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Abstract

Geometric Multigrid (GMG) methods are widely used in numerical analysis to accelerate

the convergence of partial differential equations solvers using a hierarchy of grid discretiza-

tions. These solvers find plenty of applications in various fields in engineering and scientific

domains, where solving PDEs is of fundamental importance. Using multigrid methods, the

pace at which the solvers arrive at the solution can be improved at an algorithmic level.

With the advance in modern computer architecture, solving problems with higher com-

plexity and sizes is feasible — this is also the case with multigrid methods. However, since

hardware support alone cannot achieve high performance in execution time, there is a

need for good software that help programmers in doing so.

Multiple grid sizes and recursive expression of multigrid cycles make the task of man-

ual program optimization tedious and error-prone. A high-level language that aids domain

experts to quickly express complex algorithms in a compact way using dedicated constructs

for multigrid methods and with good optimization support is thus valuable. Typical com-

putation patterns in a GMG algorithm includes stencils, point-wise accesses, restriction and

interpolation of a grid. These computations can be optimized for performance on modern

architectures using standard parallelization and locality enhancement techniques.

Several past works have addressed the problem of automatic optimizations of com-

putations in various scientific domains using a domain-specific language (DSL) approach.

A DSL is a language with features to express domain-specific computations and compiler

support to enable optimizations specific to these computations. Halide [34, 35] and Poly-

Mage [28] are two of the recent works in this direction, that aim to optimize image pro-

cessing pipelines. Many computations like upsampling and downsampling an image are

v
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similar to interpolation and restriction in geometric multigrid methods.

In this thesis, we demonstrate how high performance can be achieved on GMG algo-

rithms written in the PolyMage domain-specific language with new optimizations we added

to the compiler. We also discuss the implementation of non-trivial optimizations, on Poly-

Mage compiler, necessary to achieve high parallel performance for multigrid methods on

modern architectures. We realize these goals by:

• introducing multigrid domain-specific constructs to minimize the verbosity of the

algorithm specification;

• storage remapping to reduce the memory footprint of the program and improve cache

locality exploitation;

• mitigating execution time spent in data handling operations like memory allocation

and freeing, using a pool of memory, across multiple multigrid cycles; and

• incorporating other well-known techniques to leverage performance, like exploiting

multi-dimensional parallelism and minimizing the lifetime of storage buffers.

We evaluate our optimizations on a modern multicore system using five different bench-

marks varying in multigrid cycle structure, complexity and size, for two- and three-dimensional

data grids. Experimental results show that our optimizations:

• improve performance of existing PolyMage optimizer by 1.31×1;

• are better than straight-forward parallel and vector implementations by 3.2×1;

• are better than hand-optimized versions in conjunction with optimizations by Pluto,

a state-of-the-art polyhedral source-to-source optimizer, by 1.23×1; and

• achieve up to 1.5× speedup over NAS MG benchmark from the NAS Parallel Bench-

marks.

1Geometric mean over all benchmarks
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Chapter 1

Introduction

This chapter introduces geometric multigrid methods, and the importance of optimizing

its implementations for high performance and describes the motivation behind our work,

which is to achieve this goal through automation.

1.1 Geometric Multigrid Methods

The stencil approach using a finite difference method for discretization is currently the

dominant approach for the numerical solution of partial differential equations (PDEs) [16].

A visualization example of the heat transfer in a pump casing solved using heat equation is

shown in figure 1.1 Stencil computation can be viewed as data parallel operations applied

repeatedly on a structured grid, where computation at each grid point involves values only

from neighbouring grid points by application of a geometric pattern of weights (hence

stencil). This kind of computation, thus exhibits spatial and temporal locality. One of

the key reasons why a stencil approach is attractive is its suitability for a parallel and

high-performance implementation in a variety of settings, like shared-memory multicore

processors, distributed-memory clusters of multicore processors, and with accelerators like

GPUs.

Solving partial differential equations using a stencil approach requires good iterative

1



2 1. Introduction

Figure 1.1: Visualization of heat transfer in a pump casing created by solving the heat
equation [image credits:Wikimedia Commons CC BY-SA 3.0 [17]]

solvers that quickly converge to the solution, i.e., in fewer iterations. Multigrid meth-

ods [5] solve the problem at multiple grid resolutions, and are widely used to acceler-

ate this convergence 1.2. Improved convergence is achieved by solving the problem on a

coarser problem, and approximating the solution to the finer problem’s solution with nec-

essary corrections. The process is carried out at multiple levels of coarsening, to arrive at

the solution to the finest level from the coarsest one – this forms a multigrid cycle. The

number of iterations of such a cycle, required to converge, depends on (but not limited

to) the cycle type (Figure 1.3), quality of convergence, and steps used within the cycle.

Multigrid algorithms can be used either as direct solvers or as pre-conditioners for solvers

(example Krylov Solvers [26]). Algorithm 1 shows a typical multigrid V-cycle algorithm.

In this work, we consider evaluation of optimized multigrid program implementations

that solve the Poisson’s equation [5], which is given by

∇2u= f , (1.1)

where ∇ is the vector differential operator, and u and f are real functions. The Poisson’s

equation is a second-order elliptic partial differential equation of fundamental importance

to electrostatics, mechanical engineering, and physics in general.

Geometric multigrid methods (GMG) [5] fall under this category, and use a hierarchy
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V F

MG-Cycle

ni ters < N || Ver ror < ρ

True

False

Figure 1.2: Illustration of multiple discretization levels in solving PDEs using a multigrid
cycle

Figure 1.3: Different forms of multigrid cycles – V-cycle, F-cycle and W-cycle

Algorithm 1: A Multigird algorithm using V-cycle: V-cycleh

Input : vh, f h

1 Relax vh for n1 iterations // pre-smoothing
2 if coarsest level then
3 Relax vh for n2 iterations // coarse smoothing
4 rh← f h − Ahvh // residual
5 r2h← I2h

h rh // restriction
6 e2h← 0
7 e2h←V-cycle2h(e2h, r2h)
8 eh← Ih

2he2h // interpolation
9 vh← vh + eh // correction

10 Relax vh for n3 iterations // post smoothing
11 return vh

of grids to evaluate the discretized equations at each level. GMG applications are memory-

intensive, and demand more space for finer grids, which need to be live until the end of each

multigrid cycle. The underlying computations in a GMG cycle are mostly data parallel, and
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its constituents have near-neighbor data dependences. All of these characteristics provide

ample opportunity to optimize performance on modern parallel architectures.

1.2 Domain-Specific Languages and Optimizations

A domain-specific language (DSL) for high performance is one that exploits computational

domain information to deliver productivity, high performance, and portability to program-

mers, through an optimizing compiler or code generator. With this facility, the domain-

specific programmers can totally focus on expressing the algorithm in the DSL, without

having to worry about the target architecture and the relevant set of optimizations needed

to achieve high performance. Halide [34, 35] and PolyMage [28] are two such recently de-

veloped DSLs with an optimizing code generator for a class of image processing pipelines.

Spiral [33], Green-Marl [20] and Liszt [9] are some notable domain-specific languages

with optimization support for digital signal processing, graph analysis and mesh based

PDE solvers, respectively.

The common computation patterns of image processing algorithms such as convolu-

tions, downsampling, upsampling etc. can be used to define filters that can be composed

to express a pipeline in these DSLs. These patterns exhibit one-to-one mapping to smooth-

ing, restriction and interpolation respectively in the context of GMG algorithms. Thus,

the very same constructs of the DSLs can seamlessly support programming for multigrid

methods, and hence are good fit to express these algorithms in them. In this work, we

will discuss how, with few extensions to the PolyMage [28] DSL and optimizer, we can

effectively deal with expressing GMG algorithms and extraction of the latent high parallel

performance.

1.3 Thesis Contributions and Organization

In this thesis, we present an extension to the PolyMage language to incorporate constructs

specific to geometric multigrid methods to provide an easy programming environment to
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domain scientists and optimizing compiler/code generator. Chapter 2 describes the lan-

guage features of PolyMage, its relevance to multigrid algorithms and the new constructs

we added to the same. In Chapter 3 we discuss the implementation of non-trivial optimiza-

tions, on PolyMage compiler, necessary to achieve high parallel performance for multigrid

methods on modern architectures. We achieve these goals by:

• introducing multigrid domain-specific constructs to minimize the verbosity of the

algorithm specification in the language to capture all the basic computation patterns

involved in it;

• storage remapping to reduce the memory footprint of the program and improve cache

locality exploitation, which also leads to performance gains in execution time;

• mitigating execution time spent in data handling operations like memory allocation

and freeing, using a pool of memory, that serves allocation requests across multiple

multigrid cycles; and

• incorporating additional well-known techniques to leverage performance, like ex-

ploiting multi-dimensional parallelism inherent in the multigrid computations and

minimizing the lifetime of storage buffers.

We evaluate our optimizations on a modern multicore system using five different bench-

marks varying in multigrid cycle structure, complexity and size, for two and three dimen-

sional data grids. The details of the experimental setup and analysis is given in Chapter 4.

Experimental results show that our optimizations:

• improve performance of existing PolyMage optimizer by 1.31×1;

• are better than straight-forward parallel and vector implementations by 3.2× 1;

• are better than hand-optimized versions in conjunction with optimizations by Pluto,

a state-of-the-art polyhedral source-to-source optimizer, by 1.23×1; and

1Geometric mean over all benchmarks



6 1. Introduction

• achieve up to 1.5× speedup over NAS MG benchmark from the NAS Parallel Bench-

marks.

We discuss related work and other studies in detail in Chapter 5, and present conclu-

sions and future work for related research.



Chapter 2

Language

In this chapter, we will discuss the language support needed for GMG algorithms, about

the PolyMage DSL and its constructs, and propose suitable extensions to the same so as to

communicate multigrid specific computations to the PolyMage backend compiler minimally

and more effectively.

2.1 GMG Algorithm in PolyMage DSL

Multigrid applications consist mostly of stencil computations or other point-wise data par-

allel operations. Grid accesses made during interpolation or restriction phases, however,

involve stencils with a scaling factor, usually of 2 or 1/2. In other words, the output grid

being written to will be half or twice the size of the input grid, respectively. Such com-

putations are often common to the image processing domain and are used in upsampling

or downsampling an image. PolyMage [28] is a domain-specific language embedded in

python, that can capture these types of accesses for image processing applications. Execu-

tion reordering transformations such as tiling and fusion are also supported on these classes

of computations. This makes PolyMage DSL well suited for providing a high-level abstrac-

tion to domain experts in writing GMG algorithms. We additionally introduce a small set of

constructs to further reduce verbosity in expressing multigrid steps, as described in the fol-

lowing section 2.2. Typical computation patterns observed in GMG algorithms are enlisted

7



8 2. Language

in Table 2.1 and illustrated in Figure 2.1

Operation Example

Point-wise f (x , y) = g(x , y)

Smoothing f (x , y) =
+1
∑

σx=−1

+1
∑

σy=−1
g(x +σx , y +σy)

Interpolation f (x , y) =
+1
∑

σx=−1

+1
∑

σy=−1
g((x +σx)/2, (y +σy)/2)

Restriction f (x , y) =
+1
∑

σx=−1

+1
∑

σy=−1
g(2x +σx , 2y +σy)

Time-iterated f (t, x , y) = g( f (t − 1, x , y))

Table 2.1: Typical computation patterns in Geometric Multigrid algorithms

2.2 Language Constructs

PolyMage treats an operation on a structured grid or an image as a function of a vari-

able defined with a domain or as a composition of other functions. The language allows

the programmer to define such operations using the Function construct. Similarly the in-

put structured grids can be declared using the Grid construct, The constructs Parameter,

Variables and Interval are used to represent the grid size, variables to refer to the individual

grid-elements, and the boundary in which each of the grid dimensions is defined, respec-

tively. Using the Condition construct, one can express the logical conditional checks. With

this and Case construct, piece-wise functions can be defined. The constructs supported by

PolyMage language are enumerated in Table 2.2.

Another construct Stencil, can be used to express the weights of a stencil kernel for a

2-d grid as a list of lists in Python. We extended this construct to 3D grids, by letting the

programmer use a list of list of lists. This can be used to express smoothers, error corrections

and residual computation used in multigrid. The center or origin of a stencil of size m×m,

is by default assumed to be (m/2, m/2). A stencil with its center off the default value, can

also be expressed by passing its value to the construct. An example usage is as follows.
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(a) Point-wise

(b) Smoothing

(c) Restriction

(d) Interpolation

Figure 2.1: Point-wise, Smoothing, Restriction and Interpolation operations
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1.0/16 * Stencil(f, [x, y], [[0.0, 1.0], [-1.0, 2.0]])

translates to:

1.0/16 * ( f(x,y+1) - f(x+1,y) + 2.0*f(x+1,y+1) )

Language Construct Syntax

Grid Name = Grid(type, list of dimensions)

Parameter Name = Parameter(type)

Interval Name = Interval(lower bound, upper bound, stride)

Variable Name = Variable()

Condition Name = Condition(expression, operator, expression)
where operator can be >, =, !=, <, >=, <=

Case Name = Case(condition, expression)

Function Name = Function((list of variables, list of intervals), type)
Name.defn = <Case>

Stencil Name = Stencil(Function, list of variables, kernel list, [origin])
where kernel list is a list of numbers or a list of kernel lists

Restrict Name = Restrict((list of variables, list of intervals), type)
Name.defn = <Case>

Interp Name = Interp((list of variables, list of intervals), type)
Name.defn = Dictionary of expressions for each interpolation Case

TStencil Name = TStencil((list of variables, list of intervals), type, T)
Name.defn = Expression involving a Stencil

Table 2.2: Syntax of key constructs in the PolyMage DSL; Name.defn represents the syntax
to define the function Name

In order to make the programming for multigrid more convenient, we introduced the

constructs Restrict and Interp, derived from the Function construct to express restriction

and interpolation, respectively. These constructs are associated with default sampling fac-

tors (i.e., 1/2 in case of Restrict and 2 in case of Interp). The sampling factor decides the

grid access index coefficients as well as the total size of the output grid. For example, the

output of the interpolation function will be 2d times larger than its input function, where
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d is the grid dimensionality. Due to this, the function definition for interpolation will be of

the form f(input(x/2, y/2)), and not all input points surrounding a corresponding output

grid point are used for the approximation. A natural way of selecting input grid points is

based on evenness of the output point’s index, for which programmers prefer to use mod-

ulo operators. Such overhead in indexing for sampling is prone to human error, and the

specialized constructs for restriction and interpolation help mitigate them.

Another important component of GMG cycles where Stencil construct finds its usage,

is smoothing. This is repeatedly applied on the intermediate smoothened outputs for a par-

ticular number of iterations (say T), and this type of computations are commonly known

as time-iterated stencils. In PolyMage, a programmer can express the same using python

loops and one Function for each time step of the smoothing computation. This results in

duplication of dependence information passed to the DSL. To overcome this, we introduced

a special construct TStencil, similar to Function, that takes (T) as an extra parameter

and a definition that involves Stencil. This not only makes the program description com-

pact, but also simplifies the compiler analysis by eliminating the need to analyze similar

redundant expressions. For this, we added the backend support to PolyMage that allows

the initialization of the parameter T at runtime, thus making the algorithm generic to

variable number of smoothing steps.

The PolyMage specification for a V-cycle algorithm is given in Figure 2.2. Figure 2.3

depicts the detailed pipeline DAG of V-cycle, W-cycle and the NAS-MG benchmark in the

NAS Parallel Benchmarks (NPB) [29] suite, which is also used for experimental evalua-

tion of this work. The NPB, developed and maintained by NASA Advanced Supercom-

puting Division, target performance evaluation of highly parallel supercomputers. The

Multigrid benchmark (NAS-MG), available in this suite, which approximates the solution

to a three-dimensional discrete Poisson equation, also uses a V-cycle algorithm, with no

pre-smoothing steps.

The boundary values of a function can be set with the help of Case construct, by cre-

ating a set of piece-wise definitions. Other basic language support including Variable,
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Parameter, Interval etc., are retained while extending the support for multigrid applica-

tions. More details on the language rules and usage can be referred to in [28].

The PolyMage specification for the V-cycle Algorithm 1 is given in Figure 2.2 This pro-

gram operates on initial guess grid V and the rhs grid F, for the parametric problem size

N (value of h has to be derived using N). n1, n2 and n3 represent the pre-smoothing,

post-smoothing and coarse-smoothing steps respectively. This PolyMage specification, like

the original V-cycle Algorithm 1, is expressed in a recursive fashion. The python function

smoother applies the smoothing operator for the specified number of steps, using TStencil

construct. Similarly, restrict function uses Restrict and Stencil constructs. The interpola-

tion function uses a python tuple of dictionaries to map multiple function definitions based

on evenness of dimension variables, so that the Interp construct can use it to define the

corresponding piece-wise function.

The PolyMage compiler sees the specification embedded in Python as a collection of

functions defined over polyhedral domains and also as a directed acyclic graph with ad-

ditional information specifying the instance-wise dependences, with the exact producer-

consumer relationships. Thus, the specification is a feed-forward pipeline. The loop it-

erating over an entire V-cycle or W-cycle is thus external to PolyMage. A polyhedral rep-

resentation is then constructed for this specification, followed by determining the right

set of schedule and storage transformations to improve locality, parallelism, and storage

compaction; code generation is then performed from the polyhedral specification of the

domains and schedules, using cgen [6].
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1 N = Parameter(Int, ’n’)
2 V = Grid(Double, "V", [N+2, N+2])
3 F = Grid(Double, "F", [N+2, N+2])
4 ...
5 def v_cycle(v, f, l):
6 # coarsest level
7 if l == 0:
8 smooth_p1[l] = smoother(v, f, l, n3)
9 return smooth_p1[l][n3]

10 # finer levels
11 else:
12 smooth_p1[l] = smoother(v, f, l, n1)
13 r_h[l] = defect(smooth_p1[l][n1], f, l)
14 r_2h[l] = restrict(r_h[l], l)
15 e_2h[l] = v_cycle(None, r_2h[l], l-1)
16 e_h[l] = interpolate(e_2h[l], l)
17 v_c[l] = correct(smooth_p1[l][n1], e_h[l], l)
18 smooth_p2[l] = smoother(v_c[l], f, l, n2)
19 return smooth_p2[l][n2]
20

21 def smoother(v, f, l, n):
22 ...
23 W = {}
24 W = v
25 W = TStencil(([y, x], [extent[l], extent[l]]),
26 Double, n)
27 W.defn = [ v(y, x) - weight *
28 (Stencil(v, (y, x),
29 [[ 0, -1, 0],
30 [-1, 4, -1],
31 [ 0, -1, 0]], 1.0/h[l]**2) - f(y, x)) ]
32 ...
33 return W
34

35 def restrict(v, l):
36 R = Restrict(([y, x], [extent[l], extent[l]]),
37 Double)
38 R.defn = [ Stencil(v, (y, x),
39 [[1, 2, 1],
40 [2, 4, 2],
41 [1, 2, 1]], 1.0/16) ]
42 return R
43

44 def interpolate(v, l):
45 ...
46 expr = [{}, {}]
47 expr[0][0] = Stencil(v, (y, x), [1])
48 expr[0][1] = Stencil(v, (y, x), [1, 1], 0.5)
49 expr[1][0] = Stencil(v, (y, x), [[1], [1]], 0.5)
50 expr[1][1] = Stencil(v, (y, x), [[1, 1], [1, 1]], 0.25)
51 P = Interp(([y, x], [extent[l], extent[l]]), Double)
52 P.defn = [ expr ]
53 return P

Figure 2.2: PolyMage specification for Multigrid V-cycle
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(a) V-cycle (b) NAS-MG cycle

Smoother Defect/Residual Restrict/Reciprocate Interpolate/Prolongation Correction Input

(c) W-cycle

Figure 2.3: Detailed pipeline DAG of different multigrid cycles



Chapter 3

Compiler Optimizations

In this chapter, we provide a brief overview of the existing PolyMage compiler phases, and

describe in detail, the improvements and optimizations done on top of it.

3.1 PolyMage Compiler

The PolyMage compiler uses the program description written in the DSL to construct a di-

rected acyclic graph (DAG) of nodes, that represent the functions and edges representing

the producer-consumer relationship between two functions. It then statically analyses the

function bounds and checks for out-of-bound accesses made to them, and asserts in case

it found any, in order to avoid program crash during execution. Simple point-wise func-

tions 2.1 and assignment operations are inlined into their consumers. Not doing so will

lead to unnecessary array allocations to store computed values, for which register memory

would have sufficed otherwise. In the next phase, the nodes are bundled together into

groups, using a greedy grouping algorithm, on which many transformations like fusion,

tiling and storage optimization etc. are applied later. It is in this phase, the compiler aligns

and scales the dimensions of nodes within a group in order to minimize the dependence

distances between the function points. Polyhedral representation of each node is obtained,

with the help of Integer Set Library (ISL [22]) and its python wrapper islpy [23], before

moving on to schedule transformations, using the interval and the constraint information

15
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Figure 3.1: The PolyMage optimizer: various phases

provided by the programmer.

Each group is formed in such a way that the nodes within them can be fused and are

amenable to overlap tiling, with a certain heuristic to maximize locality optimization en-

abled by it. Tile shape is determined based on the set of computations present in the

group, and varies accordingly with different composition of patterns. PolyMage specializes

this technique for multiscale accesses by inferring tighter bounds on the tile extents in each

dimension, than those inferred by traditional overlap tiling techniques. Polyhedral trans-

formations pertaining to this are then applied on the function domains. This is followed

by a storage mapping pass which makes sure intermediate functions of a tile are allocated

minimal scratchpad buffers just sufficient to store values computed within the tile. Since

no communication across happens between any two individual tiles of a group, the scratch-

pads can be discarded once the tile execution is complete. Next, code generation phase

takes over to produce a C++ implementation that reflects all the transformations applied on

the pipeline. PolyMage uses cgen [6], a python package, to crawl over the abstract syntax

tree (AST) generated by ISL. Using ctypes, another python module that enables interop-

erability between C++ and python, one can make calls to the generated implementation by

passing the input and output grids in numpy [30] array format.
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Figure 3.1 shows the different phases of PolyMage’s optimizing code generator with the

enhancements discussed in sections 3.2, 3.3, 3.4, and 3.5.

3.2 Grouping for Fusion and Tiling

Optimizing smoothing iterations of a multigrid algorithm using state-of-the-art tiling tech-

niques based on the polyhedral framework was recently studied by Ghysels and Vanroose [11].

Pluto’s diamond tiling technique [2] was used by them to block the smoothing iterations.

Note that the smoothing iterations are no different than time-iterated stencils typically

used for experimentation by a large body of work on loop transformations [18, 25, 19].

The number of smoothing iterations may be a small number, typically from a few itera-

tions to few tens. However, the smoothing iterations at the finest level constitute the bulk

of the execution time [11]; thus optimizing them to enhance data reuse and improve the

arithmetic intensity is useful. Moreover, a higher number of smoothing steps can be ac-

commodated, to improve the quality of the rate of cycle convergence, which in turn makes

fewer cycle iterations sufficient to arrive at the solution [11].

Ghysels and Vanroose [11] as well as most past work [24, 38], however, do not consider

optimizing locality across different types of stages involved in a multigrid cycle iteration.

There is an opportunity to further enhance locality through grouping and fusion of stages

that include not just smoothing steps. In addition, use of local buffers or scratchpads for

tiles can realize benefits of tiling better due to reduced conflict misses and TLB misses, and

better prefetching benefits. Although, the semi-automatic compiler approach of Basu et

al. [4, 3] considers fusion of different multigrid operators, it makes a fixed fusion choice,

and storage optimizations are not considered. Related works Chapter 5 includes a more

detailed discussion. Our approach addresses all of these limitations, and in addition, is

fully automatic.

Execution re-ordering techniques like time skewing or parallelogram tiling [39] may

not yield any or enough tiles to parallelize on the wavefront, and incurs pipelined startup.
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Figure 3.2: Overlapped tiling and diamond tiling. Data live out of a tile is encircled in

red. Overlapped tiling has live-out data only at its top face. In diamond tiling, a green tile

communicates the computed values at the boundary of all its faces (shown as live-outs)

to its adjacent blue tiles, before the latter can start executing. While the overlapped tiling

techniques suffer from the overhead of redundant computations, diamond tiling incurs

more synchronization overhead

Stock et al. [36] explore the effects of associative reordering of computations in high or-

der stencils to enhance register reuse. Array Sub-expression Elimination (ASE) is another

technique that improves register reuse as well as the arithmetic intensity of the computa-

tions [8]. Our optimizations do not consider the low-level loop optimizations such as the
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above two. Overlapped tiling [25], diamond tiling [2], or split tiling [15] allow concur-

rent start and are more suitable to the set of GMG computations. In diamond tiling, a tile

communicates the computed values at the boundary of all its faces to the tiles dependent

on these values. While the overlapped tiling techniques suffer from the overhead of redun-

dant computations, diamond tiling incurs more synchronization overhead. Hierarchical

overlapped tiling [41], a variant of overlapped tiling, explores the efficiency of codes tiled

using multiple levels of tiling, in order to balance synchronization overhead and redundant

computation.

Another technique, known as hexagonal tiling, was proposed by Grosser et al. [14] for

GPUs, which does not involve redundant computations like in overlapped tiling, and con-

tains additional faces with adjustable width intended to aid compiler auto-vectorization.

In this technique, tiles have to communicate boundary values at multiple faces, as in di-

amond tiling. A detailed analysis on the relation between diamond tiling and hexago-

nal tiling has been made by Grosser et al. [13]. The transformations applied by Pluto to

schedule the iteration order for diamond tiling results in a tiled loop nest which cannot be

flattened or linearized. This prevents the use of OpenMP’s collapse directive to extract

multi-dimensional parallelism, even though there exists no dependence between adjacent

tiles in the same phase of diamond tiles. On the other hand, overlapped tiles neither have

dependences among themselves nor is there a limitation in the PolyMage generated loop

nest preventing the use of this directive.

We employ the same overlapped tiling strategy as the one used in PolyMage for image

processing pipelines âĂŤ it leads to overlapping tiles. However, for multigrid computa-

tions, the shapes are symmetric on both sides, i.e., they are hyper-trapezoidal. This is not

the case for image processing pipelines where the heterogeneity in the dependences could

lead to asymmetrically shaped overlapped tiles. For a multigrid computation on 2-d grids,

the tile would be shaped like a square or rectangular pyramid. The notion can be extended

to three or higher dimensions. When compared to diamond or split tiling, although over-

lapped tiling involves redundant computation, it simplifies usage of local buffers due to

the lack of any dependence between adjacent tiles. Figure 3.2 illustrates both overlapped
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and diamond tiling schemes – only one dimension of space/grid is shown for simplicity.

Algorithm 2: Iterative grouping of stages
Input : DAG of stages, (S, E); parameter estimates, P; group-size threshold, gthresh

// Initially, each stage is in a separate group
1 G← ;
2 for s ∈ S do
3 G← G ∪ {s}
4 repeat
5 conver ge← t rue

// Find all the groups which only have one child
6 cand_set ← getGroupsWithSingleChild(G, E)

// Sort the groups by size to give priority larger groups
7 ord_l ist ← sortGroupsBySize(cand_set, P)
8 for each g in ord_l ist do
9 child = getChildGroup(g, E)

// Check if the stages group g and the child group can be scaled and aligned
to have constant dependence vectors

10 if hasConstantDependenceVectors(g, child) then
// Get the

11 new_size← |g| + |child|
12 if new_size < gthresh then
13 mer ge← g ∪ child
14 G← G − g − child
15 G← G ∪ mer ge
16 conver ge← f alse
17 break
18 until conver ge = t rue
19 return G

Halide [34, 35], a domain-specific language and compiler for image processing algo-

rithms allows programmers to express both the computations and the schedule in their pro-

grams. The language offers automatic code generation for fusion and overlapped tiling, if

specified by the programmer. Finding a good grouping of functions for tiling is practically

hard, given the complexity of the function computations, number of parameters affecting

the performance on modern parallel architectures, and number of valid grouping choices.

Halide uses an external framework OpenTuner [1], to explore good schedules for a given

pipeline. OpenTuner uses a genetic algorithm approach to combine different schedules
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while the tuning is being carried out, to find optimal ones. The search space of the sched-

ules considered by the tuner, however, becomes exponentially large for pipelines with tens

of functions.

PolyMage uses a greedy heuristic to generate a set of function groups for tiling, based

on tile size and group size thresholds. We use the same auto-grouping algorithm (Algo-

rithm 2) to group multigrid functions. Starting off with the default singleton groups for

each function, the algorithm merges two groups in each iteration, until no further merge

can be made. In each iteration, a list of groups with only one child is collected, sorted

based on their sizes. For each group in the list, validity of merging the group and its child

is evaluated. The validity is determined by two factors — whether the resultant merged

group is amenable for overlapped tiling, and whether its size (number of functions con-

tained) is less than the threshold for group size. The algorithm stops once the set of groups

is saturated and no more merging can happen between any two groups.

Figure 3.3 shows the grouping for a 2-D V-cycle configuration that performed the best

with our optimizations in an experimental setting explained in Chapter 4. In this figure,

the scratchpad nodes represent the stages having no use outside the tiled group, with a

memory requirement of the order of tile sizes. The liveout nodes are those which have at

least one use outside the group, hence they require full array allocations. The colours of the

nodes indicate the reuse of storage among similar colour and type of nodes. In summary,

no changes were needed to the fusion and tiling approach employed already employed in

PolyMage [28].

3.3 Memory Optimizations

PolyMage abstracts away memory allocation, management, and indexing from the pro-

grammer. This gives complete freedom to the compiler to decide on utilization and reuse

of local buffers, allocation of multi-dimensional arrays that are live out of one fused group

and consumed at another. Allowing the programmer to allocate and index them often

limits the ability of a compiler to perform data layout transformations: since techniques
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Figure 3.3: Grouping (fusion of operators): the dashed boxes correspond to a fused group

like alias analysis, escape analysis, and delinearization are often necessary to perform data

reordering in a safe way. Using a DSL avoids these difficulties, and on the other hand it

would increase the responsibility of the compiler in figuring out the best scheme for effi-

cient memory allocation. By achieving an improved programming productivity, the DSL

compiler lets the programmer be oblivious of the best performance practices for the tar-

get machine. Hence, the compiler would naturally require additional time for applying its

own intelligence during compilation. This should be acceptable as long as the returns are

favourable in terms of the performance of the generated executable code.

The set of functions within a group, except for the live-ins and live-outs, do not produce

any values used outside the group. Also, when these functions or groups of them are tiled,

there are no dependences between the tiles, since overlapped tiling is communication-

avoiding. This fact is exploited to minimize the storage requirements of a tile, by using

small scratchpads for such functions. Scratchpads sizes are of the order of tile sizes along

all dimensions, which actually are compile time constants. Such constant-sized buffers
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Figure 3.4: An illustration of scratchpad reuse in one of the pipeline groups

(one per each thread), declared within the scope of the tiled loop nest, use the stack space

of threads. The live-in and live-out functions need to be live across groups, hence full array

allocations (order of domain size) are made using calls to malloc.

In multigrid cycles, the output of many functions like the intermediate steps in smoother,

have a short lifetime. But, the allocations currently made by PolyMage are one-to-one, i.e.,

one buffer is used for each individual function in the pipeline. Thus, the total allocated

storage space can often be more than what is necessary to hold the computed intermediate

data. We address this issue by introducing an additional compiler pass, to extract reuse

opportunities using a best effort approach. This is done at two levels – reusing the scratch-

pads within a group, and reusing full arrays across groups. Both these passes require the

groups of functions and the function chunks inside an overlapping tile to have been already

scheduled, with a total order specified.

Functions are initially classified into different storage classes, and buffer reuse is al-

lowed only among functions of the same storage class. This classification is based on the

dimensionality, data type and buffer size requirements of functions. Also, this is carried

out separately for functions within a group and functions that are group live-outs.

3.3.1 Intra-Group Buffer Reuse

Though, with scratchpad reuse, it might seem that we get too little a reduction in the

total memory consumption of the program, the gain is not just about the bytes count.

An overlapped tiled code gets maximum performance benefit when all its scratchpads fit

in the cache closest to the processor. Without achieving this, it is not just the potential

performance that will be ignored, but a more accurate behaviour of a tile size configuration

that remains tampered. Effects of this particular optimization is discussed in detail in the

Chapter 4.
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Algorithm 3: Procedure to find last use of functions in a pipeline: getLastUseMap
Input : set of functions : F, Timestamp map : T

1 freeMap← ;
2 for each func ∈ F do
3 lastUse←−1

// get timestamp of child that uses func the last
4 for each child ∈ children(func) do
5 t← T(child)
6 lastUse←max(lastUse, t)

// add func to the list of functions having the same lastUse timestamp
7 freeMap(lastUse)← freeMap(lastUse)∪ func
8 return freeMap

The constant-sized nature of tile scratchpads makes the search for reuse candidates

simpler, compared to full arrays with parametric bounds. Scratchpads that have exactly

equal size in each dimension come under the same class, however this can be relaxed by a

±constant value. We use a simple greedy approach to colour the classified functions within

a group for storage reuse. First, the entire group DAG is scanned for the last use of each

function and it’s scheduled time within the group. Using this information, a second pass is

made to emulate a walk in the schedule order, to decide whether to allocate a new storage

object to a function or to remap an already used object whose user function is no longer

live. Algorithm 4 gives high level details of remapping algorithm, applicable to both intra-

and inter-group storage optimizations. A subroutine, to find the last usages of all functions

in the DAG, needed for Algorithm 4, is presented in Algorithm 3.

An illustration of intra-group reuse (for scratchpads) enabled in one of the groups in

Figure 3.3, is shown in Figure 3.4, using a group-local colouring scheme. In this example,

an interpolation and a correction step are fused with four post-smoothing steps, shown

in the bounded region. Excluding the last smoothing step, which is live out of the group,

all other nodes are allocated as scratchpads to store data computed within a tile. Since

none of the nodes in the group produce data that is consumed by more than one node,

the allocations made to each node can be reused immediately after its first use. Hence, in

this case, our intra-group reuse algorithm uses just two colours to assign unique buffers

to the nodes. Nodes with the same colour get to use the same scratchpad buffer, which
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Algorithm 4: remapStorage Algorithm to remap PolyMage functions to arrays
Input : set of functions : F, Timestamp map : T

1 lastUseMap← getLastUse(F, T)
// Sort the functions with timestamp as the key

2 Fsorted← sort(F, key = T(f))
3 C←
⋃

f∈F
storageClass(f)

// Initialize the array pool of all storage classes to empty
4 arrayPool(c)← ;,∀c ∈ C
5 storage(f)← ;,∀f ∈ F
6 arrayID← 0
7 for each func ∈ Fsorted do
8 c← storageClass(func)

// If array pool is empty, return a new array
9 if arrayPool(c) = ; then

10 arrayID← arrayID+ 1
11 storage(func)← arrayID

// Else return an unused array from the pool
12 else
13 storage(func)← pop(arrayPool(c))
14 t ← T ( f unc)

// If some function has no use after this timestamp
15 if t ∈ lastUseMap then
16 for each freeFunc ∈ lastUseMap(t) do

// Return the arrays to array pool
17 c′← storageClass(freeFunc)
18 arrayID← storagefreeFunc

19 arrayPool(c′)← arrayPool(c′)∪ arrayID
20 return storage

is allocated privately for each thread executing a tile corresponding to this group. In the

given example, only two buffers are sufficient to finish the tile computation, as opposed to

using five buffers without reuse.

3.3.2 Inter-Group Array Reuse

Compaction of the set of full-arrays plays a major role in minimizing the resident memory

of a running program. This will also reduce the number of page faults since new arrays

would be touched fewer number of times. For smaller problem sizes, this optimization
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can yield performance gains by letting the entire data fit in the last level cache, which

otherwise may not be possible. Similarly, for very large problem sizes, not optimizing for

storage can cause the allocated area exceed the available space in main memory, resulting

in movement of data in and out of swap memory. This situation can be avoided by reusing

arrays to serve as storage for multiple functions.

Full-arrays can have parametric sizes in each dimension, which makes it quite tricky to

classify them. If the intermediate arrays contain ghost zones (boundary paddings), they

typically differ among each other by constant offsets. Such arrays are collected under the

same class, if the set of parameters of all of their dimensions is the same. In addition,

the coefficients of the dimension parameters also determine which storage class an array

shall belong to. Our storage classifier makes sure that arrays of size, say (M/2)×(N), come

under the same class of arrays whose size is (M)×(N/2). Finally, the representative size

of the entire storage class is calculated using maximum offset value in each dimension of

the class’ arrays. This ensures that all arrays in a class have sufficient size to avoid out-

of-bound accesses. Constant sized full-arrays are flagged under one class, which does not

include any parametric sized array. Program input and output arrays are not considered

available to serve as reuse buffers.

Since the storage reuse algorithm requires a schedule of the functions, a live-out func-

tion’s schedule is set to the schedule of the group it belongs to. In case there are multiple

live-outs from a group, and more than one of them happens to be eligible to reuse an ar-

ray, only one of them is allowed to reuse the array. This constraint is taken care of by the

remapping algorithm which assigns them array tokens taken from and returned to a com-

mon pool. Allocation and deallocation of full-arrays happen at the granularity of a group.

The same Algorithm 4 is used to optimize reuse for liveout arrays. In Figure 3.3, the liveout

nodes are coloured to show reuse among the same classes (in this case for multigrid levels)

of arrays.
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3.3.3 Pooled Memory Allocation

The optimization of the multigrid programs, using PolyMage, is limited to one multigrid

cycle. Because of this, any opportunity to extract performance across cycles (Figure 1.2),

have to be done outside PolyMage. One such optimization is to use a pool of memory, that

can serve the allocation and deallocation requests of the PolyMage generated code. We use

a pooled memory allocator to do this, with appropriate interface calls generated along with

the PolyMage output code. C++ malloc function call is proxied through pool_allocate.

Thus, all the intermediate buffer allocation requests have to go through this allocator, which

scans over a list of already allocated buffers to decide whether to create a new one or to

return a pointer to an unused allocated array. Reuse of arrays is permitted only if a request

matches with available arrays in terms of total size. Freeing an array will be simply a table

entry update, to keep track of reusable arrays, using pool_deallocate. With this setting,

arrays are actually allocated at the entry of the first multigrid cycle, and freed after the last

call to it, using pool_init() and pool_destroy respectively, operating on a memory pool.

This strategy not only prevents frequent and redundant malloc calls across the invoca-

tion of a multigrid cycle, but also enables reuse within a cycle, that could have been missed

by the inter-group reuse pass. We insert calls to pool_deallocate during code generation,

right after all the uses of an array’s user is done. This ensures that free arrays are returned

to the pool as early as possible and in time before any new request is made.

3.4 Auto-tuning

We use PolyMage’s Autotuner to search for the best configuration over a reasonably small

space for both 2D and 3D applications. For 2D benchmarks, tile sizes of the outermost

dimension are allowed within a range of 8:64, and that of innermost dimension in range

64:512, in powers of two. For 3D benchmarks, this space will be larger by a multiplier

due to their dimensionality. The tile size ranges for the two outermost and the innermost

dimensions are 8:32 and 64:256, respectively, in powers of two. Five different values of

grouping limit, which controls the size of a group during the auto-merging phase, are used.
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1 #pragma omp parallel for collapse(3)
2 for (int i = 0; i < N; i++) {
3 for (int j = 0; j < N; j++) {
4 for (int k = 0; k < N; k++) {
5 a[i][j][k] = b[i][j][k] * c[i][j][k];
6 }
7 }
8 }

Figure 3.5: Example code with OpenMP’s collapse directive usage

This limit affects the amount of overlap that can be tolerated and how much temporal

locality can be exploited. In total, 2D benchmarks are tuned for 80 configurations and 3D

benchmarks are tuned for 135 configurations.

In our experiments 4, for comparison with Pluto, we tuned over 25 tile configurations

for both 2D and 3D apps. We chose a smaller search space for Pluto, since tuning is semi-

automatic in this case, given that we had to manually modify the source file generated

in each case. This was because, Pluto’s front-end accepts only multi-dimensional array

accesses, while the hand-optimized code had flattened heap-allocated arrays.

3.5 Other Practical Considerations

As most of the computations in multigrid programs are data parallel, there is abundant par-

allelism along each dimension of the loop nests generated in the PolyMage’s output code.

Also, the loop-nest for an overlapped tile is typically parallel in all dimensions. How-

ever, this might not be true if boundary conditions are set in the PolyMage specification

– tile loop-nest generated as an isl AST node with ifs and other for loops. We separate

out perfect parallel loop-nests from the tree, and add the OpenMP clause ‘parallel for

collapse(d)’ above the loop headers, where d is the depth of perfect loop-nest. Iteration

space of parallel loops annotated with this clause, are flattened by OpenMP runtime so

that iteration chunking for threads can be done at a finer level, and this can potentially

improve the load-balance among threads. An example loop nest showing the usage of

OpenMP collapse is given in Figure 3.5.
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However, in order to be able to do this, the scratchpad buffer allocation for the tile

has to be moved to the innermost loop of the nest so that they are not shared between

threads. We added another module in PolyMage code generator that scans the polyhedral

AST generated by isl, for such perfectly parallel loop-nests and decide the both the depths

at which collapse clause and the scratchpad allocation code must be added.

Figure 3.6 shows a snippet of code generated by PolyMage after all optimizations. We

implemented all the new optimizations and language features discussed in this Chapter in

the publicly available PolyMage repository [32] available as open-source software under

Apache License Version 2.0.
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1 void pipeline_Vcycle(int N, double * F,
2 double * V, double *& W)
3 {
4 /* Live out allocation */
5 /* users : [’T9_pre_L3’] */
6 double * _arr_10_2;
7 _arr_10_2 = (double *) (pool_allocate(sizeof(double) *
8 (2+N)*(2+N)));
9 #pragma omp parallel for schedule(static) collapse(2)

10 for (int Ti = -1; Ti <= N/32; Ti+=1) {
11 for (int T j = -1; T j <= N/512; T j+=1) {
12 /* Scratchpads */
13 /* users : [’T8_pre_L3’, ’T6_pre_L3’, ’T4_pre_L3’,
14 ’T2_pre_L3’, ’T0_pre_L3’] */
15 double _buf_2_0[(50 * 530)];
16 /* users : [’T7_pre_L3’, ’T5_pre_L3’, ’T3_pre_L3’,
17 ’T1_pre_L3’] */
18 double _buf_2_1[(50 * 530)];
19

20 int ubi = min(N, 32*Ti + 49);
21 int l bi = max(1, 32*Ti);
22 for (int i = l bi; i <= ubi; i+=1) {
23 int ub j = min(N, 512*T j + 529);
24 int l b j = max(1, 512*T j);
25 #pragma ivdep
26 for (int j = l b j; (j <= ub j); j+=1) {
27 _buf_2_0[(-32*Ti+i)*530 + -512*T j+j] = ...;
28 }}
29

30 int ubi = min(N, 32*Ti + 48);
31 int l bi = max(1, 32*Ti);
32 for (int i = l bi; i <= ubi; i+=1) {
33 int ub j = min(N, 512*T j + 528);
34 int l b j = max(1, 512*T j);
35 #pragma ivdep
36 for (int j = l b j; (j <= ub j); j+=1) {
37 _buf_2_1[(-32*Ti+i)*530 + -512*T j+j] = ...;
38 }}
39 ...
40 }}
41 ...
42 pool_deallocate(_arr_10_2);
43 ...
44 }

Figure 3.6: Optimized code generated by PolyMage
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Experimental Evaluation

In this chapter, we describe the experimental setup, the multigrid benchmarks we used for

evaluation, discuss the results with a detailed analysis and summarize the outcomes.

4.1 Experimental Setup

All experiments were run on a dual socket NUMA multicore system with Intel Xeon v3

processors (based on the Haswell microarchitecture). Table 4.1 provides the details of

the hardware and software. Hyper-threading was not used during the experimentation.

OpenMP thread affinity was set to scatter to even balance threads across cores of different

processors. The minimum execution time from five runs has been reported in all cases.

4.2 Benchmarks

Experimental evaluation is performed on Multigrid benchmarks that solve the Poisson’s

equation [5], which is given by

∇2u= f , (4.1)

where ∇ is the vector differential operator, and u and f are real functions. The Pois-

son’s equation is a second-order elliptic partial differential equation of fundamental im-

portance to electrostatics, mechanical engineering, and physics in general. We solve the

31
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Table 4.1: Architecture details
2-socket Intel Xeon E5-2690 v3

Clock 2.60 GHz
Cores / socket 12
Total cores 24
Hyperthreading unused
L1 cache / core 64 KB
L2 cache / core 512 KB
L3 cache / socket 30,720 KB
Memory 96 GB DDR4 ECC 2133 MHz

Compiler Intel C/C++ and Fortran compiler
(icc/icpc and ifort) 16.0.0

Compiler flags -O3 -xhost -openmp -ipo
Linux kernel 3.10.0 (64-bit) (Cent OS 7.1)

Poisson’s equation for 2-dimensional and 3-dimensional data grids (with a finite difference

discretization), using V-cycle and W-cycle; we thus have four benchmarks resulting from

these choices. These benchmarks are based on code used for evaluation by Ghysels and

Vanroose [11] and made available at [12]. Our techniques are equally applicable to a finite

volume discretization, which was used for benchmarks in past work [38, 4].

We use two smoothing configurations, namely 4-4-4 and 10-0-0, for each of the four

benchmarks. The smoothing configuration 4-4-4 refers to four pre-smoothing iterations,

four coarsest level smoothing iterations, and four post-smoothing iterations (correspond-

ing to n1 = n2 = n3 = 4 in Algorithm 1). Similarly, 10-0-0 represents the use of only

pre-smoothing steps, for 10 iterations. The 4-4-4 configuration was chosen to observe the

behaviour of the optimized code in a uniform smoothing steps setting. 10-0-0 is a config-

uration on the other extreme, which is used to test the effectiveness of fusion when there

are no smoothing steps between two-levels (i.e., between one interpolate and the next).

Any other variant would more or less relate to one of these configurations, since neither

other asymmetric smoothing-steps combination nor the coarse-smoothing steps are very

different enough to stress-test the compiler.

In all cases, Jacobi smoothing steps and four discretization levels are used. Though, any

number of levels can be used in PolyMage to generate optimized code, a higher number
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would not be of much significance for performance analysis, since the finer grid compu-

tations constitute the bulk of the execution time of a cycle. Although other smoothing

techniques like successive over-relaxation and Gauss-Seidel Red Black (GSRB) exist, we

focus only on Jacobi smoothing for this paper. GSRB for example presents additional con-

siderations for vectorization [38], all optimization presented in this paper apply to it if the

red and black points are abstracted as two grids.

In addition to the four benchmarks above, we also evaluated our system on the NAS

Multigrid benchmark (MG) from NAS Parallel Benchmarks (v3.2) and compare it with the

reference version with non-periodic boundary setting. NAS MG uses a V-cycle with no pre-

smoothing steps. It is also worth mentioning that the NAS-MG code incorporates a hand-

optimized partial stencil accumulation technique, using a line buffer in the innermost loop

of all stencil computations. This reduces the arithmetic intensity of the computations as the

stencil kernel is evaluated as an accumulation of partially computed stencils. The hand-

optimized code does not incorporate any tiling technique, and includes buffer reuse across

multigrid cycle invocations, by using the same allocation pool for each cycle. The bench-

mark implementation is available in Fortran language, and uses static buffer allocations,

resulting in the usage of stack space of the program – in contrast to this, our implemen-

tations use heap space for full-array allocations. Because of this, to accommodate larger

arrays of higher benchmark classes (Table 4.2), the programs were compiled with an extra

flag -mcmodel=large using ifort.

Problem sizes used for all benchmarks are listed in Table 4.2. We define problem size

classes W, A, B, and C for all benchmarks we evaluate in the same way they exist for the

NAS Multigrid benchmark.

Benchmark Grid size, cycle #iters)

Class W Class A Class B Class C

2D 20482 (50) 40962 (50) 81922 (10) 163842 (10)
3D - 1283 (25) 2563 (25) 5123 (10)
NAS-MG 1283 (4) 2563 (4) 2563 (20) 5123 (20)

Table 4.2: Problem size configurations: the same problem sizes were used for V-cycle and
W-cycle and for 4-4-4 and 10-0-0
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Table 4.3: Benchmark characteristics: lines of code and baseline execution times
Benchmark Stages Lines of code Lines of generated code Execution time of PolyMage-Naive (s)

(# DAG PolyMage HandOpt HandOpt+Pluto PolyMage-Opt PolyMage-Opt+ class B class C

nodes) (DSL) (C) (C) (C/C++) (C/C++) 1 24 1 24

V-2D-4-4-4 40
160 140 150

2324 2496 51.36 9.61 141.43 25.8

V-2D-10-0-0 42 2155 2059 60.11 11.41 169.74 30.96

W-2D-4-4-4 100
165 145 155

6156 6768 95.39 13.19 268.15 37.19

W-2D-10-0-0 98 4306 4711 78.23 14.75 241.14 44.79

V-3D-4-4-4 40
220 185 200

4889 4457 20.89 4.1 67.35 15.05

V-3D-10-0-0 42 4593 4179 24.21 5.3 78.15 18.09

W-3D-4-4-4 100
225 190 205

12184 11535 40.69 6.16 132.95 17.74

W-3D-10-0-0 98 9237 7897 42.18 6.79 133.44 21.26

NAS-MG 34 180 500 - 2010 2013 6.72 0.95 60.34 7.84

4.3 Comparison

PolyMage-Opt+ refers to PolyMage generated code with all optimizations and considera-

tions that are the contributions to the compiler in this work (Chapter 3). For the first four

benchmarks, we compare with (a) manually optimized versions of the benchmarks that

we obtained from Ghysels and Vanroose [11], referred to as HandOpt, (b) HandOpt fur-

ther optimized by time tiling the smoothing steps with PlutoâĂŹs diamond tiling (version

0.11.4-229-gceac3ae)) approach [2, 31], which we refer to as HandOpt+Pluto (also pro-

vided by Ghysels and Vanroose [11], and (c) with a version that does not have the storage

optimizations and other improvements we described in Chapter 3 (PolyMage-Opt). In addi-

tion, to also evaluate diamond tiling for the TStencil construct in PolyMage, we integrated

libPluto into PolyMage (Figure 4); we use PolyMage-Dtile-Opt+ to refer to PolyMage-Opt+

with the choice to applying diamond tiling instead of overlapped tiling to pre-, coarse- and

post-smoothing steps.

The manual optimizations in the HandOpt versions include explicit loop parallelization

(using OpenMP pragmas), storage optimization within multigrid levels – i.e., to use two

modulo buffers (precisely sufficient) instead of one buffer for each smoothing step, pooled
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memory allocation, etc. For HandOpt+Pluto, tile sizes were tuned empirically around opti-

mized ones that shipped with its release. PolyMage-Naive corresponds to a simple parallel

code generated using PolyMage, with loops generated in a straightforward manner with no

tiling, fusion, or storage optimization, but OpenMP pragmas on the outermost among par-

allel loops for each loop nest (loop iterating the outermost among space/grid dimensions).

This version is ideally what a programmer with a very basic proficiency in performance

extraction would write, and is used as a baseline for comparison against the rest. Note

that PolyMage-Naive is compiled with the best optimization flags of the vendor compiler,

just like the other codes compared with.

The four benchmarks capture a wide range of complexity. The W-cycle is a large and

complex pipeline, with nearly 100 stages for smoother and level settings mentioned in

Table 4.2 (as seen in the DAG of Figure 2.3c). Domain experts consider the W-cycle as

a heavyweight method due to its computational cost and number of steps involved in

its single cycle [37]. Another inherent property of W-cycles, that restricts the amount

of achievable speedup, is that the live-out arrays computed at the beginning of the cycle

have to be live till the end for a relatively longer amount of time compared to V-cycles.

The miniGMG [27] and HPGMG [21] benchmarks use F-cycle, which is in between V- and

W- cycles in complexity. Figure 3.3 shows the grouping and storage mapping for the best

performing code for 2D V-cycle 4-4-4 class W benchmark. In this case, the code contains

ten groups all of which, except one, were overlapped tiled (exception is the single defect

node in a group, which do not require tiling for temporal locality). The sizes of groups

varied between a minimum of one to a maximum of six nodes. Among these, some contain

smoothing steps fused with interpolation while others contain defect or smoothing steps

fused with restrict. This proves that fusing computations across levels is indeed beneficial

for performance.

Table 4.3 provides an indication on the programmer effort involved with developing

the various versions, size of the benchmark pipeline graphs and the lines of optimized

code generated by PolyMage. The LOC count for PolyMage generated codes is relatively

high because of the complex transformations applied on the original schedule, resulting in
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the extra tile loop nests and the conditional codes to handle boundary conditions in the

presence of these loops.

Benchmark Absolute execution time (seconds)

Class W Class A Class B Class C

V-2D-4-4-4 1.396 5.791 7.474 28.6
V-2D-10-0-0 1.875 9.748 14.434 35.49
W-2D-4-4-4 1.235 4.872 10.207 36.001
W-2D-10-0-0 1.245 5.962 15.19 48.357
V-3D-4-4-4 - 0.381 3.699 11.912
V-3D-10-0-0 - 0.513 4.374 18.891
W-3D-4-4-4 - 0.525 4.586 15.664
W-3D-10-0-0 - 0.543 5.597 23.385
NAS-MG 0.042 0.306 1.557 12.634

Table 4.4: Absolute performance of PolyMage-naive, baseline used in Fig-
ures 4.1, 4.2, 4.3, 4.4

4.4 Analysis

Figures 4.1, 4.2, 4.3 show the performance obtained when running on all 24 cores of the

system. When compared to HandOpt and HandOpt+Pluto, the difference in performance is

obtained due to the combined benefit of fusion and tiling. The improvement of PolyMage-

Opt over HandOpt+Pluto, is due to fusion as well as use of local buffers (scratchpads).

The difference between PolyMage-Opt and PolyMage-Opt+ isolates the improvement due

to reuse of scratchpads within a group, across groups, more efficient allocation, and mul-

tidimensional parallelism.

From the experimental results, we observe a general trend of PolyMage-Opt+ perform-

ing better for higher classes than for lower classes, compared to HandOpt+Pluto in all

benchmarks. One of the main reasons for this, is the communication avoiding nature and

the shape of tiles in overlapped tiling, which appear to achieve good parallel performance

due to fewer synchronizations. Though PolyMage codes make use of scratchpad buffers

for intermediate functions, this is still an additional storage requirement which does not
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Figure 4.1: Performance: speedups for 2D benchmarks — absolute execution times can be

determined using Table 4.4
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Figure 4.2: Performance: speedups for 3D benchmarks — absolute execution times can be

determined using Table 4.4
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exist for diamond tiled codes, since all operations take place between just two arrays in a

ping-pong fashion alternating in time.

The reason for a larger performance gap between PolyMage-Opt+ and HandOpt+Pluto

in 3D benchmarks is that, the amount of overlap in the tiles is much higher than that in 2D

benchmarks, due to the additional dimension. In other words, there is lot more redundant

work for overlapped tile codes, which is a disadvantage that cannot be compensated by

the locality benefits achieved. Because of the larger volume of scratchpads needed in 3D

cases, the optimal codes had very small tile sizes for the outermost dimensions, which

limits the group size to smaller values as redundancy cannot be tolerated. As the extents

of the tile becomes smaller, the fraction of the tile volume that is subjected to redundant

computation increases. In some cases, the optimal configurations had smaller tile sizes to

fit scratchpads in cache in spite of a double overlap (a tile overlapping with the neighbour

of its neighbour) resulted by fusing many functions.

Over the reference NAS MG implementation included for NAS parallel benchmarks

(NPB), PolyMage-Opt+ obtains an improvement of 32% for the Class C problem size. Over-

all, the NAS implementation is better than PolyMage-Opt+ by a mean of 17%. As mentioned

earlier, the NAS MG implementation in NPB optimizes the core loop body computation by

computing a partial sum and reusing it multiple times through a line buffer in the innermost

loop, which turns out to be better for all classes, except C, even without tiling.

When compared to the manually optimized versions, we observe that the class A W-

cycle 3-D cases are the only ones where PolyMage-Opt+ does not obtain an improvement.

As mentioned in Section 4.2, the W-cycle is the most complex of the evaluated bench-

marks and serves as a stress test for our system. Code generated in this case is also long

(Table 4.3). We believe that the lack of speedup is due to a combination of code quality,

scratchpad usage, which can be further improved, and a greater fraction of redundant com-

putation in 3-D — although the latter was tuned over a space of tile sizes and group size

thresholds. Using a combination of polyhedral and syntactic code generation techniques is

likely to improve code quality and should be explored in a DSL setting.

Performance comparison of overlapped and diamond tiling for a setting involving just
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the smoothing steps, with one level (finest grid) of 5123 problem size, tuned on 24 cores, is

shown in 4.4b. While for fewer smoothing steps (four in number), PolyMage-opt+ performs

slightly better than HandOpt+Pluto, the trend is quite the opposite for larger smoothing

steps. This due to a good exploitation of temporal locality by fusing all 4 steps in one group

for the former case. With ten smoothing steps, the amount of redundant computation

in overlapped tiling suppresses the gains achieved from locality. In this case, the best

performing code does not have all the steps fused, to avoid high amount of overlap.

We observed that HandOpt+Pluto represented close to the best that could be done

with respect to storage optimization (allocation and use of buffers). Hence, we consider

automatically obtained performance that comes even close to it as significant. Unlike in

the 2-d case, we observe that PolyMage-Opt+ is not able to outperform HandOpt+Pluto in

the 10-0-0 3-d cases. The difference is in the amount of benefits overlapped tiling brings

for the 3-d case (especially 10-0-0) as is evident from Figure 4.4b.

We also observe that PolyMage-Dtile-Opt+ outperforms PolyMage-Opt+ in only one

scenario 3D-W-10-0-0, and its performance is always lower than HandOpt+Pluto. In fact,

PolyMage-Opt+ outperforms PolyMage-Dtile-Opt+ by a big margin for the 2D cases. The

gap is narrower for 3D, and along expected lines more for 10-0-0 than for 4-4-4 configu-

rations (as explained by Figure 4.4b). However, this does not still explain the large gap

between PolyMage-Dtile-Opt+ and PolyMage-Opt+. Due to an implementation issue aris-

ing from conservative assumptions in reusing input/output arrays, we note that PolyMage-

Dtile-Opt+ performs more memory copies; such copies are not present in HandOpt+Pluto

or PolyMage-Opt+. We confirmed that this reduces PolyMage-Dtile-Opt+‘s performance

by up to 60% in 3D cases. It is clear that for 2D grids, and for fewer pre-smoothing steps

(whether for 2D or 3D), overlapped tiling with storage optimization has an edge over dia-

mond tiling for such Multigrid computations. The fraction of redundant computation with

overlapped tiling increases with dimensionality. It is straightforward to choose PolyMage-

Dtile-Opt+ over PolyMage-Opt+ for 3D grids when the number of pre-smoothing steps is

high (order of ten or more).
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Scaling Table 4.3 can be used in conjunction with Figures 4.1 and 4.2 to determine how

the optimized code scales with core count. For example, for W-2D-10-0-0 class C, a naive

parallelization (PolyMage-Naive) yields a speedup of only 5.38× on 24 cores when com-

pared to running on a single core, while PolyMage-Opt+ with all its optimizations for

locality and parallelism provides a final speedup of 33.3× on 24 cores over the sequential

PolyMage-Naive. Similarly, for V-3D-4-4-4 class C, PolyMage-Opt+ delivers a speedup of

10.8× when run in parallel on 24 cores over sequential PolyMage-Naive, while the corre-

sponding speedup for PolyMage-Naive on 24 cores is only 4.47×.

Figure 4.4a shows the speedup breakdown for our storage optimizations, on 24 cores,

over an implementation obtained by disabling all of them. The best performing Opt+ con-

figurations of both 2D and 3D V-cycle 10-0-0 benchmarks were chosen for this analysis.

The three bars in the plot refers to a) enabling just the intra-group storage reuse, b) en-

abling (a) and pooled memory allocation, and finally c) enabling inter-group reuse with

(a) and (b). The arguments made in 3.3.1 and 3.3.2 on benefits offered by storage opti-

mizations hold true, as observed from this experiment. It can be clearly seen that pooled

memory allocation takes care of inter-group reuse opportunities, even when the latter is

not enabled. Generating code with inter-group reuse further pushes up the performance,

that was not captured by pooled allocation alone. On the Vcycle benchmark with configu-

ration class C, 10-0-0, we disabled the multidimensional parallelism in the PolyMage-Opt+

version, to analyse the contribution of OpenMP collapse clause to the overall performance.

The performance gains obtained with multidimensional parallelism, over the version with-

out it, for 2D and 3D cases were 0.4% and 5.6% respectively. This clearly demonstrates

that extracting parallelism in all dimensions is useful when there are fewer tasks, which is

exactly the case with 3D benchmarks.

4.5 Summary

PolyMage-Opt+ achieves a mean (geometric) improvement of 3.2× over PolyMage-Naive
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across all 2D and 3D benchmarks (4.73× for 2D and 2.18× for 3D). The mean improve-

ment over PolyMage-Opt is 1.31×. We even achieve an improvement of 1.23× over Han-

dOpt+Pluto on average (1.67× for 2-D cases). The improvements are higher for 2-d than

for 3-d — this is an expected trend since multigrid on higher-dimensional grids is expected

to have a higher memory bandwidth requirement for the same amount of computation.
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Chapter 5

Related Work

As the geometric multigrid algorithm has been popular due to its low computational com-

plexity and amenability to parallelization, a number of past works have focused on im-

proving its performance [24, 38, 10, 4, 3, 11]. Among these, [38, 10, 11] considered and

evaluated tiling across multiple smoothing steps; [38, 4, 3] considered fusion of operators

and optimizing the fused stencils together. All of these approaches were either manual

or semi-automatic in the application of their optimizations. We discuss and compare our

work with these in more detail below. Past works related to stencil loop optimizations,

tiling strategies and their characteristics were discussed in detail in Chapter 3.

Williams et al. [38] explored optimization techniques for geometric multigrid on sev-

eral multicore and many-core platforms; the optimizations appear to have been applied

manually, and mainly included communication aggregation, wavefront-based technique to

reduce off-chip memory accesses, and fusion of residual computation and restriction. All

of these optimizations relate to optimizations that we automated. The communication ag-

gregation technique is equivalent to overlapped tiling, but applied in a distributed-memory

parallelization setting. A deeper ghost zone is communicated across compute nodes and re-

dundant computation at the boundaries is performed to reduce communication frequency.

However, as the authors note, the tile size in play is not sufficient to exploit cache locality,

and hence use a wavefronting method [40] to keep a certain number of lower-dimensional

planes in smaller working memory that fits in L3 cache, and stream through the larger
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working set on the node. This technique is equivalent to a transformation involving a loop

skewing followed by a tiling, and is complex to automate with local buffers. The same

wavefronting techniques is automated via a composition of loop transformations by Basu

et al. [4].

In contrast to this method, our approach performs overlapped tiling for both locality and

shared-memory parallelization (with a single level of tiling) — the trapezoidal tile fits in L2

cache. We find this strategy also suitable for easier automation. The grouping algorithm

used in PolyMage encompasses residual-restriction fusion. In summary, in contrast to the

approaches of [24, 38] (a) our approach has been towards building language and automatic

compiler optimization support via a DSL tool, and (b) the optimization approach that we

consider takes a holistic view of all steps involved in geometric multigrid.

Ghysels and Vanroose [11] used state-of-the-art stencil optimization techniques from

compiler research to improve the arithmetic intensity of geometric multigrid algorithm,

and while doing that, analyzed the trade-offs between convergence properties and the

improved arithmetic intensity. The authors applied recent polyhedral tiling techniques to

the smoothing iterations of the algorithm to improve data reuse. The impact of increasing

the number of smoothing steps on arithmetic intensity, and on the time to solution was

also studied through the roofline performance model. Our work has mainly been inspired

by results obtained by Ghysels and Vanroose [11]. However, instead of applying tiling

techniques to just the smoothing steps, we have taken a global view of optimizing the entire

multigrid computation, and have explored opportunity to perform tiling and fusion across

all steps. Enabling such optimization in an effective way is in fact one of the objectives of

using a DSL. While Ghysels and Vanroose[11] used Pluto’s diamond tiling technique [2], we

used overlapped tiling to allow storage optimization using local buffers (scratchpads), at

the expense of redundant computation. Our experimental evaluation (Chapter 4) included

a comparison with code obtained from Ghysels and Vanroose[11], and the difference in

performance was discussed therein. The performance modeling study made in Ghysels

and Vanroose[11] linking arithmetic intensity to convergence rate is orthogonal to our

experimentation, since we chose and restricted ourselves to two particular configurations



47

for the smoothing steps.

Basu et al. [4, 3] studied optimization of geometric multigrid algorithm by applica-

tion of certain compiler transformations in a semi-automatic way: the optimizations were

specified using a script-driven system (using CHiLL [7]), while the code generation was

automatic given the specification. This work considered fusion across multigrid stages,

hyper-trapezoidal tile shapes with redundant computation to avoid or reduce communi-

cation phases, and finally loop skewing to create a wavefront for multithreading. It thus

automates most of the optimizations considered by Williams et al. [38] by composing the

transformations using CHiLL. However, the fused groups are not tiled for locality: such

tiling with tile sizes is necessary to improve L2 cache locality and reduce synchroniza-

tion frequency. In addition, wavefronting suffers from pipelined startup and drain phases,

which may be significant for certain problem sizes and a large number of cores. Like the

approach of [11], ours does not involve pipelined startup.

As briefly mentioned in Chapter 1, image processing pipelines have similar properties

as geometric multigrid algorithms. Hence, optimizations techniques studied for DSLs such

as Halide [35] and PolyMage [28] are also applicable here. Halide’s transformation of

the input specification is semi-automatic, since the programmer specifies the schedule that

determines how the algorithmic specification is to be computed. Significant effort and ex-

pertise on performance optimization and tuning is needed to determine good schedules.

On the other hand, PolyMage is completely automatic in its scheduling; a meaningful com-

parison with semi-automatic approaches is thus infeasible unless pre-tuned schedules exist.

Unlike for image processing pipelines, both 2-d and 3-d grids are important for multigrid,

while image processing filters or stages typically process 2-dimensional data. The cases

where three or higher-dimensional structures are used in image processing are typically

those that involve reductions or histograms. Three dimensional grids have different impli-

cations on the choice of tiling strategy and tile size selection.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this work, we demonstrated how high performance can be achieved along with enhanced

programmability for GMG, through a domain-specific optimization system. We compared

our approach with the existing PolyMage optimizer, and codes that were hand-optimized

in conjunction with Pluto, on benchmarks varying in multigrid cycle structure, smoothing

steps, and other aspects. Our automatically optimized codes obtained an improvement

of 51% (geometric mean of all benchmarks) in execution time over existing PolyMage

optimizer.

It was observed that the diamond tiling technique achieves parallel performance supe-

rior to that of overlapped tiling in higher dimensional computations. However, for large

problem sizes in all benchmarks, the improved PolyMage optimizer performs better or

nearly as good as hand-optimized programs, which make use of Pluto’s diamond tiled

code. Our optimizations-enabled PolyMage compiler achieves a speedup of up to 32%

over the NAS-MG benchmark from the NAS-PB suite v3.2 [29]. From our experiments, it is

clear that, for 3-D multigrid applications, the overlapped tiling technique suffers from high

amount of redundant work, while it still appears to be a better choice for 2-D applications

on larger problem sizes.
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Another important conclusion that can be drawn from the experiments, is on the im-

portance of storage optimizations in improving the execution time of a program. Though

the motivating factor to enable these optimizations was to achieve minimality in the DRAM

usage and cache footprints, they turned out to be some among crucial factors in extracting

a higher performance. While intra-group storage reuse aids the programs to fit as much

data as possible in lower level caches and reduce off-chip memory accesses, inter-group

reuse minimizes the resident memory in DRAM, TLB misses and memory bandwidth con-

tention. Such improvement helped in removing the latencies involved in data fetching and

memory management, thus improving program performance.

6.2 Future Work

Some of the issues that can be addressed for future enhancements are listed below.

• Integration of diamond tiling technique in conjunction with the existing overlapped

tiling in PolyMage optimizer. Such a combination can potentially yield a higher per-

formance by capturing the best combination of both techniques.

• Deeper analysis is essential to make compile-time decisions on the scheduling strat-

egy to be used. Individual behaviours of each strategy differ due to their sensitivity

to many aspects like problem size and number of grid dimensions

• The current storage optimization algorithm contributed to the existing PolyMage

compiler depends on the schedules of the functions in the pipeline graph. Currently,

PolyMage’s pipeline schedule uses level order, and storage reuse opportunities are

not considered during scheduling. Finding schedules that result in optimal reuse is

an interesting problem for future work.
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