pipeline imbalance but it can not statically detect

reading uninitialized memory addresses.

As described in Section 3.1.1, HIR has a notion of validity associated with data. The

operations that generate an SSA variable of primitive type (int and float), specify the

time instant (relative to a time variable) at which they have a valid value. The schedule

verification pass checks the uses of these variables to verify that the use site expects the

value at the same time when the data is produced. Next, we discuss the algorithm for
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verifying the schedules. Our algorithm can be divided into two parts. First, we calculate

the time associated with each variable as follows:

• For each SSA variable, if the defining operation is in an outer scope or a constant

then assume that the variable is always valid.

• For each variable, find the start time of the defining operation.

• Each HIR operation with an output specifies the delay in generating the output

from the start of the operation. For example, Figure 3.2 shows how the function

call operation specifies the relative delay of the result. Use this delay along with

the defining operations start time to calculate the time instant at which the SSA

variable is valid.

• If the defining operation is a combinatorial operation then copy the delay informa-

tion from one of its operands. The output of a combinatorial operation is valid in

the same clock cycle in which all its inputs are valid.

Once we have the mapping from SSA variables to time, the second phase of the

algorithm verifies the schedule as follows:

• For hir.store and hir.delay operations, check that the input SSA variable should

be valid at the operation’s start time.

• For combinatorial operations make sure all the inputs are valid at the same time.

• For hir.call operation, use the operand delays specified in the function signature

to calculate the time at which each operand SSA variable is expected. Match the

SSA variable’s time with the expected time.

• For SSA variables captured by hir.for or hir.if operation, assume that the variable

is used by the operation at the operation’s start time. Check if the variable is valid

at that time.
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In this pass, we only consider the SSA variables of integer and float type. We do

not associate time with SSA variables of hir.memref type. We perform the schedule

verification pass before the IR is submitted to the backend for code generation. This

allows us to detect bugs introduced by the scheduler or any other optimization pass.

We perform the schedule verification pass before the IR is submitted to the backend

for code generation. This allows us to detect bugs introduced by the auto-scheduler or

any other optimization pass.

3.4.4 Backend

The backend of our compiler converts the verified HIR program to SystemVerilog. This

lowering process happens in multiple passes.

Loop simplification pass converts for loops into while loops. It instantiates a loop

counter for the induction variable and extra registers to hold the loop bounds and the

step size. It adds extra logic to check if the induction variable is within the loop bounds.

The output of this check is used to break out of the while loop when the induction vari-

able is no longer within bounds.

Buffer allocation pass involves instantiating multiple hardware buffers (such as block

RAMs or registers) to implement a banked memory. The compiler only declares the

functions corresponding to the memories and assumes that the actual implementation

is provided by external vendor-specific Verilog libraries. We wrote a wrapper library to

instantiate Xilinx FPGA block RAMs. HIR’s ability to interface with arbitrary external

Verilog modules allows us to use both floating point and memory IPs provided by the

FPGA vendor (Xilinx). One key difference between HIR IR and traditional HDLs (such

as Verilog) is that HIR allows multiple writers for the same memory irrespective of the

number of ports. It achieves this by assuming that those writes are not happening in

the same cycle (else it is undefined behavior). The buffer allocation pass also inserts the

multiplexing logic to select the correct drivers for the address and data buses.
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Controller synthesis pass instantiates a finite state machine to implement the sched-

ule specified in the HIR program using time variables. Since hardware is inherently

parallel, each hardware unit in the datapath will operate every cycle in the absence of a

controller - a multipliers will perform multiplication and a storage element (register or

on-chip RAM) will write data every cycle irrespective of whether the input is valid or

not. HDL designs are usually implemented as a combination of a datapath and a finite

state machine to control/schedule the datapath operations. Since HIR IR contains the

explicit schedule of each operation, the compiler backend can generate this FSM auto-

matically.

The hir-to-hw lowering pass converts HIR into a combination of SV, Comb and HW

dialects. The hir.delay operations are converted into shift registers. The number of shift

registers depends on the delay and the initiation interval of the outer scope as discussed

in Section 3.4.2. The hir.while operation is replaced with a state-machine that gener-

ates the control signal for the time variable of the loop body. Arithmetic operations on

integers are replaced with the Verilog equivalents. Floating point arithmetic operations

were already converted into calls to external Verilog functions during the frontend pre-

processing pass as discussed in Section 3.4.1. All function calls are converted into Verilog

module instantiations. Once all the operations in the function body are converted into

a combination of SV, Comb and HW dialect, the enclosing HIR function is converted

into hw.module(Verilog module). The SV, Comb and HW dialects are a part of the

larger MLIR infrastructure and not a contribution of this work. The export verilog pass

generates SystemVerilog from the SV+Comb+HW dialect.

3.5 Summary

In this chapter, we introduced HIR, an intermediate representation to describe FPGA-

based hardware accelerator designs. The IR captures computation schedules explicitly,
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which makes it an ideal target IR for automatic scheduler passes. We discuss the various

high-level language constructs such as for-loops, if-else conditions and multidimensional

tensors to capture the design. We also discuss the notion of time variables to specify

precise schedules in the IR. We discuss how the memref captures the type and port infor-

mation of the underlying hardware buffer. We show that the IR can capture instruction-

level parallelism, loop pipelining and task-level parallelism using the time variables. We

also discussed various optimizations that are performed on the IR such as bitwidth re-

duction and delay coalescing, to improve its resource usage. We implemented a pass to

capture pipeline imbalance in the hardware design and a backend to convert HIR to Sys-

temVerlog. In the overall compiler flow, we use HIR for post-scheduling optimizations

and the backend code generator.



Chapter 4

ILP-Based Automatic Scheduling

In this chapter, we will discuss the scheduling technique implemented in the HIR com-

piler. Scheduling is the process of assigning a time instant at which a dynamic instance

of an operation would execute. We formulate the scheduling problem as an integer linear

program (ILP). The scheduling pass in our compiler analyzes the unscheduled Affine pro-

gram and generates the ILP constraints. The scheduler then uses an ILP solver to find

a valid parallel schedule. We use GLPK as the ILP solver and are currently migrating

to Google OR tools for better integration with the rest of the CIRCT infrastructure.

The scheduler’s task is to calculate these time instants. In hardware, a memory buffer

can have multiple ports for read and write. Some of these ports may be read-only or

write-only and others may allow both read and write. Since each port has dedicated

address and data buses, multiple load/store operations can be performed using multiple

ports on the same memory in the same clock cycle. But a single port can not serve more

than one read/write request per cycle. The scheduler also has to ensure that it does

not schedule two memory operations on the same port in the same clock cycle. This

makes the port assignment problem (which load/store operation uses which port of the

memory) entangled with the scheduling problem. Thus the scheduler also calculates the

port assignments in addition to the schedule.

We next discuss the correctness criteria for a schedule and the optimization oppor-

tunities available to the scheduler. We provide an ILP formulation to calculate both the

49
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schedule and the port assignments.

4.1 Correctness Criteria

For the final design to execute correctly, the schedule must be valid. The input to the

scheduler is a kernel in affine dialect. The semantics of this kernel is that each operation

executes sequentially. We call this a sequential schedule for the kernel. The scheduler has

to find a parallel schedule that would not change the observable behavior of the kernel.

The parallel schedule generated by the scheduler can not change the order of dependent

operations i.e. if operation Y depends on the results of operation X, then operation Y

must be scheduled after operation X has calculated the result. The data communication

between two operations can occur in two ways - using SSA variables of simple value types

(such as int or float) or using memory elements. Figure 4.1 shows examples of both these

types of dependencies. Statement S1 is dependent on S0 because of the variable c prev.

There is a dependence from statement S2 of one loop iteration to S0 of the next iteration

because of the array C. A valid schedule would ensure that within a loop, an instance

of S1 occur after S0 and in case of loop pipelining, the load S0 of the next iteration

does not execute until the store S2 is complete. The scheduler’s analysis pass must find

all data dependencies between operations. It can be conservative, i.e. falsely report a

dependency when there is no actual data dependence between the operations. With a

more accurate analysis (less falsely reported dependencies), the scheduler can generate

more efficient schedules. For instance, a simple analysis pass could just look at the

array variables and ignore the indices to decide if a load and a store operation have

a dependence between them. This would capture all the dependencies but may also

falsely report a dependence. For instance, if statement S0 and S1 were accessing C[2i][j]

and C[2i+1][j], then there is no actual data dependence between them, but our analysis

would have reported a dependence.

Another criterion for correctness is to ensure that there are enough resources to

perform the operations scheduled at the same cycle. In HIR, it is undefined behavior for
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two memory operations to access the same memory port in the same clock cycle because

it can not be realized in hardware. The scheduler also calculates the port assignment for

each load and store operation to ensure that there are no port conflicts.

4.2 Scheduling Objective

Multiple schedules can satisfy the correctness criteria. The original sequential schedule

of the affine kernel is trivially correct - the data dependencies are correct by definition

and since no two operations occur in the same cycle, there are no port conflicts. The

scheduler’s task is to find a parallel schedule that can complete the kernel in a lesser

number of clock cycles. As long as the parallel schedule does not violate any of the

correctness criteria, it would produce the same result as the original sequential schedule.

There are different types of parallelization opportunities in a hardware kernel. The

most basic optimization is to pipeline the innermost loops. This means that successive

iterations of the loop can start before the previous iteration has completed all its oper-

ations. The initiation interval is the number of clock cycles between the start of two

successive loop iterations. Pipelining the loop improves parallelism by overlapping the

execution of successive iterations. We can also pipeline outer loops. In case of time-

iterated loops, pipelining outer loops only helps if the inner loop’s trip count is small.

In such a case, the filling and draining overhead of the inner loop pipeline may become

significant if the outer loop is not pipelined. There is another advantage of pipelining

the outer loop. If the inner loop is supposed to be fully unrolled, then the outer loop

has to be pipelined to take advantage of the parallel hardware generated by the unrolled

inner loop. There are two approaches to achieving outer loop pipelining when the inner

loop is to be completely unrolled. Either the inner loop should be unrolled first and

then the scheduling is performed for pipelining the outer loop (which is the inner loop

now) or the scheduler can perform outer loop pipelining. We take the second approach

because the number of constraints in our scheduling ILP is proportional to the number

of operations in the body of the loop. Unrolling-then-pipelining increases the number of
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constraints in the ILP solver making it slower. Thus, our scheduler performs pipelining

at all the loop levels before unrolling the loops.

4.3 ILP Formulation

In this section, we describe our ILP formulation of the scheduling problem. Our scheduler

lowers programs in affine dialect to HIR dialect. The original program in the affine di-

alect has a sequential schedule. To utilize the hardware resources effectively, we attempt

to create a parallel schedule while lowering from affine to HIR dialect. Loop attributes

in the affine dialect specify the target initiation intervals. The scheduler’s job is to find

the start time of each operation in the generated HIR dialect such that the target initi-

ation intervals are achieved, execution of loop nests are maximally overlapped for better

parallelism and the memory dependencies are not violated, to ensure that the semantics

of the original sequential program is preserved after the automatic parallelization.

We represent the problem of finding a valid schedule as a set of ILP formulations.

We first solve a smaller memory dependence ILP for each conflicting memory access

(load/store operations on the same array). The solution of the ILP is then used to

formulate the scheduling ILP. The scheduling ILP then calculates the start time of each

operation such that data dependencies are not violated.

An operation in the program is represented by S∗ (for example, S0). Each operation

is executed multiple times during the program execution. Each such execution of an

operation S is a dynamic instance of the operation and is denoted by S(i, j, k) where

i, j, k are the values that the induction variables of the enclosing loops take. This uniquely

identifies a dynamic instance of the operation. We denote the initiation interval specified

for a loop with induction variable i as IIi. The start time of each operation is specified

relative to its parent region. So the start time of operation S0 inside a loop represents the

delay after which S0 will execute relative to the start time of the current loop iteration,

and is denoted by tS0. Loops are also treated like any other operation. The start time

of the loop with induction variable i is denoted by ti. These variables denoting the start
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time of an operation are called time variables. We now explain our ILP formulations

using a few examples.

4.3.1 Intra-Loop Dependence

Figure 4.1 shows a matrix multiplication kernel. We note that there is a write-after-read

(WAR) dependence from statement S0 to statement S2 and a read-after-write (RAW)

dependence from S2, to S0 of next iteration due to the C[i][j] array. More precisely, we

have a dependence from S2(i′, j′, k′) to S0(i, j, k) iff,

• Address conflict: Both statements are accessing same element of array C,

i = i′, j = j′. (4.1)

• Happens before: If the program ran sequentially S2(i′, j′, k′) would occur before

S0(i, j, k),

i′ ∗ 100 + j′ ∗ 10 + k′ > i ∗ 100 + j ∗ 10 + k. (4.2)

In case of such a dependence, we want to ensure that after scheduling, S2(i′, j′, k′)

still occurs after S0(i, j, k). Given the target initiation intervals of each loop, the time

instant at which the statement S0(i,j,k) will be executed after scheduling is:

TS0(i, j, k) = ti + i ∗ IIi + j ∗ IIj + k ∗ IIk + tS0. (4.3)

For a valid schedule, we need to ensure that:

TS0(i
′, j′, k′) ≥ TS2(i, j, k) + 1. (4.4)

The extra one cycle is because the store operation on array C due to statement S2

would take one cycle to complete. At this point, we may think that in Equations 4.1,

4.2 and 4.4, we have the necessary set of linear constraints to ensure that the resulting

ILP solution does not violate the RAW dependence from S2 to S0. But this is not true.
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// f l o a t i n g po int add i t i on de lay=5

// f l o a t i n g po int mu l t i p l i c a t i o n de lay=4

// Load and s t o r e to A,B,C take one cy c l e each .

// Loop−i s t a r t s f i r s t i t e r a t i o n at time T i

f o r ( i n t i = 0 ; i < 10 ; i++) {

// I n i t i a t i o n i n t e r v a l o f loop i i s I I i .

f o r ( i n t j = 0 ; j < 10 ; j++) {

// I n i t i a t i o n i n t e r v a l o f loop i i s I I j .

f o r ( i n t k = 0 ; k < 10 ; k++) {

// I n i t i a t i o n i n t e r v a l o f loop i i s I I k .

a = load (A[ i ] [ j ] ) ;

b= load (B[ i ] [ j ] ) ;

m = a ∗ b ;

// S0 i s executed t s 0 c y c l e s a f t e r the cur rent

// k−loop s t a r t s .

S0 : c prev = load (C[ i ] [ j ] ) ;

// S1 i s executed t s 1 c y c l e s a f t e r the cur rent

// k−loop s t a r t s .

S1 : c = c prev + m;

// S2 i s executed t s 2 c y c l e s a f t e r the cur rent

// k−loop s t a r t s .

S2 : s t o r e ( c , C[ i ] [ j ] ) ;

}

}

}

Figure 4.1: Intra-loop memory dependence.
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If we put these equations in our ILP formulation, the ILP solver would find one possible

set of values for (i, j, k, i′, j′, k′) such that the constraints are satisfied. But for a valid

schedule, we need that every (i, j, k, i′, j′, k′) that satisfies Equation 4.1 and 4.2, also

satisfy Equation 4.4. In order to formulate the correct ILP, we first expand Equation 4.4

using Equation 4.3 and reorder the terms as follows:

tS2 − tS0 ≤ (i′ ∗ IIi + j′ ∗ IIj + k′ ∗ IIk)

−(i ∗ IIi + j ∗ IIj + k ∗ IIk)− 1. (4.5)

We define a new variable called slack as follows:

slack = minimize((i′ ∗ IIi + j′ ∗ IIj + k′ ∗ IIk)

− (i ∗ IIi + j ∗ IIj + k ∗ IIk)− 1).
(4.6)

such that (i, j, k, i′, j′, k′) satisfy Equation 4.1 and 4.2.

If tS2−tS0 ≤ slack then the dependence from S2 to S0 is never violated. We calculate

slack by solving Equation 4.6 as a minimization ILP problem with Equation 4.5 and 4.2

as the constraints. We also add constraints for the loop bounds on the induction variables

(i, j, k, i′, j′, k′). For each potential memory dependency, we create such an ILP, called

the memory dependence ILP. If the ILP does not have a solution then there is no actual

dependency. Otherwise, we use the calculated slack to add constraints on the time

variables in the scheduling ILP. For port conflicts, we assume that all operations on the

same port of the same memory bank have a data dependence. This added dependence

ensures that the resulting schedule does not have port conflicts, i.e., it does not schedule

two memory access operations on the same port of the same memory bank in the same

clock cycle.

In addition to these constraints related to memory dependence, we also add con-

straints related to SSA dependence and operator delay in the scheduling ILP. For ex-

ample, due to the SSA variable c prev, there is a dependence from statement S0 to S1.



Chapter 4. ILP-Based Automatic Scheduling 56

// Loop−i 1 s t a r t s at t i .

f o r ( i n t i = 0 ; i < 10 ; i++){

// I n i t i a t i o n i n t e r v a l = I I i .

f o r ( i n t j = 0 ; j < 10 ; j++){

// I n i t i a t i o n i n t e r v a l = I I j .

// S1 i s scheduled at t s 1 c y c l e s a f t e r the

// cur rent i t e r a t i o n o f j s t a r t s .

S1 : s t o r e ( val , A[ i ] [ j ] ) ;

}

}

// Loop−i 2 s t a r t s at t u

f o r ( i n t u = 0 ; u < 10 ; u++){

// I n i t i a t i o n i n t e r v a l = I I u .

f o r ( i n t v = 0 ; v < 10 ; j++){

// I n i t i a t i o n i n t e r v a l = I I v .

// S2 i s scheduled at t s 2 c y c l e s a f t e r the

// cur rent i t e r a t i o n o f v s t a r t s .

S2 : va l = load (A[ u ] [ v ] ) ;

}

}

Figure 4.2: Inter-loop memory dependence.

Since a load operation takes one clock cycle to complete, S1 must wait for one cycle

before S0. We capture this using the constraint:

tS1 − tS0 > 1.

Note that tS0 and tS1 are the start time of the respective operations relative to the

start time of the current iteration of the k-loop. But since both the operations are in

the same loop-nest, this constraint is enough to ensure that S1(i, j, k) happens after

S0(i, j, k) for all values of (i, j, k).
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4.3.2 Inter-Loop Dependence

In the previous example, we discussed how we handle memory dependence within a

loop nest. Next we will discuss how our technique generalizes for memory dependence

across loop nests. Figure 4.2 shows an example of a pair of producer-consumer loop

nests. Statement S2 has a read-after-write dependence on statement S1. Similar to the

previous example, we calculate the absolute time TS1 and TS2 as follows:

TS1(i, j) = ti + i ∗ IIi + j ∗ IIj + tS1, (4.7)

TS2(u, v) = tu + u ∗ IIu + v ∗ IIv + tS2. (4.8)

For an actual memory dependence between two dynamic instances S1(i, j) and S2(u, v),

they must access the same element of the array A, i.e.,

u = i, v = j.

Unlike the previous example, we do not need the happens before constraint here

because all instances of S1 happen before all the instances of S2 in the sequential schedule.

In general, the happens before criterion is required only if there is at least one common

loop between the two statements.

The memory dependence is not violated iff:

TS2(u, v) ≥ TS1(i, j) + 1

∀ 0 ≤ u ≤ 10, 0 ≤ u ≤ 10

0 ≤ i ≤ 10, 0 ≤ j ≤ 10,

u = i, v = j.

(4.9)
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Similar to the previous example, we calculate the slack using the following ILP,

slack = minimize(u ∗ IIu + v ∗ IIv − i ∗ IIi − j ∗ IIj − 1)

such that 0 ≤ u ≤ 10, 0 ≤ u ≤ 10

0 ≤ i ≤ 10, 0 ≤ j ≤ 10,

u = i, v = j.

(4.10)

The constraint added to the scheduling ILP to ensure that the memory dependence

is not violated is:

ti + tS1 − tu − tS2 ≤ slack.

4.3.3 Resource Constraints

Operations in a hardware design may need to share available hardware resources. This

includes memory ports for load/store operations and expensive hardware resources such

as floating point adders and multipliers. The ILP needs to ensure that a shared resource

is not required by multiple operations in the same clock cycle. For instance, multiple

read/write accesses to the same memory port can not be serviced in the same clock

cycle. Similarly, if multiple floating point operations are using the same floating point

multiplier in the FPGA, then these operations must be scheduled in different clock cycles.

Collectively, these types of constraints on the number and type of each hardware resource

available at each clock cycle is called resource constraint. Unlike dependence constraints,

resource constraints do not impose an ordering. For instance, if two memory operations

use the same port then the resource constraint requires that the two operations can not

be scheduled in the same clock cycle. In contrast, a dependence constraint between

the two memory operations enforces an ordering between the two operations. This key

difference makes resource constraints harder to represent in an ILP.

To understand how we encode resource constraints in an ILP, we take the example

program in Figure 4.2. If array A has only one read/write port then we need to ensure

that any instance of statements S1 and S2 do not occur at the same clock cycle i.e.
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TS1(i, j) ̸= TS2(u, v) ∀i, j, u, v (4.11)

We can not use this constraint directly in the ILP because the ILP will enforce the

constraints only for one set of (i, j, u, v), i.e. integer linear programs can not directly

handle universal quantifiers (∀). We need a way to convert this to an existential quantifier

(∃). We observe that if there exists integers (d, r1, r2) such that,

TS1(i, j) = r1 mod d ∀i, j

TS2(u, v) = r2 mod d ∀u, v

then,

r1 ̸= r2 =⇒ TS1(i, j) ̸= TS2(u, v) ∀i, j, u, v

We define d = gcd(IIi, IIj, IIu, IIv), where gcd calculates the greatest common divi-

sor. We can rewrite Eq 4.7 as follows,

TS1(i, j) = ti + i ∗ ni ∗ d+ j ∗ nj ∗ d+ tS1, (4.12)

where IIi = ni ∗ d and IIj = nj ∗ d. We know such ni and nj exists because d is a

common divisor of IIi and IIj by definition. Thus,

TS1(i, j) mod d = (ti + i ∗ ni ∗ d+ j ∗ nj ∗ d) mod d+ tS1 mod d ∀i, j

= tS1 mod d ∀i, j

=⇒ r1 = tS1 mod d ∀i, j

(4.13)



Chapter 4. ILP-Based Automatic Scheduling 60

Thus, we can define (d, r1, r2) for S1 and S2 as follows,

d = gcd(IIi, IIj, IIu, IIv)

r1 = tS1 mod d

r2 = tS2 mod d

(4.14)

such that,

r1 ̸= r2 =⇒ TS1(i, j) ̸= TS2(u, v) ∀i, j, u, v

We can calculate d, given IIi, IIj, IIu, IIv. In order to calculate r1 and r2, we add

the following constraints in the ILP:

tS1 = n1 ∗ d+ r1

0 ≤ r1 < d

tS2 = n2 ∗ d+ r2

0 ≤ r2 < d.

(4.15)

We can not add the inequality r1 ̸= r2 directly to the ILP. Thus, we introduce a set

of binary variables, c10, c11, c20 and c21 with the following constraints on them:

r1 = 0 ∗ c10 + 1 ∗ c11,

r2 = 0 ∗ c20 + 1 ∗ c21,

0 ≤ c10, c11, c20, c21 ≤ 1,

c10 + c11 = 1,

c20 + c21 = 1.

(4.16)

Now, we can enforce the constraint r1 ̸= r2 using these binary variables as follows,

c10 + c20 ≤ 1,

c11 + c21 ≤ 1.
(4.17)
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In general, we can represent the resource constraint as follows,

ri =
∑
j

j ∗ cij,

∑
j

cij = 1,

∑
i

cij ≤ Nres,

0 ≤ cij ≤ 1 ∀i, j.

(4.18)

Nres is the number of copies of the hardware resource that are available. For instance,

in the case of load/store operations on a memory, Nres may be the number of ports that

the memory has.

The resource ILP constraints can also be used to share other hardware resources

across multiple operations. For instance, the same ILP constraints can be used to specify

that a set of floating-point multiplication operations use a fixed number of hardware

multipliers. By specifying Nres equal to the number of available hardware multipliers,

we can force the scheduler to ensure that no more than Nres number of multiplication

operations are scheduled in the same clock cycle. Time-sharing the hardware resources

may lead to designs that are more resource efficient.

4.3.4 Minimization Objective

The scheduling ILP guarantees a valid schedule but it does not ensure resource efficiency.

Consider the example in Figure 4.3. In the first loop, the schedule is valid but there

is an unnecessary delay of thousand cycles between the load and the dependent store

op. To ensure that the value of variable x is not overwritten by the time the store

operation happens, a delay of 999 cycles is introduced using the hir.delay operation.

This is implemented in hardware using shift registers which is a waste of resources. If

the store op is scheduled at ti+ 1, then a delay is not required as the load op produces

the value at ti+ 1.
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// I n e f f i c i e n t s ch edu l e .

hir.for %i : i 6 = %c0 to %c32 step %c1 iter time(% t i=%t ) {

%x = hir.load %A[ port 0] [% i ]

%xx = hir.delay %x by 999 at %t i

hir.store %xx to %B[% i ] at %t i +1000

hir.next_iter at %t i+1

}

// E f f i c i e n t s ch edu l e .

hir.for %i : i 6 = %c0 to %c32 step %c1 iter time(% t i=%t ) {

%x = hir.load %A[ port 0] [% i ]

hir.store %x to %B[% i ] at %t i+1

hir.next_iter at %t i+1

}

Figure 4.3: Resource-inefficient and -efficient schedules.

To achieve a more resource-efficient schedule, we calculate the delay required by an

SSA variable as the difference in the start time of the operation consuming the SSA

variable and the operation producing it. We use the sum of the required delays as our

minimization objective.

4.4 Summary

In this chapter, we presented our ILP-based scheduler. The scheduler performs analy-

sis on the hardware kernel written in the affine dialect of MLIR. We use the analysis

results to create an ILP for each data dependency via memory elements (arrays). The

ILP calculates the available slack between the source and destination operations of the

dependence. We then use the slacks calculated for each dependence pair to formulate one

ILP for the complete kernel. These constraints ensure that the data dependencies are

not violated. For operations in the def-use chain of an SSA variable, we add constraints

to ensure that the defining operation is scheduled before the use operations. We also

add constraints to ensure that there are no port conflicts, i.e. two memory operations

on the same port of the same memory bank are not scheduled in the same clock cycle.
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The result of our ILP formulation is the schedule for the kernel, i.e. a mapping from

dynamic instances of operations to the time at which these operations would execute. In

addition, the ILP also calculates the port assignments to avoid any port conflict between

memory access operations.
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Evaluation

In this section, we evaluate the performance and resource usage of our HIR high-level

synthesis compiler against the Vitis HLS compiler. We break the evaluation into two

parts. We first evaluate the overhead added by our backend code generator. To quantify

this, we write some small benchmarks by hand in the HIR dialect. We compare this

with the HLS implementation of these benchmarks in C++ language. We then evaluate

the complete end-to-end compiler. For this evaluation, we use four image-processing

applications. We write the programs in C which is fed to our compiler to generate the

final SystemVerilog output. This evaluation helps us understand the benefits of our

ILP-based automatic scheduler compared to Vitis HLS.

5.1 Evaluation of the HIR Backend

In this section, we evaluate the backend code generator for the HIR compiler. The back-

end is responsible for converting HIR into SystemVerilog. It performs various tasks such

as generating the state machines to implement the schedule and control flow and lowering

multi-ported, multi-banked memrefs into hardware memory buffers. The purpose of this

evaluation is to find out the amount of extra hardware overhead added by the compiler

backend.

The code generator transforms the HIR IR to hw and sv dialect of CIRCT which is

64
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Benchmark Description

Transpose Transpose a 16x16 matrix

Stencil Convolution of a 64-element array with a kernel of size 2

Histogram Histogram of a 16x16 image

Matmul-16x16 A 16x16 2D systolic array for matrix multiplication.

Convolution 2D Convolution of an 8x8 image with 2x2 kernel

gesummv Polybench

floyd-warshall Polybench

Table 5.1: Description of the handwritten HIR benchmarks for evaluating the backend.

Benchmark Vitis HLS/Verilog HIR

LUT FF DSP BRAM LUT FF DSP BRAM

Transpose 7 51 0 0 16 22 0 0

Stencil 152 237 6 0 113 125 6 0

Histogram 404 187 0 1 335 55 0 1

Convolution 80 132 3 0 86 112 3 0

gesummv 276 353 12 0 328 283 12 0

floyd-warshall 168 162 0 0 119 169 0 0

Matmul-4x4 861 2019 48 0 1173 1802 48 0

Matmul-8x8 3553 6914 192 0 3684 7294 192 0

Matmul-16x16 14495 24538 768 0 12645 29062 768 0

Table 5.2: FPGA resource usage and comparison with Vitis HLS.
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then lowered to SystemVerilog using the emit-verilog pass. The hw and sv dialects are

designed to represent hardware at an HDL level of abstraction. The sv and hw dialects

and the export-verilog pass are part of the CIRCT project which aims to generate HLS

tools on top of the MLIR infrastructure. The dialect implementation, optimization,

lowering and verification passes together were implemented in approximately 8K lines of

C++. Our code is open-sourced and is available [Majumder and Bondhugula (2022)] on

GitHub.

HIR is designed to be a mid-level IR in an HLS pipeline. Thus, its ability to represent

different kinds of parallelism such as instruction-level parallelism, loop pipelining and

running all iterations of spatial loops in parallel (do-all parallelism) will determine how

well a scheduling pass can optimize the design. Additionally, the generated hardware

should also be an area-efficient design.

We decided to compare HIR against Vitis HLS [Inc. ([n. d.])] compiler. We imple-

mented our benchmarks in both the HIR dialect and C++ (for Vitis HLS). We added

the necessary pragmas in the C++ benchmarks to direct the Vitis HLS compiler for

a performance-optimized design (as opposed to an area-optimized design). Both the

HLS and HIR implementations used the same level of loop pipelining and unrolling and

similar types of memories with the same number of ports. We further simulated the gen-

erated SystemVerilog to verify that the designs achieve the same level of performance.

This shows that HIR can represent the necessary hardware optimizations that an HLS

compiler performs.

To check the resource utilization, we synthesized and implemented the HIR and HLS

generated (System)Verilog designs for the Xilinx VC709 FPGA evaluation platform using

the Vivado synthesis tool. All results reported are obtained using Vivado and Vitis HLS

version 2021.1. Both the Vitis HLS and HIR designs were synthesized for 200MHz.

We compare the quality of generated hardware on seven benchmarks. Among these,

matrix multiplication is a particularly important benchmark for hardware acceleration

due to its use in machine learning. Thus, we report the results for matrix multiplication

for different sizes of the systolic array.
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Table 5.1 describes the benchmarks for evaluating our backend. We used the modified

Polygeist frontend and our ILP-based scheduler to generate HIR for all the benchmarks

except the Histogram benchmark. As Histogram is not an affine workload, we wrote

the kernel in HIR by hand. We did not include all benchmarks from Polybench as our

compiler only supports constant loop bounds (Chapter 4). We believe that this set of

benchmarks is sufficient to show the performance of our compiler backend. In Section 5.2

we use more complex image processing benchmarks with multiple loop nests for the end-

to-end evaluation of the entire HIR compiler. Table 5.2 compares the resource utilization

of our benchmarks against Vitis HLS implementations at iso-performance, i.e. at the

same clock frequency (200MHz) and the same level of loop pipelining/unrolling. Our

resource usage of DSP blocks is always the same as Vitis HLS. The results differ only in

the utilization of lookup tables and the number of registers. In the matmul benchmark,

we used LUTRAM instead of BRAMs for both HLS and HIR since the buffers were small

and heavily banked. For matrix transpose, our register usage is much lower than that

of the HLS compiler. We believe this is because the HLS compiler more aggressively

pipelines the design than what is necessary to achieve the desired frequency target. In

the Matmul benchmark, HIR uses substantially more LUTs compared to the HLS design

at smaller kernel sizes and more registers and higher sizes. This shows that there is still

room for improving the LUT and register usage of HIR’s lowering passes. Overall, the

results in Table 5.2 show that the HIR compiler can generate Verilog designs that are

comparable to Vitis HLS in resource usage while matching the performance.

5.2 Evaluation of the Complete HIR Compiler

We extend the Polygeist C/C++ frontend with pragmas similar to Vitis HLS. The

Polygeist frontend passes the pragma information as attributes in the Polygeist generated

Affine dialect. We use the HIR as our backend for the generation of SystemVerilog. Our

ILP-based scheduler is invoked when lowering from Affine dialect to the HIR dialect.

We evaluate the effectiveness of the resulting end-to-end (C-to-SystemVerilog) compiler
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on a set of benchmarks by generating SystemVerilog from both our compiler and Vitis

HLS. We report the performance by measuring the total number of cycles required for

each design to complete execution. We report the resource usage by running synthesis

and implementation using Vivado on the generated SystemVerilog designs. All generated

designs are synthesized for the VC709 Xilinx FPGA board with a target frequency of

200MHz. The correctness of the generated design is validated on random inputs by

comparing the simulation results with Vitis HLS. We also verify that our designs can

meet the timing closure after implementation (i.e., after place-and-route). We evaluate

our compiler on the following set of benchmarks. The source code for these benchmarks

can be found in Appendix A.

Unsharp mask is an image processing pipeline to sharpen the image at the boundaries.

It involves calculating the image blur along X and Y direction and then applying a

pointwise sharpening and masking filter. We use a 32x32 patch in our benchmark.

Harris is a classic corner detection algorithm [Harris and Stephens (1988)]. It involves

multiple stencil operations such as calculating gradients along the x and y axis. We use

a 32x32 patch of the image as input for the benchmark.

DUS is an image pipeline where we downsample the image by a factor of two and then

upsample it. Downsampling involves blurring and the upsampling uses linear interpo-

lation, both of which are stencil operations. Both the operations are done on each axis

separately resulting in four loop nests. Down-sampling and upsampling are very com-

mon in image processing pipelines and offer a unique challenge since the producer and

consumer loop nests may not have the same number of iterations. We use a 32x32 image

patch to evaluate the benchmark.

The Optical flow benchmark implements the Lucas-Kanade dense optical flow algo-

rithm [Lucas and Kanade (1981)]. We implemented the single-scale version of the al-

gorithm and used a 32x32 image patch for our evaluation. The benchmark is a mix of

pointwise and stencil operations.
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2mm is a benchmark from polybench. It involves two matrix multiplications in a series.

Both the intermediate and the final matrix are written to the output. This benchmark

shows that our compiler can handle non-stencil memory access patterns as well. We use

an 8x8 matrix to evaluate the benchmark.
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Benchmark LUT FF BRAM DSP cycles

Unsharp mask (spsc) 1010 1590 9 8 62472

Harris (spsc) 2010 2607 20 12 270729

DUS (spsc) 1379 1985 7.5 11 2786

Optical flow (spsc) 4084 5175 24 18 382250

2mm 594 1068 0 5 8671

(a) Vitis HLS without dataflow optimization.

Benchmark LUT FF BRAM DSP cycles

Unsharp mask (spsc) 1876 2976 12 20 37344

Harris (spsc) 3157 5124 42 43 110083

DUS (spsc) 2747 3589 9 26 2783

Optical flow (spsc) 6821 9088 65 59 110475

(b) Vitis HLS with dataflow optimization.

Benchmark LUT FF BRAM DSP cycles

Unsharp mask (spsc) 1634 1969 9 16 27201

Harris (spsc) 4005 4314 20 34 88327

DUS (spsc) 1901 2762 1.5 24 2057

Optical flow (spsc) 6741 7194 24 54 90543

2mm 2667 2063 0 12 3589

(c) HIR with dataflow optimization.

Table 5.3: Resource usage and performance of Vitis HLS and HIR. All designs are syn-

thesized at 200MHz. Clock cycles are measured via simulation. Resource usage numbers

are post-implementation in Vivado. Vitis HLS can not apply dataflow optimizations to

2mm.
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5.2.1 Results

In our evaluation, we try to quantify the advantages of our scheduler over Xilinx Vitis

HLS (a.k.a Vivado HLS), a state-of-the-art commercial high-level synthesis compiler .

Specifically, we compare our scheduler’s ability to reduce the overall latency by overlap-

ping the execution of multiple producer-consumer loop nests.

To motivate the importance of overlapped execution of producer-consumer loop nests,

we first quantify the performance improvements due to overlapping of producer-consumer

loop nests. We then compare the performance of the designs generated by our compiler

against Vitis HLS with its dataflow optimizations. We also compare the resource usage

of both approaches to understand the overheads associated with the handshaking logic

implemented by Vitis HLS for its dataflow optimization.

In our evaluation, we also try to understand the limitations of Vitis HLS dataflow

optimizations and quantify their impact on the actual performance. We demonstrate

that our compiler can perform overlapped loop nest execution even in situations where

Vitis HLS fails to apply dataflow optimization, and report the performance improvements

enabled by our technique in such situations. Using the raw performance and resource

usage data from Table 5.3 we compare HIR with Vitis HLS.

Q. Does overlapped execution of loop nests provide any meaningful performance

improvement?

A key optimization enabled by our scheduling technique is the overlapped execution

of producer-consumer loop nests. But we need to understand how much performance

improvement can be attributed to this optimization compared to loop pipelining. To

understand this, we generate the scheduled HIR and calculate the total latency (num-

ber of clock cycles) of each loop nest takes by multiplying the initiation interval of the

outermost loop with its trip count. We then add these latencies to get the total kernel

execution latency. This would be the latency of the kernel if each loop was pipelined

but there was no overlapping between different loop nests. We use this to quantify the

performance improvement of a kernel with all loop nests maximally overlapped (without
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Figure 5.1: Performance improvement due to overlapped execution of loop nests.

violating data-dependencies) compared to a kernel with just intra-loop pipelining and no

overlapping of loop nests. Figure 5.1 shows the actual performance of our generated de-

sign compared to the design where loop nests are not overlapped. The performance gain

due to overlapping varies between 1.7x and 3.7x highlighting the practical importance

of this optimization.

Q. How does our scheduler compare against Vitis HLS dataflow optimizations?

Vitis HLS dataflow optimization also tries to overlap the execution of producer-consumer

loop nests. We compare our performance gains against Vitis HLS in Figure 5.2. Vitis

HLS dataflow pragma only works if the intermediate arrays between producer-consumer

loops follow the single-producer-consumer rule i.e., only one loop nest writes to the

array and only one loop nest reads from it. DUS already satisfies the single-producer-

consumer constraint. We convert unsharp mask, Harris corner detection and optical

flow to single-producer-consumer workloads by inserting copying loops that duplicate

the intermediate arrays that are consumed by multiple loop nests. Another limitation

of Vitis HLS dataflow optimization is that it can not handle read/write to function



Chapter 5. Evaluation 73

R
el

at
iv

e 
pe

rfo
rm

an
ce

0.0

1.0

2.0

3.0

4.0

5.0

Unsharp 
mask* 
(spsc)

Harris 
(spsc)

DUS (spsc) Optical flow 
(spsc)

Vitis HLS (Dataflow) Our work

Figure 5.2: Performance comparison between Vitis HLS (with dataflow directives) and

our work. The baseline is Vitis HLS without dataflow directives.

arguments in the dataflow region. Due to this limitation of Vitis HLS, we could not use

the 2mm benchmark for this specific evaluation, since it writes the intermediate matrix

multiplication output to one of the function arguments.

Figure 5.2 reports the performance of both our work and Vitis HLS with dataflow op-

timization enabled. The performance numbers are relative to Vitis HLS without the

dataflow optimization directive. The first thing we observe is that the Vitis HLS dataflow

directive indeed improves the overall latency of the kernels for single-producer-consumer

workloads. However, the designs generated by our compiler provide additional perfor-

mance gains of upto 37% on top of the dataflow optimized Vitis HLS designs. This

showcases the effectiveness of our ILP-based scheduler. But the performance improve-

ment is only one aspect of a good design. We also need to evaluate our resource usage

against Vitis HLS.
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Figure 5.3: Resource usage of Vitis HLS with dataflow pragma and our work relative to

Vitis HLS without the dataflow directives.

Q. How does our resource usage compare against Vitis HLS?

Figure 5.3 shows the resource usage of Vitis HLS dataflow designs and the designs gen-

erated by our compiler relative to Vitis HLS generated designs without the dataflow

pragma. As expected, both Vitis HLS dataflow and our design consumes more resources

compared to the non-dataflow design since they both perform much better than the

non-dataflow design.

Interestingly, our design consumes fewer resources in all benchmarks (except for LUT

usage in Harris corner detection) while, simultaneously, outperforming the Vitis HLS

dataflow optimized design. We see the greatest improvement in BRAM usage. This

can be attributed to the synthesis of ping-pong buffers by Vitis HLS for more complex
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Figure 5.4: Resource usage and performance of our work relative to Vitis HLS for work-

loads without SPSC dataflow pattern.

dataflow patterns which results in more BRAM usage compared to the baseline non-

dataflow Vitis HLS design. Our design, on the other hand, does not instantiate any

extra RAMs. Thus our BRAM usage is always the same as the non-dataflow Vitis HLS

design (except for DUS where we have even less BRAM usage than the non-dataflow

design).

Depending on the data access pattern, Vitis HLS synthesizes either ping-pong buffers

or FIFOs to replace the intermediate arrays accessed by producer and consumer loops.

Runtime synchronization ensures that the consumer reads data only after the producer

has written the data to the intermediate buffer. Though it is impossible to isolate the

exact cause of the extra LUT and FF overhead, one possible source of the extra resource

usage can be attributed to the extra logic required to implement these synchronizations.

On the other hand, our compiler statically schedules the producer and consumer loops

in such a way that the data dependencies between them are guaranteed to be never
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violated, avoiding the need for any extra synchronization logic at runtime.

Q. What are the limitations of Vitis HLS dataflow optimization and does our

technique work in those scenarios.

To understand why we outperform Vitis HLS in Figure 5.1, we need to understand

when Vitis HLS can overlap producer-consumer loop nests. We have already mentioned

two limitations of the dataflow pragma in Vitis HLS:

• All intermediate arrays must have a single producer loop nest and a single consumer

loop nest.

• In a dataflow region, there should not be any read/write to the function arguments.

Although DUS satisfies both the above criteria, we observe that Vitis HLS with

dataflow does not offer any improvement in the overall latency of the DUS operation

compared to the non-dataflow version (as shown in Figure 5.2). To overlap the execution

of producer and consumer loop nests, Vitis HLS tries to replace all intermediate array

accesses with FIFOs. If the intermediate arrays are replaced with FIFOs, the consumer

can start its execution and on every read of the intermediate array, it can wait until

the producer inserts data into the FIFO. This runtime synchronization between the

consumer read and producer write (using the FIFO) ensures that the data dependency

will not be violated. But the limitation of this approach is that the intermediate arrays

can only be replaced with FIFOs if the consumer reads the data from the array in

the same order in which the producer is writing. The loop nests in DUS violate this

since both upsampling and downsampling loop nests access a neighborhood of pixels (a

stencil operation). Because of this, Vitis HLS can not overlap the execution of the loop

nests present in downsampling and upsampling. Since our compiler uses an ILP-based

scheduler to find the dependence distances between producer and consumer loop nests,

we can handle arbitrary affine accesses on the intermediate arrays. As a result, we see a

35% performance improvement in DUS over Vitis HLS. Other benchmarks have a mix of

loop nests, some of which can and can not be overlapped by Vitis HLS due to the data

access patterns. For instance, in Unsharp mask, there are two convolution operations in a
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chain that Vitis HLS can not overlap (since the consumer convolution reads a window of

pixels similar to DUS) but it can overlap the sharpening and masking loop nests which are

both pointwise access. Our approach, on the other hand, can safely overlap both types

of producer-consumer pairs. This accounts for the difference in performance between the

two approaches even after converting the programs to single-producer-single-consumer

(SPSC) style to satisfy Vitis HLS’s dataflow optimization criteria.

We converted our benchmarks to SPSC to enable Vitis HLS dataflow optimizations.

But since our scheduler claims to handle arbitrary affine accesses, it is natural to ques-

tion whether we would see any performance improvement on the unmodified programs

i.e., programs with multiple consumers and different data access ordering of the producer

and consumer. Figure 5.4 demonstrates the effectiveness of our technique on the unmod-

ified benchmarks. We achieve a speedup between 2x and 2.9x over Vitis HLS (without

dataflow directive since dataflow can not handle these unmodified workloads) across all

benchmarks, which demonstrates that our compiler can aggressively overlap the loop

nests in the unmodified programs. We report the resource usage of our design relative

to Vitis HLS for completeness. Vitis HLS can reuse resources such as DSP units across

loop nests since the loop nests execute one after the other. As a result, we consume more

resources to provide additional performance gains. We include 2mm for this evaluation

since our compiler can handle function argument accesses as well.

5.3 Summary

In this chapter, we evaluated the HIR compiler infrastructure against Vitis HLS compiler

from Xilinx. We perform the evaluation in two steps. We first show that the compiler IR

can represent different types of parallelism and the backend code generator can generate

efficient hardware using the IR description. We then compare the end-to-end compiler

infrastructure against Vitis HLS. For this, we use a set of image-processing pipelines.

We use the Polygeist MLIR frontend to lower the benchmarks from C language to the

Affine dialect of MLIR. We identify a missing optimization opportunity in the Vitis HLS
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compiler namely overlapped execution of producer-consumer loop nests for arbitrary

affine data access patterns. We show that our ILP-based the scheduler can leverage

this optimization opportunity to generate designs that perform significantly better than

Vitis HLS while consuming fewer FPGA resources. Overall the evaluation shows that

the HIR compiler infrastructure can produce designs that are comparable in quality with

Vitis HLS and for specific types of workloads (multiple kernels with producer-consumer

relation) it can generate more performant designs.



Chapter 6

Related work

In this chapter, we discuss the previous work on hardware design and high-level synthesis.

6.1 Hardware description languages

Hardware description languages (HDLs) such as VHDL and Verilog provide develop-

ers with the capability to represent complex designs with fine-grained control over the

instantiated hardware and scheduling. Examples of HDLs implemented as embedded

domain-specific languages (DSLs) on top of existing software programming languages

including Chisel [Bachrach et al. (2012b)], MyHDL [Decaluwe (2004)], and VeriScala

[Liu et al. (2017)]. These DSLs leverage the meta-programming capabilities of the host

language to represent highly parameterized hardware designs. Due to meta-programming

these languages provide a higher level of abstraction than the traditional HDLs like Ver-

ilog. But they also require the developer to describe the hardware at the register-transfer

level, i.e. specify the computations and memory read/write operations for each clock cy-

cle. A hardware design description in an HDL uses state machines to explicitly schedule

each computation and read/write operation. Control flow such as for-loops is also im-

plemented by instantiating state machines explicitly. The problem with such designs is

that any change in the timing behavior of one component can silently introduce errors

in the overall design even if the functional behavior of the component is the same.
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Bluespec-Verilog [Nikhil (2004)] represents a circuit as a set of atomic rules. A recent

work [Bourgeat et al. (2020)] attempts to enhance the language for user-level control

over the schedule and predictable performance. We believe that HIR’s ability to express

a design at a higher level of abstraction than RTL while providing complete control

over the schedule would be a good fit as a target intermediate language for the BSV

compiler. The Dahlia [Nigam et al. (2020)] language is inspired by the observation that

HLS languages generate unpredictable designs due to their excessive flexibility. Dahlia

and its affine type-system enforce the high-level design to respect the limitations of the

hardware. For example, a valid design is guaranteed to never have multiple reads and

writes on the same memory in the same cycle. This ensures that the design lowered to

HIR would not have undefined behavior. Many of Dahlia’s language features such as

memory banking, for loops and loop unrolling have a direct equivalent in HIR.

6.2 HLS languages & compilers

Several HLS compilers, such as Vitis HLS [Inc. ([n. d.])], Intel OpenCL stack [Intel

([n. d.])], and the LegUp compiler [Canis et al. (2011b)], have repurposed existing general-

purpose software languages like C/C++ and OpenCL for hardware description, while

others, such as Dahlia [Nigam et al. (2020)], Spatial [Koeplinger et al. (2018)], and Hete-

roCL [Lai et al. (2019)], have opted for a clean-slate DSL design specialized for high-level

synthesis.

Dahlia emphasizes performance predictability by using time-sensitive affine types to

check and prevent conflicting resource usage during compilation. Its key observation is

that in case of port conflicts, traditional high-level synthesis compilers dynamically in-

troduce extra delay at runtime to sequentially perform the conflicting operations, which

leads to schedule-dependent unpredictable performance. Dahlia’s type system forbids

scheduling two memory access operations using the same port on the same clock cycle.
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It accomplishes this by using Affine types. Affine types are a concept in type theory that

restrict objects to at most one use. A language can define what constitutes a use. Dahlia

provides a language construct to specify that there is one clock cycle delay between two

operations. Operations such as accessing a memory port constitute a use of the resource

(port). Within a clock cycle, the compiler statically enforces that there can be only one

use. At the beginning of every cycle, the use count is reset to zero for all resources.

Spatial is a high-level synthesis language with hardware-centric abstractions to improve

programmer productivity and design performance. Some of these abstractions include

control flow constructs such as finite-state machines, scheduling directives, support for

different types of hardware memories and bus interfaces, and support for design space

exploration. It can target both FPGAs and CGRAs.

HeteroCL is a Python-based programming language targeting FPGAs. It decouples al-

gorithmic specification from hardware customizations of compute, data type and memory

architecture. HeteroCL’s code-generator targets the Merlin compiler [Cong et al. (2016)]

as its general-purpose backend and the SODA Chi et al. (2018) framework to implement

stencil computation.

SODA-OPT [Agostini et al. (2022)] is an MLIR-based HLS compiler framework. The

SODA-OPT compiler automatically searches, outlines, tiles and pre-optimizes relevant

code regions to generate hardware accelerators. Backend synthesis tools connect to

SODA-OPT through progressive intermediate representation lowering. The compiler

currently lowers to LLVM IR and then uses the Bambu [ Ferrandi et al. (2021)] compiler

to generate the final hardware design.
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6.3 DSLs

Halide [Ragan-Kelley et al. (2013)] and Polymage [Mullapudi et al. (2015)] DSLs offer

HLS backends [Li et al. (2020); Chugh et al. (2016b)] for FPGAs. Darkroom [Hegarty

et al. (2014)] and Rigel [Hegarty et al. (2016)] implement a domain-specific high-level syn-

thesis compiler for image processing. SODA [Chi et al. (2018)], StencilFlow [de Fine Licht

et al. (2021)] and SASA [Tian et al. (2023)] lower stencil computations described in a

domain-specific language to efficient hardware design.

Aetherling [ Durst et al. (2020)] introduces sequence types to encode throughput and

latency by specifying when sequence elements are produced and consumed. Implemented

as a DSL embedded in Haskell, Aetherling compiles data-parallel programs into statically

scheduled, streaming hardware circuits. The language attempts to remove the need for

synchronization overhead between different stages of the pipeline. Aetherling generates

Verilog via the Chisel language. HIR is an ideal fit for such a language. The explicit

deterministic scheduling completely removes the need for extra synchronization. HIR

can represent designs where the producer and consumer operate in lock steps and there

is no back-pressure between the stages and Aetherling’s type system ensures that this

would always be the case.

6.4 Source-to-source Compilers

The quality of hardware generated by HLS compilers depends heavily on the input

program. Many polyhedral-based optimization techniques have been proposed in the

past Alias et al. (2010); Pouchet et al. (2013); Zuo et al. (2013b,a) that employ polyhe-

dral techniques to improve the input program for the HLS tool. These pre-processing

loop optimization techniques complement our work. For instance, loop interchange may

enable greater overlap between producer and consumer loops.

AutoSA [Wang et al. (2021)] and PolySA [Cong and Wang (2018)] utilize polyhedral
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optimization to synthesize efficient systolic-array-based hardware designs. The optimiza-

tions in both these works are tailored for kernels that can be represented as systolic arrays

in hardware. In contrast, our work focuses on pipelining arbitrary affine kernels with

constant loop bounds and is not limited to generating systolic array-based architectures.

ScaleHLS [Ye et al. (2022b,a)] provides an MLIR-based end-to-end compilation frame-

work for high-level synthesis. It takes HLS C (C with HLS-specific directives) as input

and after transformations, produces a more optimized implementation in HLS C/C++.

It leverages existing HLS compiler [Inc. ([n. d.])] to lower the optimized HLS C/C++

to RTL. Scale HLS is a source-to-source compiler. Its key insight is that the qual-

ity of the generated hardware is dependent on how the input HLS program is struc-

tured. It transforms the input program in a way that is easier to optimize for the HLS

compiler. For instance, Vivado HLS’s dataflow optimizations require a single-producer-

single-consumer dataflow pattern. It converts the input program to enable this pattern.

As ScaleHLS targets Vivado HLS for lowering to RTL, it can utilize the optimizations

such as scheduling and pipelining as well as RTL code generation of Vivado HLS, while

focusing only on high-level optimizations. The disadvantage of such an approach is that

the ScaleHLS compiler is heavily tied to the Vivado HLS compiler. The optimizations

and code-generation of ScaleHLS are designed to generate HLS C/C++ that can be

easily optimized by Vivado HLS. Additionally, such a compiler can not be used as a

testbed to try new scheduling optimizations, since the final schedule is always decided

by Vivado HLS. Similarly, the RTL code-generation strategy is also decided by Vivado

HLS so it is not possible to generate statically scheduled dataflow circuits until Vivado

HLS supports it. On the other hand, our goal in this thesis is to develop an end-to-end

compiler in MLIR that can be extended with new optimizations at every level similar

to the LLVM compiler. A set of ScaleHLS style pre-optimization passes before schedul-

ing would certainly enhance the capabilities of our compiler in the same way in which

ScaleHLS currently improves upon Vivado HLS.
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6.5 Intermediate Representations

Static Single Assignment (SSA [Cytron et al. (1991)]) based intermediate representations

are standard in software compilation pipelines. Both LLVM [Lattner and Adve (2004)]

and GCC [Novillo (2003)] use SSA-based IRs for their compilation pipeline. Some HLS

compilers [Canis et al. (2011a); Pilato and Ferrandi (2013)] also reuse these software IRs

for high-level synthesis.

LLHD [Schuiki et al. (2020)] is another intermediate representation for hardware de-

scription that was later migrated to MLIR and is hosted as part of CIRCT [community

(2020)], an LLVM sub-project and an umbrella initiative to adapt and use MLIR for high-

level synthesis. LLHD attempts to cover all stages of hardware synthesis. It provides IR

constructs to describe behavioral and structural circuits as well as netlists. LLHD is a

low-level IR with a similar abstraction level as HDLs (Verilog/VHDL). It does not have

loops and it expects that loop unrolling is done by the language frontend. While LLHD

is suitable for targeting HDLs such as SystemVerilog and VHDL and as a low-level IR in

the HLS pipeline, it is too low-level for the initial stages of a high-level synthesis compiler.

FIRRTL [Izraelevitz et al. (2017)] IR is designed along with the Chisel [Bachrach et al.

(2012a)] hardware construction language. FIRRTL designs are represented as an ab-

stract syntax tree. FIRRTL offers features like type and width inference for easier Chisel

interoperability. Similar to LLHD, FIRRTL is also a low-level IR and a suitable target

for HDLs.

µIR [Sharifian et al. (2019)] decouples the micro-architectural representation of the accel-

erator from its behavioral specification. Microarchitectural optimizations like pipelining

and retiming are implemented as transformations of the structural graph.

Calyx [Nigam et al. (2021)] represents an accelerator using a structural sub-language
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and a control sub-language. The control sub-language offers while loops and if state-

ments. In addition to these, the control sub-language also has seq and par blocks which

together provide fork-join parallelism to the IR. Calyx captures latency-insensitive de-

signs with the ability to utilize optionally provided latency information to simplify the

state machine. Calyx is designed as a pre-scheduling IR whereas HIR is designed as

a post-scheduling IR. The time variables in HIR allow the scheduler to easily express

the desired schedule of the design. Another difference between Calyx and HIR is the

function signatures. Calyx allows groups (a unit of encapsulation in Calyx) to specify

the group’s execution latency using the static attribute. HIR’s functions capture the

exact latency of each argument and result. This helps while interfacing with external

Verilog modules. For instance, fused-multiply-add primitives from Xilinx can accept the

accumulator input a few cycles after the multiplier inputs since the addition happens

after the multiplication. HIR can accurately capture this information in the function

declaration corresponding to the external fused-multiply-add Verilog module.

HCL [Pal et al. (2022)] is the MLIR dialect for HeteroCL [Lai et al. (2019)]. It is a

high-level unscheduled intermediate representation for accelerator description. Like Het-

eroCL, it supports compute, data type and memory customizations for efficient hardware

design. The HCL dialect lowers to HLS C/C++ and uses existing high-level synthesis

compilers such as Vitis HLS to generate the final Verilog design. The generated HLS

C/C++ contains pragmas specific to the target HCL tool such as Vitis HLS or Quartus.

As HCL and HIR target two distinct phases of the HLS pipeline, namely pre-scheduling

and post-scheduling respectively, the optimizations performed by HIR and HLS are com-

plementary to each other. Optimizations on scheduled design, such as delay coalescing

(Section 3.4.2), do not make sense in the HCL dialect since there will be no extra delays

added for pipeline balancing before scheduling is complete. HCL’s loop transformations

can enable HIR’s scheduling optimizations such as loop pipelining and overlapped exe-

cution of producer-consumer loops. As the HIR compiler optimizes producer-consumer

loops better than Vitis HLS (Section 5.2), using HIR as an alternate backend for affine
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workloads with constant memory accesses may improve the overall performance of the

designs generated by the HCL compiler pipeline. Also, using HIR’s scheduler and back-

end to lower directly to SystemVerilog eliminates HCL’s dependence on vendor-specific

HLS tools outside of the MLIR ecosystem.

6.6 Place & route for HLS

Prior literature has studied how to utilize the physical design process in high-level syn-

thesis. Zheng et al. (2014) proposes to iteratively optimize the design by back-annotating

both post-placement and routing information. Their approach could increase the fmax

compared to a non-iterative flow. Cong et al. (2004) developed the regular-distributed-

register microarchitecture to solve the multicycle for multicycle on-chip communication.

Cong et al. (2018) proposed theLatte microarchitecture to insert additional buffers in

critical paths. Others have studied methods to predict logic delay [Tan et al. (2015);

Guo et al. (2020)] and routing congestion Zhao et al. (2019). AutoBridge [Guo et al.

(2021)] proposes a coarse-grained floorplanning during pipelining in high-level synthesis

to improve the timing quality of the design. The HIR compiler currently does not use

device properties. Logic delay estimates and floorplanning information can be added in

the our compilation pipeline for additional optimizations such as retiming or additional

buffer insertion in critical paths.

6.7 Summary

Many of the above DSLs Chi et al. (2018); Wang et al. (2021); Li et al. (2020); Chugh

et al. (2016b); Lai et al. (2019) and optimization frameworks Pouchet et al. (2013); Zuo

et al. (2013b) use the Vivado HLS (currently known as the Vitis HLS) compiler, justify-

ing our comparison against Vitis HLS in the evaluation. Our work is complementary to

these DSLs and optimizations. We choose the HIR compiler due to the ease of represent-

ing static schedules in HIR intermediate representation, but our ILP-based scheduling
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technique can be incorporated into any HLS compiler as another optimization pass.



Chapter 7

Conclusion

In this thesis, we proposed the HIR compiler for high-level synthesis of affine workloads.

Affine kernels are very common in image and audio processing as well as machine learn-

ing workloads, making them a very interesting domain for hardware acceleration. Our

compiler is based on the MLIR compiler infrastructure. We designed an IR called HIR

to represent hardware accelerators. HIR combines a high-level functional description of

the accelerator with a concrete schedule.

As discussed in Chapter 3, HIR introduces the concept of time variables to represent

the schedule of operations in a hardware design. Time variables succinctly represent the

schedule while abstracting the exact state of machine-based hardware implementation.

HIR’s compiler uses this decoupling of schedule from the rest of the logic to perform

delay-coalescing optimization which reduces the number of shift registers required in the

final design. The HIR backend uses the schedule to generate appropriate state machine-

based controllers in the final SystemVerilog design. The backend’s task is to lower HIR

into SystemVerilog. It performs loop unrolling, buffer allocation for memref, and state-

machine generation to implement the control-flow operations.

HIR also provides its own memref data type to represent multi-ported, banked mem-

ories as multi-dimensional arrays. The backend’s buffer allocation pass assigns each

memory bank to a separate hardware buffer and connects the load/store operations to

the correct bank. A multi-banked tensor allows multiple parallel access, thereby allowing

88
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the scheduler to avoid port conflicts and exploit the memory-level parallelism available

in the design.

As a part of the Affine-to-HIR lowering process, we implemented an ILP-based sched-

uler that performs memory dependence analysis on the program to find out a valid par-

allel schedule, as described in Chapter 4. It ensures that the memory dependencies of

the original sequential affine program are not violated in the parallel schedule generated

by the ILP solver. We use the parallel schedule to emit HIR from the affine program.

The scheduler also ensures that there are no port conflicts in the parallel schedule, i.e.

two memory operations are not scheduled on the same port at the same clock cycle. The

scheduler also calculates the port assignments as a part of the scheduling process.

Two unique features of our scheduler are that it can perform multi-level loop pipelin-

ing, and pipeline across producer-consumer loop nests (task-level-pipelining). We use the

multi-level loop pipelining when inner unroll loops are present. We perform the pipelin-

ing at both the inner and outer loops without first unrolling the inner loop. Delaying the

loop-unrolling until after the scheduling is done, reduces the number of constraints in

our ILP formulation allowing the ILP to calculate the results quickly. Pipelining across

loop nests helps the benchmarks containing producer-consumer loop nests, such as im-

age processing workloads. Our evaluation in Chapter 5 shows that the HIR compiler’s

scheduler can pipeline producer-consumer loop nests in the presence of arbitrary affine

memory access patterns, while Vitis HLS’s dataflow optimization performs poorly due to

its limited support for more complex memory access patterns and requirement of single-

producer-single-consumer dataflow between the loop nests. As our ILP formulation can

only handle constant loop bounds, we evaluate our compiler on affine benchmarks with

known loop bounds. We argue that constant loop bounds are not a big constraint for

hardware accelerator design. Workloads that are run on hardware accelerators are often

tiled and each tile is executed on the hardware accelerator. The accelerator utilized

parallelism within each tile for performance. For instance, the tensor cores (a systolic

array-based matrix-multiplication accelerator) in NVIDIA GPUs can only perform ma-

trix multiplications of a fixed size. Larger matrices are tiled, and each tile is scheduled
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on the tensor core individually. Each tile has a fixed size and hence, the loops in the

intra-tile space have constant (known at compile time) loop bounds.

7.1 Future Work

The HIR compiler framework presented in this thesis lays the foundation for an LLVM-

like extensible high-level synthesis compiler framework. Built on top of MLIR, it is

designed with a modular approach where each component such as the ILP scheduler,

the optimization passes and the backend verilog code-generator talk to each other using

a well-defined intermediate language. This makes it easy to replace/enhance any of the

components for better performance as well as introduce new optimization passes. In this

section, we cover some of the potential future directions that we find promising.

Polyhedral optimizationsOur compiler uses polyhedral analysis during the scheduling

pass. But it does not apply any of the traditional loop optimizations. As our compiler’s

input is the affine dialect which is designed for polyhedral analysis and transformation,

new polyhedral-based loop transformation techniques to optimize the hardware design

such as loop-interchange, tiling and skewing can be introduced to improve parallelism.

Loop interchange can increase the overlap between producer-consumer loop nests by re-

ducing the dependence distance between the producer loop iterations and the consumer

loop iterations. For example, if a producer loop nest writes to a matrix in row-major

order and the consumer from it in column-major order, the overlap may be very small

as the consumer has to wait for the producer to write a complete row before it can read

the next column element. Reordering the producer or consumer loops can make the two

loop nests completely overlapped/pipelined. Tiling can also improve overlap between

producer-consumer loop nests. For example, in the case of a producer-consumer rela-

tionship between two window-based operations (such as convolution or max-pooling),

the consumer has to wait till the producer has processed a few rows (Section 2.3). Tiling

reduces the size of each row within the tile, thus increasing the overlap.
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Non-affine workloads Another interesting area for extending the current work is to

deal with non-affine workloads. The affine constraint is primarily due to our scheduler

which does a polyhedral-based analysis. The rest of the optimization passes such as

bitwidth reduction and delay coalescing work on arbitrary HIR kernels written in HIR.

Novel schedulers for non-affine workloads or even domain-specific scheduling can be in-

corporated into our compiler pipeline to expand the compiler to new domains. Prior

work Hegarty et al. (2014) has used custom schedulers for domain-specific languages.

New frontend languages The HIR compiler infrastructure provides a unique opportu-

nity to design new programming languages and extend current languages for high-level

synthesis. For instance, Vitis HLS does not support fork-join parallelism. As HIR can

represent arbitrary schedules, modifying the scheduler’s ILP constraints to ignore data

dependency between memory accesses in different threads can allow the compiler to sup-

port fork-join parallelism or C++ style multi-threading. Our compiler can also be used

as an alternative to Verilog code-generation for domain-specific languages that require

precise control over hardware and schedule Hegarty et al. (2014); Durst et al. (2020).

Retiming Our compiler does not have any information about the FPGA’s internal

characteristics, such as the routing delay and latency of each combinational unit. In the

presence of this information, new optimizations such as retiming can be performed to

improve the frequency. Generally retiming can only move registers around but can not

add extra delay. But since our compiler performs scheduling as well, we can introduce

extra delay and rely on the scheduler to generate the final design that preserves the se-

mantics of the original program. For instance, we can replace a floating-point multiplier

with another multiplier that has extra pipeline stages for higher frequency. Such opti-

mizations are beyond the scope of classic retiming which is performed on a pre-scheduled

Verilog design.
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To conclude, we presented HIR, an MLIR-based extensible, modular compiler in-

frastructure for high-level synthesis. Our evaluation shows that our compiler produces

designs with comparable resource usage and performance. In the presence of producer-

consumer loop nests, we can outperform Vitis HLS’s dataflow optimizations. The HIR

compiler is designed to enable research in high-level synthesis optimizations and lan-

guage design. New optimizations can plug into the compiler while benefiting from ex-

isting front-ends, benchmarks and backend code-generators, without compromising the

precise control over the hardware generation. Similarly, new HLS-specific languages ben-

efit from an existing compiler. In addition, domain-specific languages can introduce new

schedulers to the compiler that are tailored to their workloads.
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Source code for benchmarks.

In this appendix we provide the source code of the HLS benchmarks used with Vitis

HLS.

A.1 Unsharp mask

#define IMG_SIZE 32

#define KERNEL_SIZE 5

static float abs(float v) { return v > 0 ? v : -v; }

void split(float output0[IMG_SIZE][IMG_SIZE], float output1[IMG_SIZE][IMG_SIZE],

float input[IMG_SIZE][IMG_SIZE]) {

#pragma HLS INLINE

for (int i = 0; i < IMG_SIZE; i++) {

for (int j = 0; j < IMG_SIZE; j++) {

#pragma HLS PIPELINE

output0[i][j] = input[i][j];

output1[i][j] = input[i][j];

}

}

}

void convX(float output[IMG_SIZE][IMG_SIZE], float img[IMG_SIZE][IMG_SIZE],
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float kernel[KERNEL_SIZE]) {

#pragma HLS INLINE

for (int i = 0; i < IMG_SIZE - KERNEL_SIZE; i++) {

for (int j = 0; j < IMG_SIZE - KERNEL_SIZE; j++) {

output[i][j] = 0;

for (int kk = 0; kk < KERNEL_SIZE; kk++) {

#pragma HLS PIPELINE

output[i][j] += kernel[kk] * img[i][j + kk];

}

}

}

}

void convY(float output[IMG_SIZE][IMG_SIZE], float img[IMG_SIZE][IMG_SIZE],

float kernel[KERNEL_SIZE]) {

#pragma HLS INLINE

for (int i = 0; i < IMG_SIZE - KERNEL_SIZE; i++) {

for (int j = 0; j < IMG_SIZE - KERNEL_SIZE; j++) {

output[i][j] = 0;

for (int kk = 0; kk < KERNEL_SIZE; kk++) {

#pragma HLS PIPELINE

output[i][j] += kernel[kk] * img[i + kk][j];

}

}

}

}

void sharpen(float output[IMG_SIZE][IMG_SIZE], float img[IMG_SIZE][IMG_SIZE],

float blury[IMG_SIZE][IMG_SIZE], float weight) {

#pragma HLS INLINE

for (int i = 0; i < IMG_SIZE; i++) {

for (int j = 0; j < IMG_SIZE; j++) {

#pragma HLS PIPELINE

output[i][j] = (1 + weight) * img[i][j] - weight * blury[i][j];

}
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}

}

void mask(float output[IMG_SIZE][IMG_SIZE], float img[IMG_SIZE][IMG_SIZE],

float blury[IMG_SIZE][IMG_SIZE], float sharp[IMG_SIZE][IMG_SIZE],

float threshold) {

#pragma HLS INLINE

for (int i = 0; i < IMG_SIZE; i++) {

for (int j = 0; j < IMG_SIZE; j++) {

#pragma HLS PIPELINE

output[i][j] =

(abs(img[i][j] - blury[i][j]) < threshold ? img[i][j] : sharp[i][j]);

}

}

}

void unsharp_mask_hls(float img[IMG_SIZE][IMG_SIZE],

float mask_img[IMG_SIZE][IMG_SIZE],

float kernelDataX[KERNEL_SIZE],

float kernelDataY[KERNEL_SIZE]) {

#pragma HLS DATAFLOW

#pragma HLS INLINE recursive

#pragma HLS INTERFACE mode = ap_memory port = img storage_type = rom_1p

#pragma HLS INTERFACE mode = ap_memory port = mask_img storage_type = ram_1p

#pragma HLS INTERFACE mode = ap_memory port = kernelDataX storage_type = rom_1p

#pragma HLS INTERFACE mode = ap_memory port = kernelDataY storage_type = rom_1p

#pragma HLS INTERFACE mode = ap_ctrl_none

float blurxData[IMG_SIZE][IMG_SIZE];

float bluryData[IMG_SIZE][IMG_SIZE];

float bluryData0[IMG_SIZE][IMG_SIZE];

float bluryData1[IMG_SIZE][IMG_SIZE];

#pragma HLS STREAM depth = 3 type = pipo variable = bluryData1



Appendix A. Source code for benchmarks. 96

float imgtemp[IMG_SIZE][IMG_SIZE];

float img0[IMG_SIZE][IMG_SIZE];

float img1[IMG_SIZE][IMG_SIZE];

#pragma HLS STREAM depth = 4 type = pipo variable = img1

float img2[IMG_SIZE][IMG_SIZE];

#pragma HLS STREAM depth = 5 type = pipo variable = img2

float sharpImgData[IMG_SIZE][IMG_SIZE];

split(imgtemp, img0, img);

split(img2, img1, imgtemp);

convX(blurxData, img0, kernelDataX);

convY(bluryData, blurxData, kernelDataY);

split(bluryData0, bluryData1, bluryData);

sharpen(sharpImgData, img1, bluryData0, 3);

mask(mask_img, img2, bluryData1, sharpImgData, 0.001);

}
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A.2 Harris

#define R 32

#define C 32

//#include <stdio.h>

void split(float output1[R][C], float output2[R][C], float input[R][C]) {

for (int r = 0; r < R; r++) {

for (int c = 0; c < C; c++) {

#pragma HLS pipeline

float v = input[r][c];

output1[r][c] = v;

output2[r][c] = v;

}

}

}

void funcIx(float ix[R][C], float img[R][C]) {

float w[2][3];

w[0][0] = -1 / 12.0;

w[1][0] = 1 / 12.0;

w[0][1] = -2 / 12.0;

w[1][1] = 2 / 12.0;

w[0][2] = -1 / 12.0;

w[1][2] = 1 / 12.0;

float acc;

for (int r = 1; r < R - 1; r++) {

for (int c = 1; c < C - 1; c++) {

acc = 0;

for (int u = 0; u < 2; u++) {

for (int v = 0; v < 3; v++) {

#pragma HLS pipeline

acc += img[r + 2 * u - 1][c + v - 1] * w[u][v];

}

}

ix[r][c] = acc;
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}

}

}

void funcIy(float iy[R][C], float img[R][C]) {

float w[2][3];

w[0][0] = -1 / 12.0;

w[1][0] = 1 / 12.0;

w[0][1] = -2 / 12.0;

w[1][1] = 2 / 12.0;

w[0][2] = -1 / 12.0;

w[1][2] = 1 / 12.0;

float acc;

for (int r = 1; r < R - 1; r++) {

for (int c = 1; c < C - 1; c++) {

acc = 0;

for (int u = 0; u < 2; u++) {

for (int v = 0; v < 3; v++) {

#pragma HLS pipeline

acc += img[r + v - 1][c + 2 * u - 1] * w[u][v];

}

}

iy[r][c] = acc;

}

}

}

void funcIxx(float ixx[R][C], float ix[R][C]) {

float v;

for (int r = 1; r < R - 1; r++) {

for (int c = 1; c < C - 1; c++) {

#pragma HLS pipeline

v = ix[r][c];

ixx[r][c] = v * v;

}
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}

}

void funcIyy(float iyy[R][C], float iy[R][C]) {

float v;

for (int r = 1; r < R - 1; r++) {

for (int c = 1; c < C - 1; c++) {

#pragma HLS pipeline

v = iy[r][c];

iyy[r][c] = v * v;

}

}

}

void funcIxy(float ixy[R][C], float ix[R][C], float iy[R][C]) {

for (int r = 1; r < R - 1; r++) {

for (int c = 1; c < C - 1; c++) {

#pragma HLS pipeline

ixy[r][c] = ix[r][c] * iy[r][c];

}

}

}

void funcS(float sxx[R][C], float ixx[R][C]) {

float acc;

for (int r = 2; r < R - 2; r++) {

for (int c = 2; c < C - 2; c++) {

acc = 0;

for (int u = 0; u < 3; u++) {

for (int v = 0; v < 3; v++) {

#pragma HLS pipeline

acc += ixx[r + u - 1][c + v - 1];

}

}

sxx[r][c] = acc;
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}

}

}

void funcDet(float det[R][C], float sxx[R][C], float syy[R][C],

float sxy[R][C]) {

float v;

for (int r = 2; r < R - 2; r++) {

for (int c = 2; c < C - 2; c++) {

#pragma HLS pipeline

v = sxy[r][c];

det[r][c] = sxx[r][c] * syy[r][c] - v * v;

}

}

}

void funcTrace(float trace[R][C], float sxx[R][C], float syy[R][C]) {

for (int r = 2; r < R - 2; r++) {

for (int c = 2; c < C - 2; c++) {

#pragma HLS pipeline

trace[r][c] = sxx[r][c] + syy[r][c];

}

}

}

void funcHarris(float harris[R][C], float det[R][C], float trace[R][C]) {

float v;

for (int r = 2; r < R - 2; r++) {

for (int c = 2; c < C - 2; c++) {

#pragma HLS pipeline

v = trace[r][c];

harris[r][c] = det[r][c] - (float)0.04 * v * v;

}

}

}
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void harris_hls(float harris[R][C], float img[R][C]) {

#pragma HLS DATAFLOW

#pragma HLS INLINE recursive

#pragma HLS INTERFACE mode = ap_memory port = img storage_type = ram_1p

#pragma HLS INTERFACE mode = ap_memory port = harris storage_type = ram_1p

float ix[R][C];

float iy[R][C];

float ixx[R][C];

float iyy[R][C];

float ixy[R][C];

float sxx[R][C];

float syy[R][C];

float sxy[R][C];

#pragma HLS STREAM depth = 3 type = pipo variable = sxy

float det[R][C];

float trace[R][C];

funcIx(ix, img);

funcIy(iy, img);

funcIxx(ixx, ix);

funcIyy(iyy, iy);

funcIxy(ixy, ix, iy);

funcS(sxx, ixx);

funcS(syy, iyy);

funcS(sxy, ixy);

funcDet(det, sxx, syy, sxy);

funcTrace(trace, sxx, syy);

funcHarris(harris, det, trace);

}
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A.3 DUS

#define IMG_SIZE 32

void downsample(float out[IMG_SIZE / 2][IMG_SIZE / 2],

float img[IMG_SIZE][IMG_SIZE]) {

float temp[IMG_SIZE][IMG_SIZE / 2];

#pragma HLS bind_storage variable = temp type = ram_s2p impl = bram

for (int i = 1; i < IMG_SIZE; i++) {

for (int j = 1; j < IMG_SIZE / 2; j++) {

#pragma HLS pipeline

temp[i][j] = (img[i][2 * j - 1] + 2 * img[i][2 * j] + img[i][2 * j + 1]) *

(float)0.25;

}

}

for (int i = 1; i < IMG_SIZE / 2; i++) {

for (int j = 1; j < IMG_SIZE / 2; j++) {

#pragma HLS pipeline

out[i][j] = (temp[2 * i - 1][j] + (float)2.0 * temp[2 * i][j] +

temp[2 * i + 1][j]) *

(float)0.25;

}

}

}

void upsample(float out[IMG_SIZE][IMG_SIZE],

float img[IMG_SIZE / 2][IMG_SIZE / 2]) {

float temp[IMG_SIZE / 2][IMG_SIZE];

float v;

#pragma HLS bind_storage variable = temp type = ram_s2p impl = bram

for (int i = 1; i < IMG_SIZE / 2; i++) {

for (int j = 1; j < IMG_SIZE / 2 - 1; j++) {

#pragma HLS pipeline
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v = img[i][j];

temp[i][2 * j] = v;

temp[i][2 * j + 1] = v + img[i][j + 1] * (float)0.5;

}

}

for (int i = 1; i < IMG_SIZE / 2 - 1; i++) {

for (int j = 1; j < IMG_SIZE; j++) {

#pragma HLS pipeline

out[2 * i][j] = temp[i][j];

out[2 * i + 1][j] = (temp[i][j] + temp[i + 1][j]) * (float)0.5;

}

}

}

void dus_hls(float dus[IMG_SIZE][IMG_SIZE], float img[IMG_SIZE][IMG_SIZE]) {

float down[IMG_SIZE / 2][IMG_SIZE / 2];

#pragma HLS DATAFLOW

#pragma HLS INLINE recursive

#pragma HLS interface mode = ap_memory port = img storage_type = rom_1p

#pragma HLS interface mode = ap_memory port = dus storage_type = ram_1p

#pragma HLS bind_storage variable = down type = ram_2p impl = bram

downsample(down, img);

upsample(dus, down);

}
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A.4 Optical flow

#define R 32

#define C 32

//#include <stdio.h>

void split(float output1[R][C], float output2[R][C], float input[R][C]) {

for (int r = 0; r < R; r++) {

for (int c = 0; c < C; c++) {

#pragma HLS pipeline

float v = input[r][c];

output1[r][c] = v;

output2[r][c] = v;

}

}

}

void funcIx(float ix[R][C], float img[R][C]) {

float w[2][3];

w[0][0] = -1 / 12.0;

w[1][0] = 1 / 12.0;

w[0][1] = -2 / 12.0;

w[1][1] = 2 / 12.0;

w[0][2] = -1 / 12.0;

w[1][2] = 1 / 12.0;

float acc;

for (int r = 1; r < R - 1; r++) {

for (int c = 1; c < C - 1; c++) {

acc = 0;

for (int u = 0; u < 2; u++) {

for (int v = 0; v < 3; v++) {

#pragma HLS pipeline

acc += img[r + 2 * u - 1][c + v - 1] * w[u][v];

}

}

ix[r][c] = acc;
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}

}

}

void funcIy(float iy[R][C], float img[R][C]) {

float w[2][3];

w[0][0] = -1 / 12.0;

w[1][0] = 1 / 12.0;

w[0][1] = -2 / 12.0;

w[1][1] = 2 / 12.0;

w[0][2] = -1 / 12.0;

w[1][2] = 1 / 12.0;

float acc;

for (int r = 1; r < R - 1; r++) {

for (int c = 1; c < C - 1; c++) {

acc = 0;

for (int u = 0; u < 2; u++) {

for (int v = 0; v < 3; v++) {

#pragma HLS pipeline

acc += img[r + v - 1][c + 2 * u - 1] * w[u][v];

}

}

iy[r][c] = acc;

}

}

}

void funcIt(float it[R][C], float img[R][C], float prev[R][C]) {

for (int r = 1; r < R - 1; r++) {

for (int c = 1; c < C - 1; c++) {

it[r][c] = img[r][c] - prev[r][c];

}

}

}
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void funcIaa(float iaa[R][C], float ia[R][C]) {

float v;

for (int r = 1; r < R - 1; r++) {

for (int c = 1; c < C - 1; c++) {

#pragma HLS pipeline

v = ia[r][c];

iaa[r][c] = v * v;

}

}

}

void funcIab(float iab[R][C], float ia[R][C], float ib[R][C]) {

for (int r = 1; r < R - 1; r++) {

for (int c = 1; c < C - 1; c++) {

#pragma HLS pipeline

iab[r][c] = ia[r][c] * ib[r][c];

}

}

}

void funcS(float sxx[R][C], float ixx[R][C]) {

float acc;

for (int r = 2; r < R - 2; r++) {

for (int c = 2; c < C - 2; c++) {

acc = 0;

for (int u = 0; u < 3; u++) {

for (int v = 0; v < 3; v++) {

#pragma HLS pipeline

acc += ixx[r + u - 1][c + v - 1];

}

}

sxx[r][c] = acc;

}

}
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}

void funcDet(float det[R][C], float sxx[R][C], float syy[R][C],

float sxy[R][C]) {

float v;

for (int r = 2; r < R - 2; r++) {

for (int c = 2; c < C - 2; c++) {

#pragma HLS pipeline

v = sxy[r][c];

det[r][c] = sxx[r][c] * syy[r][c] - v * v + 1e-05;

}

}

}

void funcFlowLK(float flow[R][C][2], float det[R][C], float sxx[R][C],

float syy[R][C], float sxy[R][C], float sxt[R][C],

float syt[R][C]) {

for (int r = 4; r < R - 4; r++) {

for (int c = 4; c < C - 4; c++) {

#pragma HLS pipeline

float d = 1 / det[r][c];

flow[r][c][0] = d * (sxy[r][c] * syt[r][c] - syy[r][c] * sxt[r][c]);

flow[r][c][1] = d * (sxx[r][c] * syt[r][c] - sxy[r][c] * sxt[r][c]);

}

}

}

void optical_flow_hls(float flow[R][C][2], float img[R][C], float prev[R][C]) {

#pragma HLS DATAFLOW

#pragma HLS INLINE recursive

#pragma HLS INTERFACE mode = ap_memory port = img storage_type = ram_1p

#pragma HLS INTERFACE mode = ap_memory port = prev storage_type = ram_1p

#pragma HLS INTERFACE mode = ap_memory port = flow storage_type = ram_1p

float img1[R][C];
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float img2[R][C];

float img3[R][C];

float img4[R][C];

float ix[R][C];

float ix1[R][C];

float ix2[R][C];

float ix3[R][C];

float ix4[R][C];

float iy[R][C];

float iy1[R][C];

float iy2[R][C];

float iy3[R][C];

float iy4[R][C];

float ixx[R][C];

float iyy[R][C];

float ixy[R][C];

float sxx[R][C];

float sxx1[R][C];

float sxx2[R][C];

float syy[R][C];

float syy1[R][C];

float syy2[R][C];

float sxy[R][C];

float sxy1[R][C];

float sxy2[R][C];

float it[R][C];

float it1[R][C];

float it2[R][C];

float ixt[R][C];

float iyt[R][C];

float sxt[R][C];

float syt[R][C];

float det[R][C];

split(img1, img2, img);
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split(img3, img4, img2);

funcIx(ix, img1);

split(ix1, ix2, ix);

split(ix3, ix4, ix2);

funcIy(iy, img3);

split(iy1, iy2, iy);

split(iy3, iy4, iy2);

funcIaa(ixx, ix1);

funcIaa(iyy, iy1);

funcIab(ixy, ix3, iy3);

funcS(sxx, ixx);

split(sxx1, sxx2, sxx);

funcS(syy, iyy);

split(syy1, syy2, syy);

funcS(sxy, ixy);

split(sxy1, sxy2, sxy);

funcDet(det, sxx1, syy1, sxy1);

funcIt(it, img4, prev);

split(it1, it2, it);

funcIab(ixt, ix4, it1);

funcIab(iyt, iy4, it2);

funcS(sxt, ixt);

funcS(syt, iyt);

funcFlowLK(flow, det, sxx2, syy2, sxy2, sxt, syt);

}
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A.5 2mm

#define _PB_NI 8

#define _PB_NJ 8

#define _PB_NL 8

#define _PB_NK 8

#define DATA_TYPE float

void kernel_2mm_hls(DATA_TYPE alpha, DATA_TYPE beta,

DATA_TYPE tmp[_PB_NI][_PB_NJ], DATA_TYPE A[_PB_NI][_PB_NK],

DATA_TYPE B[_PB_NK][_PB_NJ], DATA_TYPE C[_PB_NJ][_PB_NL],

DATA_TYPE D[_PB_NI][_PB_NL]) {

//Dataflow can't handle read/write to external rams.

#pragma HLS INTERFACE mode = ap_memory port = A storage_type = rom_1p

#pragma HLS INTERFACE mode = ap_memory port = B storage_type = rom_1p

#pragma HLS INTERFACE mode = ap_memory port = C storage_type = rom_1p

#pragma HLS INTERFACE mode = ap_memory port = D storage_type = ram_s2p

#pragma HLS INTERFACE mode = ap_memory port = tmp storage_type = ram_s2p

int i, j, k;

/* D := alpha*A*B*C + beta*D */

DATA_TYPE acc;

for (i = 0; i < _PB_NI; i++)

for (j = 0; j < _PB_NJ; j++) {

acc = 0;

for (k = 0; k < _PB_NK; ++k) {

#pragma HLS pipeline

acc += alpha * A[i][k] * B[k][j];

}

tmp[i][j] = acc;

}

DATA_TYPE acc2;

for (i = 0; i < _PB_NI; i++)
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for (j = 0; j < _PB_NL; j++) {

acc2 = D[i][j] * beta;

for (k = 0; k < _PB_NJ; ++k) {

#pragma HLS pipeline

acc2 += tmp[i][k] * C[k][j];

}

D[i][j] = acc2;

}

}
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