
Tiling Stencil Computations to Maximize Parallelism

A THESIS

SUBMITTED FOR THE DEGREE OF

Master of Science (Engineering)

IN THE COMPUTER SCIENCE AND ENGINEERING

by

Vinayaka Prakasha Bandishti

Computer Science and Automation

Indian Institute of Science

BANGALORE – 560 012

DECEMBER 2013

i

c⃝Vinayaka Prakasha Bandishti

DECEMBER 2013
All rights reserved

TO

My Parents

Acknowledgements

First of all, I would like to convey my deepest gratitude to my advisor Dr. Uday Bondhugula for

his guidance and persistent help without which this dissertation would not have been possible.

I have learnt a great deal from him. Discussions with him have led to the key ideas in this

thesis.

I would like to take this opportunity to thank all my friends and labmates especially, Irshad

Pananilath for the immense help towards the implementation of this work.

I would like to thank Mrs. Lalitha, Mrs. Suguna and Mrs. Meenakshi for taking care

of the administrative tasks smoothly. I would also like to thank all the non-technical staff of

the department for making my stay in the department comfortable. I am greatly indebted to

IISc, Bangalore and Department of Computer Science and Automation for all the facilities it

provides to students.

I would like to thank IBM for funding my travel to the SC’12 conference.

Finally, I want to thank Ministry of Human Resource Development, Department of Educa-

tion, for granting scholarship to support me during this course.

i

Publications based on this Thesis

1. V. Bandishti, I. Pananilath, and U. Bondhugula. Tiling Stencil Computations to Max-

imize Parallelism, ACM/IEEE International Conference for High Performance Com-

puting, Networking, Storage and Analysis (Supercomputing’12), Salt Lake City, Utah,

pages 40:1 - 40:11, November 2012.

2. U. Bondhugula, V. Bandishti, G. Portron, A. Cohen, and N. Vasilache. Optimizing Time-

iterated Computations with Periodic Boundary Conditions, under review at ACM SIG-

PLAN International Conference on Programming Language Design and Implementation

(PLDI’14), Edinburgh, UK, June 2014.

ii

Abstract

Stencil computations are iterative kernels often used to simulate the change in a discretized

spatial domain over time (e.g., computational fluid dynamics) or to solve for unknowns in a

discretized space by converging to a steady state (i.e., partial differential equations). They are

commonly found in many scientific and engineering applications. Most stencil computations

allow tile-wise concurrent start, i.e., there always exists a face of the iteration space and a set of

tiling hyperplanes such that all tiles along that face can be started concurrently. This provides

load balance and maximizes parallelism.

Loop tiling is a key transformation used to exploit both data locality and parallelism from

stencils simultaneously. Numerous works exist that target improving locality, controlling fre-

quency of synchronization, and volume of communication wherever applicable. But, con-

current start-up of tiles that evidently translates into perfect load balance and often reduction

in frequency of synchronization is completely ignored. Existing automatic tiling frameworks

often choose hyperplanes that lead to pipelined start-up and load imbalance. We address this is-

sue with a new tiling technique that ensures concurrent start-up as well as perfect load balance

whenever possible. We first provide necessary and sufficient conditions on tiling hyperplanes

to enable concurrent start for programs with affine data accesses. We then discuss an iterative

approach to find such hyperplanes.

It is not possible to directly apply automatic tiling techniques to periodic stencils because

of the wrap-around dependences in them. To overcome this, we use iteration space folding

techniques as a pre-processing stage after which our technique can be applied without any

further change.

iii

iv

We have implemented our techniques on top of Pluto - a source-level automatic parallelizer.

Experimental evaluation on a 12-core Intel Westmere shows that our code is able to outperform

a tuned domain-specific stencil code generator by 4% to 2×, and previous compiler techniques

by a factor of 1.5× to 15×. For the swim benchmark from SPECFP2000, we achieve an

improvement of 5.12× on a 12-core Intel Westmere and 2.5× on a 16-core AMD Magny-

Cours machines, over the auto-parallelizer of Intel C Compiler.

Contents

Acknowledgements i

Publications based on this Thesis ii

Abstract iii

1 Introduction 1

2 Background and notation 6
2.1 Conical and strict conical combination . 6
2.2 Characterizing a stencil program . 7
2.3 Polyhedral model . 8
2.4 Dependences and tiling hyperplanes . 9

3 Motivation 13
3.1 Pipelined start-up vs. Concurrent start-up 13
3.2 Rectangular tiling and inter-tile dependences 14

4 Conditions for concurrent start-up 18
4.1 Constraints for concurrent start-up . 18
4.2 Lower dimensional concurrent start-up . 21
4.3 The case of multiple statements . 21

5 Approach for finding hyperplanes iteratively 23
5.1 Iterative scheme . 23
5.2 Examples . 27

5.2.1 Example-2d-heat . 27
5.2.2 Example-1d-heat . 29
5.2.3 Example-3d-heat . 29

6 Handling periodic stencils 31
6.1 Smashing . 32
6.2 Smashing in action: Ring . 33
6.3 Iteration space smashing . 34

v

CONTENTS vi

7 Implementation 37
7.1 Implementation on top of Pluto . 37
7.2 Code versioning to help vectorization . 38

8 Experimental evaluation 40
8.1 Benchmarks . 40
8.2 Hardware setup . 42
8.3 Significance of concurrent start . 42
8.4 Results for non-periodic stencils . 44
8.5 Results for periodic stencils . 49

9 Related work 53

10 Conclusion 57

Bibliography 58

List of Tables

8.1 Problem sizes for the benchmarks in the format ⟨spacesize⟩dimension x ⟨timesize⟩ 41
8.2 Details of architectures used for experiments 42
8.3 Details of hardware counters for cache behavior in experiments for heat-2d on

a single core of Intel machine . 44
8.4 Summary of performance - non-periodic stencils 48
8.5 Details of cache behavior in experiments for swim on 12 cores of Intel machine 51
8.6 Summary of performance -periodic stencils 52

vii

Chapter 1

Introduction

Onset of the last decade saw the advent of multicore processors. Earlier, improving the hard-

ware was the de facto path to improvement in program performance. Multi-level caches grow-

ing in size, aggressive instruction issues and deeper pipelines tried to exploit more ‘instruction

level parallelism’ (ILP). Along with these techniques, a steady increase in the processor clock

speed was the trend for performance improvement. The techniques required no extra effort on

the part of compiler/language designers and programmers to achieve the desired performance

gains. This transparency made them very popular. But, this trend hit a dead end because of

three factors or walls[24]

• ‘Power wall’- Increased processor clock speeds resulted in high power dissipation and

reached a saturation point.

• ‘ILP wall’- Deeper pipelines were accompanied by higher pipeline-penalties and they

could never identify coarser-grained parallelisms like thread-level parallelism and data-

level parallelism which are visible only at a much higher level of program abstraction.

• ‘Memory wall’- The gap between processor speeds and memory speeds reached a point

where the memory bandwidth was a serious bottleneck in performance and further in-

creasing the processor speed was little meaningful.

These paved the way for a radical change in microprocessor architecture - a shift from single

core CPUs to multi-core CPUs. This trend of using many small processing units in parallel,

1

Chapter 1. Introduction 2

instead of trying to improve a single processing unit is expected to prevail for many years to

come.

With the emergence of multicore as the default processor design, the task of performance

improvement now demanded efforts from higher layers of the ‘systems’ - programmers and

compiler designers. The multicores now require programs that have explicitly marked parallel

parts. Writing a race-free deterministic parallel program is very challenging, often prone to

errors [11]. Debugging is also a nightmare as errors in an incorrect parallel program are often

very difficult to reproduce. Automatic parallelization, is therefore, a very popular choice.

It requires no effort on part of the programmer. This process of automatically converting a

sequential program to into a program with explicitly marked parallel parts has been the subject

of many works[9, 20, 5].

Polyhedral model forms the backbone of such automatic parallelization for regular pro-

grams. It can succinctly represent regular programs and reason about the correctness and

goodness of complex loop transformations. Current techniques give a lot of importance to

achieving maximum locality gains. While doing so they identify the parts of the program that

can be executed in parallel.

Many workloads have enough parallelism to keep all cores busy throughout the execution.

Ideally any automatic parallelizer must try to exploit this property and engage every core in

useful work throughout the execution of the program whenever possible. But currently, no

special attention is given in this regard to make sure that no core sits idle waiting for work.

This work aims to fill these holes and provides techniques to maximize parallelism using which

an optimizer can produce codes that enable concurrent start-up of all cores. This results in a

steady state throughout the execution where all the cores are busy doing the same amount of

maximal work.

Stencil computations constitute a major part of the workloads that allow concurrent start-

up. Stencils are a very common class of programs appearing in many scientific and engi-

neering applications that are computationally intensive. They are characterized by regular

computational structure and hence allow automatic compile-time analysis and transformation

for exploiting data-locality and parallelism.

Chapter 1. Introduction 3

Stencil computations are characterized by update of a grid point using neighboring points.

Figure 1.1 shows a stencil over a one-dimensional data space used to model the temperature

variations of a wire by representing the discretized points on the wire as a 1-d array. They

exhibit a number of properties that lend themselves to locality optimization and parallelization.

for (t = 1; t <= T; t++) {

for (i = 1; i < N+1; i++) {

S1: B[i] = 0.125 * (A[i+1] - 2.0 * A[i] + A[i-1]);

}

for (i = 1; i < N+1; i++) {

S2: A[i] = B[i];

}

}

Figure 1.1: Stencil: 1d-heat equation.

‘Tiling’ [1, 45, 48] is a key transformation used to exploit data locality and parallelism from

stencil computations. Tiling or loop tiling is the technique of breaking the entire computation

into smaller chunks called ‘tiles’ and executing the tiles atomically. Tiling is valid only when

• Every tile can be executed atomically.

• After computation is broken into tiles, a total order for executing all the tiles exists.

Loop tiling is often characterized by tile shape and tile size. Tile shape is obtained from

the directions chosen to slice iteration spaces of statements – these directions are represented

by tiling hyperplanes [25, 2, 37, 6]. More formal definitions are provided in the next chapter.

Finding the right shape and size for tiling are the subject of numerous works with goals of

improving locality, controlling frequency of synchronization, and volume of communication

where applicable. Performing parallelization and locality optimization together on stencils can

often lead to pipelined start-up, i.e., not all processors are busy during parallelized execution.

This is the case with a number of general compiler techniques from the literature [30, 19,

6]. With increasing number of cores per chip, it is very beneficial to maintain load balance

by concurrently starting the execution of tiles along an iteration space boundary whenever

Chapter 1. Introduction 4

possible. Concurrent start-up for stencil computations not only eliminates pipeline fill-up and

drain delay, but also ensures perfect load balance. Processors end up executing the same

maximal amount of work in parallel between two synchronization points.

Some works have looked at eliminating pipelined start-up [46, 29] by tweaking or modi-

fying already obtained tile shapes from existing frameworks. However, these approaches have

undesired side-effects including difficulty in performing code generation. No implementations

of these have been reported to date. The approach we propose in this dissertation works by

actually searching for tiling hyperplanes that have the desired property of concurrent start, in-

stead of fixing or tweaking hyperplanes found with undesired properties. To the best of our

knowledge, prior to this work, it was not clear if and under what conditions such hyperplanes

exist, and how they can be found. In addition, their performance on aspects other than con-

current start in comparison with existing compiler techniques has to be studied, though the

work of Strzodka et al. [42] does study this but in a more specific context than we intend to

here. A comparison of compiler-based and domain-specific stencil optimization efforts has

also not been performed in the past. We address all of these in this dissertation. In summary,

our contributions are as follows:

• We provide necessary and sufficient conditions for hyperplanes to allow concurrent start-

up.

• We provide a sound and complete technique to find such hyperplanes.

• We show how the technique can be extended to periodic stencils.

• Our experimental evaluation shows an improvement of 4% to 2× over a domain-specific

compiler Pochoir [43] and factor of 1.5× to 15× improvement over previous compiler

techniques on a set of benchmarks on a 12-core Intel Westmere machine.

• For swim benchmark (SPECFP 2000), we achieve an improvement of 5.12× on a 12-

core Intel Westmere and 2.5× on a 16-core AMD Magny-Cours over the auto-parallelizer

of Intel C Compiler.

Chapter 1. Introduction 5

• We have implemented and integrated our approach into Pluto to work automatically

(available at http://pluto-compiler.sourceforge.net).

The rest of the dissertation is organized as follows. Chapter 2 provides the required back-

ground and introduces the notations used. Chapter 3 provides the necessary motivation for

our contributions. Chapter 4 characterizes the conditions for concurrent start-up. Chapter 5

describes our approach to find solutions with the desired properties. How we address the ad-

ditional concerns posed by periodic stencils is explained in Chapter 6. Chapter 7 discusses

the implementation of our algorithm. Experimental evaluation and results are given in Chap-

ter 8. Chapter 9 discusses the previous works related to our contributions and conclusions are

presented in Chapter 10.

http://pluto-compiler.sourceforge.net

Chapter 2

Background and notation

In this chapter, we provide an overview of the polyhedral model and current state-of-the-art

automatic tiling techniques. A few fundamental concepts of linear algebra related to cones

and hyperplanes on which our contributions are built upon, are also included in this chapter.

Detailed background on these topics can be found in [1, 4, 25, 2, 6].

All row vectors are typeset in bold lowercase, while column vectors are typeset with an

arrow overhead. All square matrices are typeset in uppercase and Z represents the set of

integers. In any 2d-space discussed as example, vertical dimension is the first dimension and

horizontal dimension is the second.

2.1 Conical and strict conical combination

Given a finite set of vectors x⃗1, x⃗2, . . . , x⃗n, a conical combination or conical sum of these is a

vector of the form

λ1x⃗1 + λ2x⃗2 + · · ·+ λnx⃗n (2.1)

∀λi, λi ≥ 0.

For example, in Figure 2.1, the region between the dashed rays contains all the conical

combinations of vectors (1,−1) and (1, 1). Such a region for any set of vectors forms a cone

6

Chapter 2. Background and notation 7

....

(1, 1)

.

(1,−1)

Figure 2.1: For vectors (1,−1) and (1, 1), the unbounded area shaded in green contains all

their conical combinations. Note that this region is unbounded on top.

(area shaded green in Figure 2.1), hence the name ‘conical combination’.

If λi > 0 i.e., if all λs are strictly positive, we call expression (2.1) a strict conical combi-

nation of x⃗1, x⃗2, . . . , x⃗n. In Figure 2.1, it would be the set of all vectors in the green shaded

region except those lying on the dashed rays.

2.2 Characterizing a stencil program

Stencil computations are a class of iterative kernels that are most commonly found in many sci-

entific (e.g., computational fluid dynamics) and engineering (e.g., partial differential equation

solvers) applications. Put in simple terms, stencil computations update elements of a given

array for a fixed number of ‘time-steps’. At each time-step, an array element or value at a

‘grid-point’ is calculated using the values of its neighbors at previous time-steps and therefore,

the loop nests always have a ‘time-step’ loop as the outermost loop. Entire space-time grid of

d + 1 dimensions uses an array of d dimensions, outermost index representing different time

steps.

for (t=1; t<T; t++)

for (i=2; i<N-2; i++)

A[t][i] = (A[t-1][i-2]+A[t-1][i]+A[t-1][i+2])/ 3.0;

Figure 2.2: Example stencil program

Chapter 2. Background and notation 8

Figure 2.2 shows a stencil over a one-dimensional data space used to model, for example,

a 1d-heat equation. Even though stencils have no outer parallelism, there still exists significant

opportunity to exploit parallelism. For instance, in our example code in Figure 2.2, the inner

loop i is parallel, i.e., all the i iterations for a particular time-step t can be executed in parallel.

It is this inherent property of a stencil that we try to exploit. Example in Figure 2.2 serves as

the running example for the rest of the chapter.

2.3 Polyhedral model

The polyhedral model abstracts a dynamic instance or iteration of each statement into an in-

teger point in a space called the statement’s iteration domain. For a regular program with

loop nests in which the data access functions and loop bounds are affine combinations (linear

combination with a constant) of the enclosing loop variables and parameters, the set of such

integer points forms a well-defined polyhedron. This polyhedron which can be represented as

a set of linear equalities and inequalities in terms of loop iterators and program parameters, is

called the statement’s iteration space. Similarly, the exact dependences between the iterations

of statements can also be captured. Using the information of iteration space and dependences,

the polyhedral model reasons about when a sequence of loop transformations is legal. Using

some heuristics, it can also explain when a loop transformation is good. Linear Algebra and

Integer Linear Programming form the heart of machinery of the polyhedral model.

As described in [10],

‘the task of program optimization (often for parallelism and locality) in the polyhedral model

may be viewed in terms of three phases:

• Static dependence analysis of the input program

• Transformations in the polyhedral abstraction

• Generation of code for the transformed program’

This work fits well into the central phase. The formal definitions, explanations and exam-

ples for the jargon of the polyhedral model can be found in the next section.

Chapter 2. Background and notation 9

2.4 Dependences and tiling hyperplanes

Let S1, S2, . . . , Sn be the statements of a program, and let S = {S1, S2, . . . , Sn}. The iteration

space of a statement can be represented as a polyhedron (Figure 2.4). The dimensions of the

polyhedron correspond to surrounding loop iterators as well as program parameters.

Definition: Affine loop nests are sequences of imperfectly nested loops with loop bounds and

array accesses that are affine functions of outer loop variables and program parameters.

Definition: Program parameters are symbols that do not vary in the portion of the code we

are representing; they are typically the problem sizes. In our example N and T are program

parameters.

Definition: Each integer point in the polyhedron, also called an iteration vector, contains

values for induction variables of loops surrounding the statement from outermost to innermost.

(t, i) is iteration vector for the statement in our example in Figure 2.2.

Definition: The data dependence graph, DDG = (S, E) is a directed multi-graph with each

vertex representing a statement in the program and edge e from Si to Sj representing a poly-

hedral dependence from a dynamic instance of Si to one of Sj . Figure 2.3 shows the DDG for

our example program in Figure 2.2.

Figure 2.3: DDG for example in Figure 2.2. The three edges in different colors correspond to

dependences between three read accesses on RHS and one write access on LHS.

Chapter 2. Background and notation 10

.. i.
2

.
N-3

.

t

.

T-1

.

1

Figure 2.4: Iteration space and dependences for the example in Figure 2.2. Black dots are the

dynamic instances of the statement. Colored arrows are the dependences between the iterations

corresponding to the three edges in DDG (Figure 2.3).

Definition: Every edge e is characterized by a polyhedron Pe, called dependence polyhedron

which precisely captures all the dependences between the dynamic instances of Si and Sj .

As mentioned earlier, the ability to capture the exact conditions on when a dependence exists

through linear equalities and inequalities rests on the fact that there exists an affine relation

between the iterations and the accessed data for regular programs. Conjunction of all these

inequalities and equalities itself forms the dependence polyhedron.

One can obtain a less powerful representation such as a constant distance vector or direc-

tion vector from dependence polyhedra by analyzing the relation between source and target

iterators. For most of the examples in the dissertation,we have used constant distance vectors

for simplicity. The reader is referred to [4] for a more detailed explanation of the polyhedral

representation.

Definition: A hyperplane is an n− 1 dimensional affine subspace of an n dimensional space.

For example, any line is a hyperplane in a 2-d space, and any 2-d plane is a hyperplane in 3-d

space.

Chapter 2. Background and notation 11

A hyperplane for a statement Si is of the form:

ϕSi
(x⃗) = h· x⃗+ h0 (2.2)

where h0 is the translation or the constant shift component, and x⃗ is an iteration of Si. h itself

can be viewed as a vector oriented in a direction normal to the hyperplane.

Prior research [31, 6] provides conditions for a hyperplane to be a valid tiling hyperplane.

For ϕs1 ,ϕs2 , . . . ,ϕsk to be valid statement-wise tiling hyperplanes for S1, S2,, . . . , Sk respec-

tively, the following should hold for each edge e from Si to Sj:

ϕsj (⃗t)− ϕsi(s⃗) ≥ 0, ⟨s⃗, t⃗⟩ ∈ Pe,∀e ∈ E (2.3)

The above constraint implies that all dependences have non-negative components along each of

the hyperplanes, i.e., their projections on the these hyperplane normals are never in a direction

opposite to that of the hyperplane normals.

In addition, the tiling hyperplanes should be linearly independent of each other. Each

statement has as many linearly independent tiling hyperplanes as its loop nest dimensionality.

Among the many possible hyperplanes, the optimal solution according to a cost function

is chosen. A cost function that has worked in the past is based on minimizing dependence

distances lexicographically with hyperplanes being found from outermost to innermost [6].

If all iteration spaces are bounded, there exists an affine function v(p⃗) = u· p⃗+ w that bounds

δe(t) for every dependence edge e:

v(p⃗)− (ϕsi (⃗t)− ϕsj (s⃗)) ≥ 0, ⟨s⃗, t⃗⟩ ∈ Pe, ∀e ∈ E (2.4)

where p⃗ is a vector of program parameters. The coefficients u, w are then minimized.

Chapter 2. Background and notation 12

..

(1, 0)

.

(1, 2)

.

(1,−2)

.

(2, 1)

.

(2,−1)

Figure 2.5: d⃗1 = (1, 2), d⃗2 = (1, 0) and d⃗3 = (1,−2) are the dependences. For any hyperplane

ϕ⃗ in the cone formed by (2, 1) and (2,−1),ϕ⃗· d1 ≥ 0 ∧ ϕ⃗· d2 ≥ 0 ∧ ϕ⃗· d3 ≥ 0 holds good.

Cost function chooses (1, 0) and (2, 1) as tiling hyperplanes.

Validity constraints on the tiling hyperplanes ensure the following:

• In the transformed space, all dependences have non-negative components along all bases.

• Any rectangular tiling in the transformed space is valid.

Example: Consider the program in Figure 2.2. As all the dependences are self dependences

and also uniform, they can be represented by constant vectors. The dependences are:

(
d⃗1 d⃗2 d⃗3

)
=

 1 1 1

−2 0 2


Equation 2.3 can now be written as

ϕ·

 1 1 1

−2 0 2

 ≥
(
0 0 0

)
(2.5)

Equation 2.5 forces the chosen hyperplane to have non-negative components along all de-

pendences. Therefore, any hyperplane in the cone of (2,−1) and (2, 1) is a valid one (Fig-

ure 2.5). However, cost function (2.4) ends up choosing (1, 0) and (2, 1).

Chapter 3

Motivation

In this chapter, we contrast pipelined start-up and concurrent start-up of a loop nest. We

explain the advantages the concurrent start-up provides over pipelined and also how stencils

are inherently amenable to concurrent start-up. We then discuss how the inter-tile dependences

introduced by tiling can affect the concurrent start-up along a face.

3.1 Pipelined start-up vs. Concurrent start-up

Consider the iteration spaces in Figure 3.1 and Figure 3.2. The iterations shaded under green

are executed in first time-step, yellow under second and red under third. In pipelined start-up,

in the beginning, threads wait in a queue for iterations to be ready to be executed (pipeline

fill-up) and towards the end, threads sit idle because there is no enough work to keep all the

threads busy (pipeline drain). Unlike this, in case of concurrent start-up, all the threads are

busy from the start till end.

Hence, to achieve maximum parallelism we must try to exploit concurrent start whenever

possible.

13

Chapter 3. Motivation 14

i

t

N-2

T-1 b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

3

Figure 3.1: Pipelined start-up

i

t

N-2

T-1 b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

3

Figure 3.2: Concurrent start-up

3.2 Rectangular tiling and inter-tile dependences

As mentioned earlier, once the transformation is applied, the transformed space can be tiled

rectangularly. Figure 3.3 shows the transformed space with with t1 = t and t2 = 2t + i

corresponding to the hyperplanes found at the end of the previous chapter for the code in

Figure 2.2, serving as the new ‘bases’ or ‘axes’. All the dependences in this transformed space

now lie in the cone of these bases. By assuming that inter-tile dependences in the transformed

space are unit vectors along all the bases, we can be sure that any inter-tile dependence is

satisfied (Figure 3.3). It is important to note here that this approximation is actually accurate

for stencils i.e., it is also necessary that we consider inter-tile dependences along every base

as the dependences span the entire iteration space (there is no outer parallelism). In the rest of

the dissertation we refer to these safely approximated inter-tile dependences as simply inter-

tile dependences. Thus if C ′ is the matrix whose columns are the approximated inter-tile

dependences in the transformed space, C ′ will be a unit matrix.

Let TR be the reduced transformation matrix which has only the h components (Eqn. 2.2)

of all hyperplanes as rows. TR of any statement is thus a square matrix which can be obtained

by eliminating the columns producing translation and any other rows meant to specify loop

distribution at any level [28, 14, 6]. As the inter-tile dependences are all intra-statement and

are not affected by the translation components of tiling hyperplanes, we have:

C ′ = TR·C

Chapter 3. Motivation 15

..

t1 = t

.
t2 = 2t+ i

.

(0, 1)

.

(1, 0)

Figure 3.3: Transformed iteration space after applying (1, 0) and (2, 1) as the tiling hyper-

planes. Approximating unit inter-tile dependences along every base accounts for any actual

inter-tile dependence.

where C corresponds to approximate inter-tile dependences in original iteration space.

As mentioned earlier, C ′ can be safely considered a unit matrix. Therefore,

C = T−1
R

Example:

The tiling dependences introduced by hyperplanes (1, 0) and (2, 1) can be found as follows:

(
c⃗1 c⃗2

)
=

1 0

2 1

−1

=

 1 0

−2 1


Thus, the inter-tile dependences are (1,−2) and (0, 1). The tiling dependences introduced

in the iteration space of a statement solely depend on the hyperplanes chosen for that statement.

Also, note that every inter-tile dependence, given the way we defined it, is carried by only one

of the tiling hyperplanes and has a zero component along any other tiling hyperplane.

In the above example, concurrent start-up along the face (1, 0) is prevented by the inter-

tile dependence (0, 1). There does not exist a face along which the tiles can start in parallel

(Figure 3.4), i.e., there would be pipelined start-up and drain phases. Decreasing the tile size

would decrease the start-up and drain phase but would increase the frequency of synchroniza-

tion. Increasing the tile size would mean a shorter or sometimes, no steady-state. In summary

concurrent start-up is lost.

Chapter 3. Motivation 16

..

iteration dependence

.

inter-tile dependence

.

(0, 1)

.

(1, -2)

Figure 3.4: Pipelined start-up

..

iteration dependence

.

inter-tile dependence

.

(1, 2)

.

(1, -2)

Figure 3.5: Concurrent start-up

Chapter 3. Motivation 17

Transform should be found in such a way that it does not introduce any inter-tile depen-

dence that prohibits concurrent start-up. If we had chosen (2,−1), which is also valid, instead

of (1, 0) as tiling hyperplane, i.e., if (2,−1) and (2, 1) were chosen as the tiling hyperplanes,

then the inter-tile dependences introduced would be (1,−2) and (1, 2) (Figure 3.5). Both have

positive components along the normal (1, 0), i.e., all tiles along the normal (1, 0) could be

started concurrently.

In the next chapter, we provide conditions on hyperplanes that would avoid (1, 0) and

instead select (2,−1), for this example.

Chapter 4

Conditions for concurrent start-up

If all the iterations along a face can be started concurrently, the face is said to allow point-

wise concurrent start-up. Similarly, if all the tiles along a face can be started concurrently, the

face is said to allow tile-wise concurrent start-up. In this section, we provide conditions for

which tiling hyperplanes of any statement allow concurrent start-up along a given face of its

iteration space. A face of an iteration space is referred by its normal f. Theorem 1 introduces

the constraints in terms of inter-tile dependences. Theorem 2 and Theorem 3 map Theorem 1

from inter-tile dependences onto tiling hyperplanes. We also prove that these constraints are

both necessary and sufficient for concurrent start-up.

4.1 Constraints for concurrent start-up

Theorem 1: For a statement, a transformation enables tile-wise concurrent start-up along a

face f iff the tile schedule is in the same direction as the face and carries all inter-tile depen-

dences.

Let to be the outer tile schedule. If f is the face allowing concurrent start and C is the

matrix containing approximate inter-tile dependences of the original iteration space, then,

k1t
o = k2f, k1, k2 ∈ Z+

18

Chapter 4. Conditions for concurrent start-up 19

to·C ≥ 1⃗

Hence,

f·C ≥ 1⃗

In Figure 4.1, the face allowing the concurrent start and outer tile-schedule are the same and

carry both the tile-dependences. Therefore, the tiles t1, t2, t3, t4 can be started concurrently.

..
t1

.

t2

.

t3

.

t4

.

Outer tile schedule

Figure 4.1: Tile schedule and normal to the face should be in the same direction.

Theorem 2: Concurrent start-up along a face f can be exposed by a set of hyperplanes iff f lies

strictly inside the cone formed by the hyperplanes, i.e., iff f is a strict conic combination of all

the hyperplanes.

kf = λ1h1 + λ2h2 + · · ·+ λnhn (4.1)

λi, k ∈ Z+

Proof (sufficient): As mentioned earlier every inter-tile dependence is satisfied by only one

hyperplane and has zero component along every other hyperplane. Consider the following

expression :

λ1(h1· c⃗) + λ2(h2· c⃗) + · · ·+ λn(hn· c⃗) (4.2)

For any inter-tile dependence c⃗, as we constrain all the λs to be strictly positive, (4.2) will

Chapter 4. Conditions for concurrent start-up 20

always be positive. Thus, by choosing all h such that

kf = λ1h1 + λ2h2 + · · ·+ λnhn

we ensure f· c⃗ ≥ 1 for all inter-tile dependences. Therefore, from Theorem 1, concurrent

start is enabled. □

Proof (necessary): Let us assume that we have concurrent start along the face f, but f does not

strictly lie inside the cone formed by the hyperplanes, i.e., (4.1) does not hold good. Without

loss of generality, we can assume that k ∈ Z+, but there exist no λs which are all strictly

positive integers. We now argue that, for at least one inter-tile dependence c⃗ , the sum (4.2)

≤ 0 because every tile dependence is carried by only one of the chosen hyperplanes and there

exists at least one λ such that λ ≤ 0. Therefore, f· c⃗ will also be zero or negative, which means

concurrent start is inhibited along f. This is a contradiction. □

For the face f that allows concurrent start, let f ′ be its counterpart in the transformed space.

We now provide an alternative result for concurrent start that is equivalent to the one above.

Theorem 3: A transformation T allows concurrent start along f iff f·T−1
R ≥ 1⃗ .

Proof: From Theorem 1 we have, for the transformed space, the condition for concurrent start

becomes

f ′·C ′ ≥ 1⃗ (4.3)

We know that in the transformed space, we approximate all inter-tile dependences by unit

vectors along every base. Therefore, C ′ is a unit matrix. Since the normals are not affected by

translations, the normal f ′ after transformation T is given by f·T−1
R .

Therefore, (4.3) becomes

f·T−1
R ≥ 1⃗

Chapter 4. Conditions for concurrent start-up 21

The above can be viewed in a different manner. We know that the inter-tile dependences

introduced in the original iteration space can be approximated as

C = T−1
R

From Theorem 1 we have,

f·T−1
R ≥ 1⃗ □

4.2 Lower dimensional concurrent start-up

By making the outer tile schedule parallel to the face allowing concurrent start (as discussed

in the previous section), one can obtain n − 1 degrees of concurrent start-up, i.e., all tiles on

the face can be started concurrently. But, in practice, exploiting all of these degrees may result

in more complex code. The above conditions can be placed only on the first few hyperplanes

to obtain what we term lower dimensional concurrent start. For instance, the constraints can

be placed only on the first two hyperplanes so that one degree of concurrent start is exploited.

Such transformations may not only generate better code owing to prefetching and vectoriza-

tion, but also achieve coarser grained parallelization.

4.3 The case of multiple statements

In case of multiple statements, every strongly connected component in the dependence graph

can have only one outer tile schedule. So, all statements which have to be started concurrently

and together should have the same face that allows concurrent start. If they do not have the

same face allowing concurrent start, one of those has to be chosen for the outer tile schedule.

These are beyond the scope of this work, since in the case of stencils, the following are always

true:

• Every statement’s iteration space has the same dimensionality and same face f that allows

concurrent start.

Chapter 4. Conditions for concurrent start-up 22

• Transitive self dependences are all carried by this face.

For example, for the stencil in Figure 1.1 (an imperfect loop nest with 2 statements), hy-

perplanes found by our scheme are (2, 1) and (2,−1). However, S2 is given a constant shift of

1 with respect to both the hyperplanes to preserve validity. Therefore, transformations for the

two statements corresponding to the found hyperplanes are 2t+ i, 2t− i for S1, and 2t+ i+1,

2t− i+ 1 for S2.

Chapter 5

Approach for finding hyperplanes

iteratively

In this chapter, we present a scheme that is an extension to the Pluto algorithm [6] so that

hyperplanes that satisfy properties introduced in the previous chapter are found. Though The-

orem 2 and Theorem 3 are equivalent to each other, we use Theorem 2 in our scheme as it

provides simple linear inequalities and is easy to implement.

5.1 Iterative scheme

Along with constraints imposed to respect dependences and encode an objective function, the

following additional constraints are added while finding hyperplanes iteratively.

For a given statement, let f be the face along which we would like to start concurrently,

H be the set of hyperplanes already found, and n be the dimensionality of the iteration space

(same as the number of hyperplanes to find). Then, we add the following additional constraints:

1. For the first n− 1 hyperplanes, h is linearly independent of f ∪H , as opposed to just H .

2. For the last hyperplane hn, hn is strictly inside the cone formed by f and the negatives

of the already found n− 1 hyperplanes, i.e.,

23

Chapter 5. Approach for finding hyperplanes iteratively 24

λnhn = kf + λ1(−h1) + λ2(−h2) + · · ·+ λn−1(−hn−1), (5.1)

λi, k ∈ Z+

In Algorithm 1, we show only our additions to the iterative algorithm proposed in [6].

Algorithm 1 Finding tiling hyperplanes that allow concurrent start
1: Initialize H = ∅

2: for n− 1 times do

3: Build constraints to preserve dependences.

4: Add constraints such that the hyperplane to be found is linearly independent of f ∪H

5: Add cost function constraints and minimize cost function for the optimal solution.

6: H = h ∪H

7: end for

8: Add constraint (5.1) for the last hyperplane so that it strictly lies inside the cone of the face and nega-

tives of the n− 1 hyperplanes already found (H)

If it is not possible to find hyperplanes with these additional constraints, we report that tile-

wise concurrent start is not possible. If there exists a set of hyperplanes that exposes tile-wise

concurrent start, we now prove that the above algorithm will find it.

Proof: (soundness)

When the algorithm returns a set of hyperplanes, we can be sure that all of them are indepen-

dent of each other and that they also satisfy Equation (5.1) which is obtained by just rearrang-

ing the terms of Equation (4.1). Trivially, our scheme of finding the hyperplanes is sound, i.e.,

whenever our scheme gives a set of hyperplanes as output, the output is always correct. □

Proof: (completeness)

We prove by contradiction that whenever our scheme reports no solution, there does not exist

any valid set of hyperplanes. Suppose there exists a valid set of hyperplanes but our scheme

fails to find them. The scheme can fail at two points:

Chapter 5. Approach for finding hyperplanes iteratively 25

Case 1: While finding the first n− 1 hyperplanes

The only constraint the first n−1 hyperplanes have is of being linearly independent of one

another, and of the face that allows concurrent start. If there exist n linearly independent valid

tiling hyperplanes for this computation, since the face with concurrent start f is one feasible

choice, there exist n − 1 tiling hyperplanes linearly independent of f . Hence, our algorithm

does not fail at this step if the original Pluto algorithm [6] is able to find n linearly independent

ones.

Case 2: While finding the the last hyperplane

Let us assume that our scheme fails while trying to find the last hyperplane hn. This implies

that for any hyperplane strictly inside the cone formed by the face allowing concurrent start

and the negatives of the already found hyperplanes, there exists a dependence which makes the

tiling hyperplane an invalid one, i.e., there exists a dependence distance d such that

hn· d⃗ ≤ −1

From Equation (5.1), we have

λnhn· d⃗ = k(f · d⃗) + λ1(−h1· d⃗) + λ2(−h2· d⃗) + . . .

+λn−1(−hn−1· d⃗) (5.2)

Consider RHS of Equation (5.2). As all hyperplanes are valid, (hi· d⃗) ≥ 0 and λis are

all positive, all terms except for the first one are negative. For any stencil, the face allowing

concurrent start always carries all dependences.

f · d⃗ ≥ 1,∀d⃗

If dependences are all constant distance vectors, all λi(−h· d⃗) terms are independent of pro-

gram parameters. So, we could always choose k large enough and λis small so that hn· d⃗ ≥ 1

for any dependence d⃗.

Chapter 5. Approach for finding hyperplanes iteratively 26

In the general case of affine dependences, our algorithm can fail to find hn in only two

cases. The first is when it is not statically possible to choose λis. This can happen when both

of the following conditions are true:

• Some dependences are non-uniform.

• Components of these non-uniform dependences are parametric in the orthogonal sub-

space of the face allowing concurrent start, but constant along the face itself.

In this case, only point-wise concurrent start is possible, but tile-wise concurrent start is not

possible (Figure 5.1). In order for our algorithm to succeed, one of the λs would have to

depend on a program parameter (typically the problem size) and this is not admissible.

The second case is the expected one that does not even allow point-wise concurrent start.

Here, f does not carry all dependences (Figure 5.2). □

j

i

N

N b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

3

Figure 5.1: No tile-wise concurrent start

possible

j

i

N

N b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

3

Figure 5.2: Even point-wise concurrent

start is not possible

Chapter 5. Approach for finding hyperplanes iteratively 27

5.2 Examples

We provide examples showing hyperplanes found by our scheme for 1d, 2d and 3d heat sten-

cils. For simplicity, we show the memory-inefficient version with the time iterator as one of

the data dimensions.

5.2.1 Example-2d-heat

for (t = 0; t < T; t++)

for (i = 1; i < N-1; i++)

for (j = 1; j < N-1; j++)

A[t+1][i][j]

= 0.125 *(A[t][i+1][j] -2.0*A[t][i][j] +A[t][i-1][j])

+ 0.125 *(A[t][i][j+1] -2.0*A[t][i][j] +A[t][i][j-1])

+ A[t][i][j];

Figure 5.3: 2d-heat stencil (representative version).

Figure 5.3 shows the 2d-heat stencil. The code in 5.3 has its face allowing concurrent

f =
(
1 0 0

)
. For this code, the transformation computed by Algorithm 1 for full concurrent

start is:

H =


1 1 0

1 0 1

1 −1 −1

 (5.3)

i.e., the transformation for (t, i, j) will be (t + i, t + j, t − i − j). The inter-tile dependences

induced by the above transform can be found as the columns of the inverse of H (normalized

in case of fractional components) :

norm



1 1 0

1 0 1

1 −1 −1


−1 =


1 1 1

2 −1 −1

−1 2 −1



Chapter 5. Approach for finding hyperplanes iteratively 28

Here, we can verify that Theorem 1 holds good.

[
1 0 0

]
·


1 1 1

2 −1 −1

−1 2 −1

 =


1

1

1


Figure 5.4 shows the shape of a tile formed by the above transformation.

Figure 5.4: Tile shape for 2d-heat stencil obtained by our algorithm. The arrows represent

hyperplanes.

For lower dimensional concurrent start, the transformation computed by Algorithm 1 is:
1 1 0

1 −1 0

1 0 1


i.e., the transformation for (t, i, j) will be (t + i, t − i, t + j). This enables concurrent start

in only one dimension. The tile schedule is created out of the two outermost loops and only

second loop is parallel, i.e., not all the tiles along the face allowing concurrent start, but all

tiles along one edge of the face can be started concurrently.

Chapter 5. Approach for finding hyperplanes iteratively 29

5.2.2 Example-1d-heat

for (t = 0; t < T; t++)

for (i = 1; i < N-1; i++)

A[t+1][i] = 0.125 *(A[t][i+1] -2.0*A[t][i] +A[t][i-1]) ;

Figure 5.5: 1d-heat stencil (representative version).

Similarly, for the stencil 1d-heat given in Figure 5.5, the transformation found for concur-

rent start is

H =

1 1

1 −1

 (5.4)

i.e., the transformation for (t, i) will be (t+ i, t− i).

5.2.3 Example-3d-heat

Figure 5.6 shows the representative version of the 3d-heat stencil.

for (t = 0; t < T; t++)

for (i = 1; i < N-1; i++)

for (j = 1; j < N-1; j++)

for (k = 1; k < N-1; j++)

A[t+1][i][j][k]

= 0.125 *(A[t][i+1][j][k] -2.0*A[t][i][j][k] +A[t][i-1][j][k])

+ 0.125 *(A[t][i][j+1][k] -2.0*A[t][i][j][k] +A[t][i][j-1][k])

+ 0.125 *(A[t][i][j][k+1] -2.0*A[t][i][j][k] +A[t][i][j][k-1])

+ A[t][i][j][k];

Figure 5.6: 3d-heat stencil (representative version).

Chapter 5. Approach for finding hyperplanes iteratively 30

The transformation found for 3d-heat stencil for full concurrent start is

H =


1 1 0 0

1 0 1 0

1 0 0 1

1 −1 −1 −1

 (5.5)

i.e., the transformation for (t, i, j, k) will be (t+ i, t+ j, t+ k, t− i− j − k).

For lower dimensional concurrent start, the transformation computed by Algorithm 1 for 3d-

heat stencil is: 
1 1 0 0

1 −1 0 0

1 0 1 0

1 0 0 1


i.e., the transformation for (t, i, j, k) will be (t+ i, t− i, t+ j, t+ k).

Chapter 6

Handling periodic stencils

In the same way as the example in Figure 2.2 simulates the heat changes of a wire, its periodic

version simulates the heat changes on a ring. Periodic stencils are mainly used for modeling

hollow objects or shells.

Typically, to discretize the points on the hollow object onto an array, the object can be

thought be cut and unrolled, resulting in a space of one less dimension. For example, to model

the points on ring, it can be thought to be cut at one point and unrolled to form a wire. Now,

we can easily map the points of the wire onto a 1-d array. Similarly, a cylinder or torus can

be cut open into a plane and then mapped onto a 2-d array. Figure 6.1 shows the C code of

heat-1d-periodic version.

for (t = 1; t <= N; t++) {

for (i = 0; i < N; i++) {

S: A[t][i]

= 0.125 * (A[t-1][(i==N-1)? (0) : (i+1)] +

A[t-1][i] +

A[t-1][(i==0)?(N-1):(i-1)]);

}

}

Figure 6.1: Stencil: periodic 1d heat equation

31

Chapter 6. Handling periodic stencils 32

N

N b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

0 1 2 3

1

2

3

Figure 6.2: Periodic Stencil

Figure 6.2 shows the iteration space and dependences for the code in Figure 6.1. It is very

important to note that the boundary elements of the array used for simulation at the two oppo-

site ends are actually neighbors. Therefore, dependences go from all points on one boundary to

those on the other boundary (end-to-end) in subsequent time-steps. These long dependences,

often called, wrap-around dependences make any time tiling technique inapplicable directly.

Tiling within the spatial domain is still possible, but tiling across time (i.e., time skewing) is

not legal since no constant skewing can satisfy all the wrap-around dependences as they are

almost opposite to each other in direction.

The main hindrance here is that the entire iteration space of the stencil is applied the same

transformation. We overcome this by a special case of the index set splitting, which is highly

inspired by a data-space modification technique called ‘smashing’.

6.1 Smashing

Osheim et al. [32] describe a new storage mapping method for periodic domains to model

hollow objects without creating wrap-around dependences. Unlike the previous ways, where

one would try to tweak the periodic stencil to resemble its non-periodic counterpart, smashing

allows the periodic domain imitate the hollow object it represents. Instead of cutting open

the periodic domain and unrolling it, the new technique smashes or flattens it to remove the

extra dimension. For example, a ring can be smashed into two wires of same length that are

joined at their ends. Smashing can also be done by unrolling as as before and then folding

the unrolled data space at/near its midpoint. Smashing creates data-space with multiple layers,

Chapter 6. Handling periodic stencils 33

but eliminates wrap-around dependences. In the ring example, smashing the single data-space

results in two layers. These layers can be stored as two different arrays or as a single two

dimensional array where one of the dimensions has a size of two.

6.2 Smashing in action: Ring

For the example code in Figure 6.1, let us define the neighbor functions Right and Left which

give right and left neighbors of a point in space dimension, respectively.

Right(i) =

(0), if i = N − 1.

(i+ 1), if i < N − 1.

Left(i) =

(N − 1), if i = 0.

(i− 1), if i > 0.

It is clear from the above functions that, at boundaries, neighbors are at a distance that is

problem-size dependent. Smashing makes sure that all the neighbors are at a constant distance

throughout, thus resulting in constant dependences.

Now, Smash(i) is the mapping after smashing for a point i in space dimension onto a 2-d

array of size N/2× 2.

Smash(i) =

(i, 0), if i < N/2.

(N − 1− i, 1), if i >= N/2.

After smashing, the new neighbor functions are SRight and SLeft. These new neighbor

functions eliminate the wrap-around dependences and therefore time tiling the stencil can now

be done just as in the case of a non-periodic stencil.

Chapter 6. Handling periodic stencils 34

SRight(i, k) =



(i, k + 1), if i = N/2− 1, k = 0.

(i+ 1, k), if i < N/2− 1, k = 0.

(i, k − 1), if i = 0, k = 1.

(i− 1, k), if i > 0, k = 1.

SLeft(i, k) =



(i, k + 1), if i = 0, k = 0.

(i− 1, k), if i > 0, k = 0.

(i, k − 1), if i = N/2− 1, k = 1.

(i+ 1, k), if i < N/2− 1, k = 1.

6.3 Iteration space smashing

In iteration space smashing, we apply a similar technique described by smashing, but on the

iteration space, keeping the data space of the stencil absolutely unaltered. For example, in

case of a ring, we still use the same 1-d array. But the iteration space is cut into two parts

near/at the middle of the space dimension. This cut is parallel to the time axis. This sim-

ple application of index set splitting allows the two pieces of iteration space to have different

transformations which is more general than the previous case where the entire iteration space

would have a single transformation. Once smashed, the wrap around dependences become

inter-statement dependences and the heuristic of Pluto algorithm which tries to shorten the de-

pendence distances automatically makes sure that all dependences are short in the transformed

space. Figure 6.3 shows the version of periodic stencil code in Figure 6.1 after applying iter-

ation space smashing and shortening of the dependences by Pluto. For our experiments, we

have split the iteration space manually. But, formal automatic iteration space smashing tech-

niques which are a special case of index set splitting approaches for periodic stencils can be

explored in future.

The Figures 6.4 and 6.5 show how iteration space smashing works. In Figure 6.4, every

node represents an iteration point (t, i) and is labeled its i value. t values of all the points

Chapter 6. Handling periodic stencils 35

for (t = 1; t <= N; t++) {

for (j = 0; j < N/2 ; j++) {

S1: A[t][j]

= 0.125 * (A[t-1][j+1] +

A[t-1][j] +

A[t-1][(j==0)?(N-1):(j-1)]);

S2: A[t][N-1-j]

= 0.125 * (A[t-1][(j==0)? (0) : (N-i)] +

A[t-1][N-1-j] +

A[t-1][N-2-j]);

}

}

Figure 6.3: Smashed stencil: periodic 1d heat equation

remain unchanged after smashing and for simplicity, we have chosen omit them in the figure.

In Figure 6.5, there are two layers of iteration space but no wrap-around dependences. Every

node represents two iteration points whose i values are separated by ‘|’.

Chapter 6. Handling periodic stencils 36

..

1

.

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

.

3

.

4

.

4

.

4

.

4

.

4

.

5

.

5

.

5

.

5

.

5

.

6

.

6

.

6

.

6

.

6

.

7

.

7

.

7

.

7

.

7

.

8

.

8

.

8

.

8

.

8

. N.

T

Figure 6.4: Before iteration space smashing

..

1|8

.

1|8

.

1|8

.

1|8

.

1|8

.

2|7

.

2|7

.

2|7

.

2|7

.

2|7

.

3|6

.

3|6

.

3|6

.

3|6

.

3|6

.

4|5

.

4|5

.

4|5

.

4|5

.

4|5

. N.

T

Figure 6.5: After iteration space smashing

Chapter 7

Implementation

In this section, we discuss the implementation of our scheme and the tools used for it. We also

provide insights about the code versioning we perform on generated codes to help vectoriza-

tion.

7.1 Implementation on top of Pluto

We have implemented our approach on top of the publicly available source-to-source polyhe-

dral tool chain: Pluto [35]. It uses the Cloog [13] library for code generation, and PIP [34]

to solve for coefficients of hyperplanes. Pluto uses Clan [4] to extract the polyhedral abstrac-

tion from source code. But, for our experiments Clan could not be used as our stencil source

codes involve modulo operations which cannot be parsed by Clan. So, we have integrated

PET library [33] into Pluto to take care of such modulo operations. We have also incorporated

lower dimensional concurrent start in our implementation. PrimeTile [21] is used to perform

unroll-jam on Pluto generated code for some benchmarks.

Figure 7.1 depicts our implementation on top Pluto. PET takes a C program as input and

generates the polyhedral representation of it in terms of isl structures [26]. In our implemen-

tation inside Pluto algorithm, we first convert the isl structures into Pluto’s internal represen-

tation. We find the dependence polyhedra using the polyhedral representation. We then find

hyperplanes using the algorithm described in Algorithm 1. After finding the transformations,

37

Chapter 7. Implementation 38

the abstraction of transformed program is given to Cloog for code generation.

Figure 7.1: Block diagram showing the implementation of our scheme on top of Pluto as a

source-to-source transformation system.

7.2 Code versioning to help vectorization

As mentioned earlier, stencil computations have the inherent property that the values computed

in one time-step are used in successive time-steps. Stencil updates in all benchmarks we have

considered use values only from the immediately previous time-step for the calculation of

current values. We thus use two arrays which interchange their roles during each time-step

with data being read from one and the calculated values being written to the other. To achieve

this, modulo 2 operation on time dimension iterator can be used as the outermost index of the

data array. Figure 7.2 shows an example code that uses modulo 2 operation to achieve the role

interchange of arrays.

The introduction of modulo limits many loop and unroll compiler optimizations and also, to

a certain degree, reduces the aggressiveness of auto-vectorization performed by the compiler.

We use code cloning to define two cases based on the value of time dimension iterator modulo

2 on the generated code to mitigate the above issue.

Chapter 7. Implementation 39

double A[2][N];

for (t = 0; t < T; t++) {

for (i = 1; i < N-1; i++) {

A[(t+1)%2][i] = 0.125 *(A[t%2][i+1]-2.0*A[t%2][i] +A[t%2][i-1]) ;

}

}

Figure 7.2: 1d-heat stencil with modulo indexing

Figure7.3 shows the versioned code equivalent to the code in Figure 7.2.

double A[2][N];

for (t = 0; t < T; t++) {

if(t%2==0)

for (i = 1; i < N-1; i++)

A[1][i] = 0.125 *(A[0][i+1]-2.0*A[0][i] +A[0][i-1]);

else

for (i = 1; i < N-1; i++)

A[0][i] = 0.125 *(A[1][i+1]-2.0*A[1][i] +A[1][i-1]);

}

Figure 7.3: 1d-heat stencil without modulo indexing

Chapter 8

Experimental evaluation

We compare the performance of our system with Pluto serving as the state-of-the-art from the

compiler works, and the Pochoir stencil compiler [43] representing the state-of-the-art among

domain-specific works. Throughout the section, the legend pipeline represents code gener-

ated by Pluto without our enhancement, diamond represents codes generated by our lower

dimensional concurrent start approach built on top of Pluto, exploiting concurrent start in one

dimension, pochoir for codes generated by Pochoir and icc-par for original code compiled

with icc using “-parallel” flag.

Emphasis of these experiments is on

• ascertaining how important concurrent start-up really is.

• verifying if concurrent start-up actually translates into better load balance and scalability

of generated code.

• confirming that the new set of hyperplanes do not degrade the previous cache benefits.

8.1 Benchmarks

All benchmarks use double-precision floating-point computation. icc (version 12.1.3) is used

to compile all codes with options “-O3 -fp-model precise”; hence, only value-safe optimiza-

tions are performed. The optimal tile sizes and unroll factors are determined empirically with a

40

Chapter 8. Experimental evaluation 41

limited amount of search. The problem sizes for various benchmarks are shown in Table 8.1 in

⟨spacesize⟩dimension x ⟨timesize⟩ format. These are taken from the Pochoir suite. For all the

benchmarks, the respective problem sizes make sure that the data required by the benchmark

does not fit into cache and hence are meaningful.

Benchmark Problem Size

1d-heat 1600000x1000

2d-heat 160002x500

3d-heat 1503x100

game-of-life 160002x500

apop 20000x1000

3d7pt 1603x100

1d-heat-p 1600000x1000

2d-heat-p 160002x500

3d-heat-p 3003x200

Table 8.1: Problem sizes for the benchmarks in the format ⟨spacesize⟩dimension x ⟨timesize⟩

• 1d/2d/3d-heat : Heat equations are examples of symmetric stencils. We evaluate the

performance of discretized 1-d, 2-d and 3-d heat equation stencils with non-periodic

boundary conditions. 1d-heat is a 3-point stencil, while 2d-heat and 3d-heat are 5-point

and 7-point stencils respectively.

• 1d/2d/3d-heat-p: These are the periodic equivalents of the heat stencils mentioned ear-

lier.

• Game of Life: Conway’s Game of Life [18] is an 8-point stencil where the state of each

point in the next time iteration depends on its 8 neighbors. We consider a particular

version of the game called B2S23, where a point is “born” if it has exactly two live

neighbors and a point survives the current stage if it has exactly either two or three

neighbors.

Chapter 8. Experimental evaluation 42

• 3d7pt: An order-1 3D 7-point stencil [15] from the Berkeley auto-tuner framework.

• APOP: APOP [23] is a one dimensional 3-point stencil that calculates the price of the

American put stock option.

8.2 Hardware setup

We use two hardware configurations as shown in Table 8.2 in our experiments.

Intel Xeon E5645 AMD Opteron 6136

Microarchitecture Westmere-EP Magny-Cours

Clock 2.4 GHz 2.4 GHz

Cores / socket 6 8

Total cores 12 16

L1 cache / Core 32 KB 128 KB

L2 cache / Core 512 KB 512 KB

L3 cache / Socket 12 MB 12 MB

RAM 24GB DDR3 (1333 MHz) 64GB DDR3 (1333 MHz)

Compiler icc (version 12.1.3) icc (version 12.1.3)

Compiler flags -O3 -fp-model precise -O3 -fp-model precise

Linux kernel 2.6.32 2.6.35

Table 8.2: Details of architectures used for experiments

8.3 Significance of concurrent start

In this section, we demonstrate the importance of our enhancement over existing schemes

quantitatively. Though pipeline drain and start-up can be minimized by tweaking tile sizes

(besides making sure there are enough tiles in the wavefront), this could constrain tile sizes

leading to loss of locality and/or increase in frequency of synchronization. In addition, all

of this is highly problem-size dependent. It is true that for some problem sizes one can be

Chapter 8. Experimental evaluation 43

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

G
F

LO
P

s

Number of cores

diamond-64x64x64
pipeline-64x64x64
pipeline-16x64x64
pochoir

Figure 8.1: 2d-heat running on Intel machine for which the best tile-size for locality was found

to be 64x64x64

fortunate enough to find the right tile sizes such that the effect of pipeline start-up/drain is

very low, but the diamond tiling approach does not suffer from this constraint. Figure 8.1

demonstrates how, with diamond tiling, one can always choose the best tile sizes without

worrying about the problem sizes.

For 2d-heat benchmark, empirically we found that 64x64x64 is the best set of tile sizes. In

previous scheme, to make sure there are enough tiles in the wavefront and also to saturate the

pipeline early, one might be forced to choose a tile-size which is not the best , e.g., 16x64x64

which achieves lower locality benefits.

To verify our claim, we experimented with

• pipeline-parallel code with 64x64x64 as tile-sizes (pipeline-64x64x64)

• pipeline-parallel code with 16x64x64 as tile-sizes (pipeline-16x64x64)

• diamond-tiled code with 64x64x64 as tile-sizes (diamond-64x64x64)

In our experiments (Figure 8.1), we found that pipeline-16x64x64 shows good scaling but has

comparatively low single thread performance. At 12 cores, our scheme performs 66% better

than Pluto generated pipeline-64x64x64 and 34% better than pipeline-16x64x64. Also, our

scheme outperforms Pochoir by 15% and shows competent scaling.

Chapter 8. Experimental evaluation 44

tile-sizes L2 misses in billions L2 requests in billions percentage of misses

pipeline-16x64x64 3.35 22.7 14.7

pipeline-64x64x64 2.03 21.7 9.3

diamond-64x64x64 2.05 21.1 9.7

pochoir 3.04 24.0 12.6

icc-par 2.9 47.4 6.1

Table 8.3: Details of hardware counters for cache behavior in experiments for heat-2d on a

single core of Intel machine

Further, hyperplanes found by our scheme cannot be better than those found by Pluto with

respect to the cost function. Therefore, single-thread performance of code generated by our

scheme may reduce. However, by using hyperplanes found by our scheme to only demarcate

tiles and the hyperplanes that would be found by the Pluto algorithm without our enhancement

to scan points inside a tile, we obtain desired benefits for intra-tile execution. To support this

claim and also to verify the results of the above experiment, we have collected the hardware

counters L2 cache misses and requests. Table 8.3 shows L2 cache behavior for 2d-heat running

on a single core of our Intel machine.

8.4 Results for non-periodic stencils

Our scheme consistently outperforms Pluto’s pipeline-parallel scheme for all benchmarks. We

perform better than Pochoir on 1d-heat, 2d-heat, 3d-heat, 3d7pt and perform comparably with

Pochoir for APOP and Game of Life. The running times for different benchmarks and the

speedup factors we get over other schemes are presented in Table 8.4. The speedup factors

reported are when running all of them on 12 cores.

Chapter 8. Experimental evaluation 45

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10 12

G
F

LO
P

s

Number of cores

diamond
pipeline
pochoir

Figure 8.2: 1d-heat

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2 4 6 8 10 12 14 16

G
F

LO
P

s

Number of cores

diamond
pipeline
pochoir

Figure 8.3: 2d-heat (AMD)

1d-heat shows the effect of concurrent start for tiling enabled by our scheme. Figure 8.2

shows the load balance we achieve with increasing core count. Pipeline-parallel code performs

at around 6 GFLOPs and does not scale beyond two cores. This is a result of both: pipeline

start-up/drain time, and an insufficient number of tiles in the wavefront necessary to keep all

Chapter 8. Experimental evaluation 46

processors busy. Using our new tiling hyperplanes, one is able to distribute iterations corre-

sponding to the entire data space equally among all cores. The same maximal amount of work

is done by processors between two synchronizations as the tile schedule is parallel to the face

that allows concurrent start.

For 2d-heat, we perform better than both Pochoir and Pluto’s pipeline-parallel approach.

We have discussed already the improvements on Intel machine (Figure 8.1). We also tested the

three schemes on the AMD Opteron 16-core setup, and we see similar improvements with our

scheme (Figure 8.3). Performance of pipeline-parallel code saturates after 8 cores for the same

reasons as mentioned for 1d-heat. Our scheme performs 72% better than pipeline-parallel code

and 28% better than Pochoir.

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10 12

G
F

LO
P

s

Number of cores

diamond
pipeline
pochoir

Figure 8.4: 3d-heat

On the 3d-heat benchmark, pipeline-parallel code performs poorly while both Pochoir and

our scheme scale well (Figure 8.4). Pochoir achieves about 21% of the machine peak and our

scheme achieves 24.2%. CPU utilization is as expected with our technique while Pluto suffers

from load imbalance here. For our scheme, though scaling seen with 1,2,4,8,12 cores is almost

ideal, it is flat between 5 and 8 cores. This is due to the number of tiles available not being

a multiple of the number of threads. This load imbalance can be eliminated using dynamic

scheduling techniques [3] and can be explored in future. In addition, the tile to thread mapping

Chapter 8. Experimental evaluation 47

we employed is not conscious of locality, i.e., inter-tile reuse can be exploited with another

suitable mapping. Integrating the complementary techniques presented in [42] may improve

performance further.

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12

G
F

LO
P

s

Number of cores

diamond
pipeline
pochoir

Figure 8.5: 3D 7-point Stencil

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 2 4 6 8 10 12

T
im

e
(s

ec
on

ds
)

Number of cores

diamond
pipeline
pochoir

Figure 8.6: Game of Life

Chapter 8. Experimental evaluation 48

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12

T
im

e
(m

s)

Number of cores

diamond
pipeline
pochoir

Figure 8.7: American Put Option Pricing

The rest of the benchmarks, 3d7pt (Figure 8.5), game-of-life (Figure 8.6) and APOP (Fig-

ure 8.7), show similar behavior as the already discussed benchmarks, for all the three schemes.

The ‘Game of Life’ does not use any floating-point operations in the stencil. Performance

is thus reported directly via running time. Similarly, performance for APOP is also reported

in running time as it depends on the conditional inside the loop nest as well and not just the

floating point operations.

Table 8.4 summarizes the performance numbers for 12 cores on Intel multicore machine.

Benchmark Performance (12 cores) Speedup over

icc-par pochoir pipeline diamond icc-par pochoir pipeline

1d-heat 2.61s 171.7ms 965ms 155.8ms 16.75 1.10 6.19

2d-heat 8.44m 28.43s 41.18s 24.72s 20.48 1.15 1.66

3d-heat 1.60s 156.6ms 315ms 135ms 11.85 1.16 2.33

game-of-life 13.50m 52.51s 2.98m 64.09s 12.64 0.82 2.79

apop 46.70ms 12.19ms 63.40ms 11.70ms 3.99 1.04 5.42

3d7pt 1.6s 181.9ms 309ms 143.2ms 11.17 1.27 2.15

Table 8.4: Summary of performance - non-periodic stencils

Chapter 8. Experimental evaluation 49

8.5 Results for periodic stencils

For periodic stencils, we use manually smashed code as input to Pluto to generate pipeline-

parallel code and also to generate diamond-tiled code using our scheme. Apart from the

already discussed code versioning to remove ‘modulo 2’ operation, we use similar code-

versioning to differentiate between boundary tiles and non-boundary tiles. Only boundary tiles

have to take care of the periodic conditions, and the rest of the computation is same as that of a

non-periodic stencil. Pochoir also uses a similar mechanism to differentiate between boundary

blocks and internal blocks. Such differentiation allows removal of unnecessary conditionals

from code for internal tiles.

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10 12

G
F

LO
P

s

Number of cores

diamond
pipeline
pochoir

Figure 8.8: 1d-heat-periodic

For 1d-heat-periodic, performance of all the three schemes follows the same trend as that

of non-periodic version (Figure 8.8). Our scheme performs 20% better than Pochoir and about

15× better compared to pipeline-parallel code. We can also note that overall performance

for all the three schemes worsens compared to non-periodic version owing to the boundary

conditions introduced.

For 2d-heat-periodic, pipeline-parallel code does not scale after 8 cores, but both our

scheme and Pochoir continue to show good scaling (Figure 8.9). Our scheme is performs

57% better than pipeline-parallel code at 12-cores, but is worse by 14% compared to Pochoir.

This gap in performance becomes visible at the single-thread performance itself, and as the

Chapter 8. Experimental evaluation 50

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

G
F

LO
P

s

Number of cores

diamond
pipeline
pochoir

Figure 8.9: 2d-heat-periodic

number of cores goes up, this performance gap also yawns, correspondingly. In fact, the per-

formance of Pochoir in this case seems like an anomaly as it is consistently better than the

performance of its own non-periodic version. Pochoir being a ‘black box’ optimizer, it is very

difficult to understand why this anomaly exists. Our efforts to understand this have not been

successful.

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12

G
F

LO
P

s

Number of cores

diamond
pipeline
pochoir

Figure 8.10: 3d-heat-periodic

Both our scheme and pipeline-parallel approach outperform Pochoir for 3d-heat-periodic

(Figure 8.10). But, Pochoir code behaves erratic after 6 cores in terms of performance, hence

we feel it is not a strong comparison.

Chapter 8. Experimental evaluation 51

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2 4 6 8 10 12

T
im

e(
s)

Number of cores

icc-par
pipeline
diamond

Figure 8.11: Swim benchmark from SPECFP2000 on our Intel machine

Swim benchmark of SPEC CPU2000Cfp suite models shallow water equations and is

mainly used for weather prediction. It has a periodic 2-dimensional space grid of size 1335 x

1335 and runs for 800 time-steps. For this benchmark, we compare a C version ported from

the original program in FORTRAN (icc-par), pipeline-parallel code after smashing and dia-

mond tiled code after smashing. Swim being a multi-statement program cannot be described

as a single-statement stencil kernel in Pochoir specification language, therefore comparison

with Pochoir cannot be done. Pipeline-parallel code performs 2.9× better than icc-par (Fig-

ure 8.11). Upon enabling concurrent start-up performance goes up further. Diamond tiled code

performs 72% better than pipeline-parallel code. The effect of time-tiling as well as concurrent

start-up can be verified by Table 8.5 that shows the L2 cache behavior for the three schemes

while running on 12-cores of Intel machine.

tile-sizes L2 misses in billions L2 requests in billions percentage of misses

icc-parallel 9.08 10.97 82.7

pipeline 0.94 2.09 44.9

diamond 1.01 2.32 43.5

Table 8.5: Details of cache behavior in experiments for swim on 12 cores of Intel machine

Chapter 8. Experimental evaluation 52

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14 16

T
im

e(
s)

Number of cores

icc-par
pipeline
diamond

Figure 8.12: Swim benchmark from SPECFP2000 on our AMD machine

We observe a similar trend of performance for all the three schemes on our AMD machine.

Figure 8.12 depicts the timings for C version compiled with ‘-parallel’ flag of icc, pipeline-

parallel code after smashing and diamond-tiled code after smashing for runs on up to 16 cores.

Our scheme shows an improvement of 2.5× over icc-par and 53% over pipeline-parallel code

on 16 cores.

Table 8.6 summarizes the experimental results for the above discussed benchmarks.

Benchmark Performance (12 cores) Speedup over

icc-par pochoir pipeline diamond icc-par pochoir pipeline

1d-heat-p 4.3s 195ms 2.5s 162.4ms 26.5 1.2 15.4

2d-heat-p 570s 27.3s 49.8s 31.7s 22.7 0.86 1.57

3d-heat-p 38.19s 11.5s 10.58s 4.9s 7.79 2.34 2.15

swim 23.62s - 7.97s 4.61s 5.12 - 1.72

Table 8.6: Summary of performance -periodic stencils

Chapter 9

Related work

A significant amount of work has been done on optimizing stencil computations. These

works fall into two categories. One body of works is in the form of developing compiler

optimizations [46, 38, 29, 8], and the other on building domain-specific stencil compilers or

domain-specific optimization studies [27, 16, 41, 42, 12, 40, 44, 43]. Among the compiler

techniques, the polyhedral compiler works have been implemented in some production com-

pilers [20, 39, 7], and are also available publicly as tools [35, 36]. They are in the form of

more general transformation frameworks and more or less subsume previous compiler works

for stencils. Other significant body of works studies optimization specific to stencils, and a

number of these works are very recent. Many of these are publicly available as well such as

Pochoir [43]. Such systems have the opportunity to provide much higher performance than

compiler-based ones owing to the greater amount of knowledge they have about computation.

Pochoir [43] is a highly tuned stencil specific compiler and runtime system for multicores.

It provides a C++ template library using which a programmer can describe a specification of

a stencil in terms of dimensions, width of the stencil, its shape etc.. For example, Figure 9.1

shows description of a heat-1d kernel using Pochoir specification language.

Pochoir uses a cache-oblivious tiling mechanism. It builds upon the concept of ‘trape-

zoidal decompositions’ introduced by Frigo and Strumpen [17] and improves upon it by a

novel technique called ‘hyperspace cut’. Hyperspace cuts perform simultaneous space cuts on

53

Chapter 9. Related work 54

Pochoir_Kernel_1D(heat_1D_fn, t, i)

a(t+1,i) = 0.125 * (a(t,i+1) - 2.0 * (t,i) + a(t,i-1));

Pochoir_Kernel_End

Figure 9.1: Stencil: 1d heat equation

multiple dimensions allowing Pochoir to exploit asymptotically more parallelism as the num-

ber of space dimensions increases. These decompositions and cuts are performed recursively

and resulting tiles are shaped like trapezoids. After tiling, Pochoir writes a high performing

Cilk code as output.

In addition, Pochoir performs optimizations to take care of conditionals at boundaries

which is comparable to code-cloning that we perform. It also performs a base-case coars-

ening for recursive cuts which is very similar to our tile-size choices. To ensure it does not

suffer from load imbalance, its runtime implements a smart work stealing mechanism. This

work falls in the domain-specific category of optimizers. Our scheme on the other hand is

a dependence-driven one and is oblivious to the input code being a stencil. Our experimen-

tal evaluation included a comparison with Pochoir. In addition, though our techniques are

implemented in a polyhedral source-to-source compiler, they apply to either body of works.

Strzodka et al. [42] present a technique, cache accurate time skewing (CATS), for tiling

stencils, and report significant improvement over Pluto and other simpler manual optimization

strategies for 2-d and 3-d domains. The work argues that for typical cache sizes and problem

sizes of 2-d and 3-d domains, not tiling in all space dimensions can be more beneficial than

tiling in all space dimensions and time. This decision of not tiling in all dimensions results

in tiles that are huge in some dimensions. But this can be easily achieved by our scheme

by choosing a huge tile-size in one tiling dimension. We could use such tube-like tiles in

some of our experiments and verify the claim by CATS scheme that it is more SIMD friendly.

Diamond-shaped tiles that are automatically found by our technique are also used by CATS in

a particular way. However, their scheme also pays attention to additional orthogonal aspects

such as mapping of tiles to threads and is presumably far more cache-friendly than our scheme.

These aspects can be explored in future to enhance our approach. While ours is an end-to-end

Chapter 9. Related work 55

automatic compiler framework, CATS is more of a customized optimization system. CATS

makes assumptions about typical problem-sizes and cache sizes and focuses on 2-d and 3-d

domains whereas our scheme is completely independent of such factors. Performance com-

parison with CATS could not be done as the scheme is not automatic and the codes are not yet

publicly available.

Efficient vectorization of stencils is challenging. Henretty et al. [22] present a data lay-

out transformation technique to improve vectorization. However, reported improvement was

limited for architectures that provide nearly the same performance for unaligned loads as for

aligned loads. This is the case with Nehalem, Westmere, and Sandy Bridge architectures

from Intel. We did not thus explore layout transformations for vectorization, but instead relied

on Intel compiler’s auto-vectorization after automatic application of enabling transformations

within a tile.

Figure 9.2: Overlapped and split tiling.

Krishnamoorthy et al. [29] addressed concurrent start when tiling stencil computations.

However, the approach worked by starting with a valid tiling and correcting it to allow concur-

rent start. This was done via overlapped execution of tiles (overlapped tiling) or by splitting a

tile into sub-tiles (split tiling).

In overlapped tiling, for example in Figure 9.2, tiles marked 1 and 2 can be merged as one

tile and 2, 3 and 4 are merged as second tile. Here, the computation labeled 2 is shared by both

the tiles and hence the name overlapped tiling. Therefore, the sets of tiles {1, 2}, {2, 3, 4},

{4, 5, 6}, {6, 7, 8} are merged individually and are started concurrently.

Chapter 9. Related work 56

In the split tiling approach, there is no merging of tiles. Tiles 2, 4 , 6 and 8 can be started

concurrently followed by the execution of 1, 3, 5 and 7 in parallel.

With such approaches, one misses natural ways of tiling that inherently do not suffer from

pipelined start-up. We have showed that, in all those cases, there exist valid tiling hyperplanes

that allow concurrent start. The key problem with both overlapped tiling and split tiling is

the difficulty in performing code generation automatically. No implementation of these tech-

niques currently exists. In addition, our conditions for concurrent start work with arbitrary

affine dependences while those in [29] were presented for uniform dependences, i.e., when

dependences can be represented by constant distance vectors.

A survey by Wonnacott et al.[47] reviews many works in polyhedral model that aim to

exploit maximum parallelism available using new tiling techniques. The survey concludes that

the works previous to ours fell into two classes:

• Ideas in general-purpose domains that remain unimplemented due to the difficulties

posed by complex tile shapes and orientations they result in.

• Implemented techniques that fail to achieve asymptotic scaling as the available paral-

lelism increases.

Our work bridges this gap and provides techniques applicable to any regular program that

allows tile-wise concurrent start to achieve maximum parallelism, along with a fully automatic

implementation of it.

Chapter 10

Conclusion

We have designed and evaluated new techniques for tiling stencil computations. These tech-

niques, in addition to the usual benefits of tiling, provide concurrent start-up whenever pos-

sible. Evidently, such concurrent start-up enabled provides perfect load balance at tile level

granularity and also translates into asymptotic scalability. We showed that tile-wise concur-

rent start is enabled if the face of the iteration space that allows point-wise concurrent start

strictly lies in the cone formed by all tiling hyperplanes. We then provided an approach to find

such hyperplanes. The presented techniques are automatic and have been implemented in a

source-level parallelizer, Pluto.

Experimental evaluation on a 12-core Intel multicore shows that our code is able to outper-

form a tuned domain-specific stencil code generator in most of the cases by about 4% to 2×.

We outperform previous compiler techniques by a factor of 1.5× to 15× on 12 cores over a

set of benchmarks. For swim benchmark (SPECFP 2000), our scheme achieves 5× improve-

ment over the auto-parallelizer of Intel C Compiler on our 12-core Intel Westmere and 2.5× on

16-core AMD Magny-Cours. We are not aware of any SPEC performance numbers that come

close to this result, obtained either through manual or automatic schemes. Our implementation

is publicly available in the latest release of Pluto.

57

Bibliography

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles, techniques, and tools.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[2] C. Ancourt and F. Irigoin. Scanning polyhedra with do loops. In ACM SIGPLAN sympo-

sium on Principles and Practice of Parallel Programming, pages 39–50, 1991.

[3] M. Baskaran, N. Vydyanathan, U. Bondhugula, J. Ramanujam, A. Rountev, and P. Sa-

dayappan. Compiler-assisted dynamic scheduling for effective parallelization of loop

nests on multicore processors. In ACM SIGPLAN PPoPP, pages 219–228, 2009.

[4] C. Bastoul. Clan: The Chunky Loop Analyzer. Clan user guide.

[5] C. Bastoul. Code generation in the polyhedral model is easier than you think. In IEEE

International Conference on Parallel Architectures and Compilation Techniques, pages

7–16, Sept. 2004.

[6] U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam, A. Rountev, and P. Sa-

dayappan. Automatic transformations for communication-minimized parallelization and

locality optimization in the polyhedral model. In ETAPS CC, Apr. 2008.

[7] U. Bondhugula, O. Gunluk, S. Dash, and L. Renganarayanan. A model for fusion and

code motion in an automatic parallelizing compiler. In Proceedings of the 19th interna-

tional conference on Parallel architectures and compilation techniques, PACT ’10, pages

343–352. ACM, 2010.

58

BIBLIOGRAPHY 59

[8] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical automatic

polyhedral program optimization system. In ACM SIGPLAN PLDI, June 2008.

[9] U. Bondhugula, J. Ramanujam, and P. Sadayappan. Pluto: A practical and fully au-

tomatic polyhedral parallelizer and locality optimizer. Technical Report OSU-CISRC-

10/07-TR70, The Ohio State University, Oct. 2007.

[10] U. K. R. Bondhugula. Effective Automatic Parallelization and Locality Optimization

using the Polyhedral Model. PhD thesis, The Ohio State University, Aug 2008.

[11] J.-D. Choi and S. L. Min. Race frontier: reproducing data races in parallel-program

debugging. In Proceedings of the third ACM SIGPLAN symposium on Principles and

practice of parallel programming, PPOPP ’91, pages 145–154, New York, NY, USA,

1991. ACM.

[12] M. Christen, O. Schenk, and H. Burkhart. Patus: A code generation and autotuning

framework for parallel iterative stencil computations on modern microarchitectures. In

Parallel Distributed Processing Symposium (IPDPS), 2011 IEEE International, pages

676 –687, may 2011.

[13] CLooG: The Chunky Loop Generator. http://www.cloog.org.

[14] A. Cohen, S. Girbal, D. Parello, M. Sigler, O. Temam, and N. Vasilache. Facilitating the

search for compositions of program transformations. In ACM International conference

on Supercomputing, pages 151–160, June 2005.

[15] K. Datta. Auto-tuning Stencil Codes for Cache-Based Multicore Platforms. PhD thesis,

EECS Department, University of California, Berkeley, Dec 2009.

[16] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. A. Patterson,

J. Shalf, and K. A. Yelick. Stencil computation optimization and auto-tuning on state-of-

the-art multicore architectures. In SC, page 4, 2008.

BIBLIOGRAPHY 60

[17] M. Frigo and V. Strumpen. Cache oblivious stencil computations. In Proceedings of

the 19th annual international conference on Supercomputing, ICS ’05, pages 361–366,

2005.

[18] M. Gardner. Mathematical Games. Scientific American, 1970.

[19] M. Griebl, P. Feautrier, and A. Größlinger. Forward communication only placements and

their use for parallel program construction. In LCPC, pages 16–30, 2005.

[20] T. Grosser, H. Zheng, R. Aloor, A. Simburger, A. Groblinger, and L.-N. Pouchet. Polly

polyhedral optimization in LLVM. In Proceedings of the First International Workshop

on Polyhedral Compilation Techniques (IMPACT), 2011, 2011.

[21] A. Hartono, M. Manik, A. Baskaran, C. Bastoul, A. Cohen, S. Krishnamoorthy, B. Norris,

and J. Ramanujam. Primetile: A parametric multi-level tiler for imperfect loop nests,

2009.

[22] T. Henretty, K. Stock, L.-N. Pouchet, F. Franchetti, J. Ramanujam, and P. Sadayap-

pan. Data layout transformation for stencil computations on short simd architectures.

In ETAPS International Conference on Compiler Construction (CC’11), pages 225–245,

Saarbrucken, Germany, Mar. 2011.

[23] J. Hull. Options, futures, and other derivatives. Pearson Prentice Hall, Upper Saddle

River, NJ [u.a.], 6. ed., pearson internat. ed edition, 2006.

[24] Multi-core processor. http://en.wikipedia.org/wiki/Multi-

core processor#Technical factors.

[25] F. Irigoin and R. Triolet. Supernode partitioning. In Proceedings of the 15th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages, POPL ’88,

pages 319–329, 1988.

[26] Integer Set Library. Sven Verdoolaege, An Integer Set Library for Program Analysis.

BIBLIOGRAPHY 61

[27] S. Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf, and K. Yellick. Implicit and explicit

optimization for stencil computations. In ACM SIGPLAN workshop on Memory Systems

Perofmance and Correctness, 2006.

[28] W. Kelly and W. Pugh. A unifying framework for iteration reordering transformations.

Technical Report CS-TR-3430, Dept. of Computer Science, University of Maryland, Col-

lege Park, 1995.

[29] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam, A. Rountev, and P. Sa-

dayappan. Effective Automatic Parallelization of Stencil Computations. In ACM SIG-

PLAN symposium on Programming Languages Design and Implementation, July 2007.

[30] A. Lim, G. I. Cheong, and M. S. Lam. An affine partitioning algorithm to maximize

parallelism and minimize communication. In ACM ICS, pages 228–237, 1999.

[31] A. Lim and M. S. Lam. Maximizing parallelism and minimizing synchronization with

affine partitions. Parallel Computing, 24(3-4):445–475, 1998.

[32] N. Osheim, M. Strout, D. Roston, and S. Rajopadhye. Smashing: Folding Space to

Tile through Time. In International Workshop on Languages and Compilers for Parallel

Computing (LCPC), 2008.

[33] Polyhedral extraction tool. http://freecode.com/projects/libpet.

[34] PIP: The Parametric Integer Programming Library. http://www.piplib.org.

[35] PLUTO: A polyhedral automatic parallelizer and locality optimizer for multicores.

http://pluto-compiler.sourceforge.net.

[36] POCC: Polyhedral compiler collection. http://pocc.sourceforge.net.

[37] J. Ramanujam and P. Sadayappan. Tiling multidimensional iteration spaces for multi-

computers. Journal of Parallel and Distributed Computing, 16(2):108–230, 1992.

[38] L. Renganarayanan, M. Harthikote-Matha, R. Dewri, and S. V. Rajopadhye. Towards

optimal multi-level tiling for stencil computations. In IPDPS, pages 1–10, 2007.

BIBLIOGRAPHY 62

[39] RSTREAM - High Level Compiler, Reservoir Labs. http://www.reservoir.com.

[40] N. Sedaghati, R. Thomas, L.-N. Pouchet, R. Teodorescu, and P. Sadayappan. StVEC:

A vector instruction extension for high performance stencil computation. In 20th Inter-

national Conference on Parallel Architecture and Compilation Techniques (PACT’11),

Galveston Island, Texas, Oct. 2011.

[41] R. Strzodka, M. Shaheen, D. Pajak, and H.-P. Seidel. Cache oblivious parallelograms in

iterative stencil computations. In ICS, pages 49–59, 2010.

[42] R. Strzodka, M. Shaheen, D. Pajak, and H.-P. Seidel. Cache accurate time skewing in

iterative stencil computations. In ICPP, pages 571–581, 2011.

[43] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E. Leiserson. The pochoir

stencil compiler. In SPAA, pages 117–128, 2011.

[44] J. Treibig, G. Wellein, and G. Hager. Efficient multicore-aware parallelization strategies

for iterative stencil computations. Journal of Computational Science, 2(2):130 – 137,

2011.

[45] M. J. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[46] D. Wonnacott. Using time skewing to eliminate idle time due to memory bandwidth and

network limitations. In Proceedins of the 14th International Parallel and Distributed

Processing Symposium (IPDPS), pages 171 –180, 2000.

[47] D. G. Wonnacott and M. Mills Strout. On the scalability of loop tiling techniques. In

Proceedings of the 3rd International Workshop on Polyhedral Compilation Techniques

(IMPACT), 2013, 2013.

[48] J. Xue. Loop tiling for parallelism. Kluwer Academic Publishers, Norwell, MA, USA,

2000.

	Acknowledgements
	Publications based on this Thesis
	Abstract
	Introduction
	Background and notation
	Conical and strict conical combination
	Characterizing a stencil program
	Polyhedral model
	Dependences and tiling hyperplanes

	Motivation
	Pipelined start-up vs. Concurrent start-up
	Rectangular tiling and inter-tile dependences

	Conditions for concurrent start-up
	Constraints for concurrent start-up
	Lower dimensional concurrent start-up
	The case of multiple statements

	Approach for finding hyperplanes iteratively
	Iterative scheme
	Examples
	Example-2d-heat
	Example-1d-heat
	Example-3d-heat

	Handling periodic stencils
	Smashing
	Smashing in action: Ring
	Iteration space smashing

	Implementation
	Implementation on top of Pluto
	Code versioning to help vectorization

	Experimental evaluation
	Benchmarks
	Hardware setup
	Significance of concurrent start
	Results for non-periodic stencils
	Results for periodic stencils

	Related work
	Conclusion
	Bibliography

