
Compiling for a Dataflow Runtime on
Distributed-Memory Parallel Architectures

A Thesis

Submitted For the Degree of

Master of Science (Engineering)

in the Computer Science and Engineering

by

Roshan Dathathri

Computer Science and Automation

Indian Institute of Science

BANGALORE – 560 012

April 2014

i

c©Roshan Dathathri

April 2014

All rights reserved

Acknowledgements

First and foremost, I would like to thank my advisor, Dr. Uday Bondhugula, for his

invaluable guidance. I am grateful for the enormous amount of freedom he provided in

pursuing research. He has always been enthusiastic to discuss new ideas and provide

feedback. In addition to him, I collaborated with Chandan Reddy, Thejas Ramashekar,

and Ravi Teja Mullapudi on problems that are a part of this thesis. Our technical

discussions have been very fruitful. I am thankful to my collaborators for helping me in

improving the quality of work presented in this thesis. I have enjoyed working with all

of them.

I would like to specially thank all the members of the Multicore Computing Lab for

maintaining a culture that is refreshing and relaxing. It has been a pleasure to work in

such an environment.

I extend my gratitude to the department for providing a conducive environment for

research. I thank Dr. R. Govindarajan and Dr. Uday Bondhugula for offering courses

on computer architecture and advanced compilers respectively. Reading and discussing

research papers in these courses taught me to analyze, summarize, and critique research

ideas. The courses laid the foundation for my research. I would also like to thank all the

non-technical staff in the department, including Mrs. Lalitha, Mrs. Suguna, and Mrs.

Meenakshi, for ensuring that the time I spent in the department was hassle free.

It has been a privilege to study and live in the Indian Institute of Science (IISc). I

enjoyed living in such a beautiful and peaceful campus. The hostel and mess facilities

made my stay very comfortable. The swimming pool and gymkhana made my stay

fulfilling. I am grateful to the institute for all the facilities it provides to students.

i

ii

I have been fortunate to have a close group of friends in the institute. I thank my

friends Anirudh, Apoorva, Aravind, Chandan, Irshad, Jay, Lakshmi, Malavika, Narayan,

Ninad, Pallavi, Prachi, Prasanna, Ranjani, Satya, Siddharth, Thejas, Vasantha and

Vinayaka. Their company made my stay a delightful one. I will cherish my experiences

with them.

There have been many people who have motivated me to pursue higher studies and

research. I am thankful to all of them. Some of them deserve a special mention. My

friend Vineeth introduced me to research and PhD programs. My friend Rajath joined

IISc to do research and influenced me to join IISc the following year. I found an interest

in research around the same time as my friends Somashekar and Madhusudan, and we

helped each other to pursue that interest. My managers at National Instruments (NI),

Arjun and Praveen, encouraged me to pursue higher studies. It was through an initiative

of NI that I first met Dr. Uday Bondhugula, which planted the seed for my research.

Finally, I would like to thank my parents for their support and encouragement. They

have given me far more than I could ever give back.

Publications based on this Thesis

1. Roshan Dathathri, Chandan Reddy, Thejas Ramashekar, and Uday Bondhugula.

Generating Efficient Data Movement Code for Heterogeneous Architectures with

Distributed-memory. In Proceedings of the 22nd International Conference on Par-

allel Architectures and Compilation Techniques, PACT ’13, pages 375–386, 2013.

IEEE Press.

2. Roshan Dathathri, Ravi Teja Mullapudi, and Uday Bondhugula. Compiling Affine

Loop Nests for a Dataflow Runtime on Shared and Distributed Memory. Submitted

(undergoing peer-review).

iii

Abstract

Programming for parallel architectures that do not have a shared address space is tedious

due to the need for explicit communication between memories of different compute de-

vices. A heterogeneous system with CPUs and multiple GPUs, or a distributed-memory

cluster are examples of such systems. Past works that try to automate data movement

for such architectures can lead to excessive redundant communication. In addition,

current de-facto parallel programming models like MPI make it difficult to extract task-

level dataflow parallelism as opposed to bulk-synchronous parallelism. Thus, task parallel

approaches that use point-to-point synchronization between dependent tasks in conjunc-

tion with dynamic scheduling dataflow runtimes are becoming attractive. Although good

performance can be extracted for both shared and distributed memory using these ap-

proaches, there is very little compiler support for them. In this thesis, we propose a fully

automatic compiler-assisted runtime framework that takes sequential code containing

affine loop nests as input, extracts coarse-grained dataflow parallelism, statically ana-

lyzes data to be communicated, and generates the components of the dynamic scheduling

dataflow runtime along with efficient data movement code for distributed-memory archi-

tectures.

Firstly, we describe an automatic data movement scheme that minimizes the volume

of communication between compute devices in heterogeneous and distributed-memory

systems. We show that by partitioning data dependences in a particular non-trivial way,

one can generate data movement code that results in the minimum volume for a vast

majority of cases. The techniques are applicable to any sequence of affine loop nests

and work on top of any choice of loop transformations, parallelization, and computation

iv

v

placement. The data movement code generated minimizes the volume of communication

for a particular configuration of these. We use a combination of powerful static analy-

ses relying on the polyhedral compiler framework and lightweight runtime routines they

generate, to build a source-to-source transformation tool that automatically generates

communication code. We demonstrate that the tool is scalable and leads to substantial

gains in efficiency. On a heterogeneous system, the communication volume is reduced

by a factor of 11× to 83× over state-of-the-art, translating into a mean execution time

speedup of 1.53×. On a distributed-memory cluster, our scheme reduces the commu-

nication volume by a factor of 1.4× to 63.5× over state-of-the-art, resulting in a mean

speedup of 1.55×. In addition, our scheme yields a mean speedup of 2.19× over hand-

optimized Unified Parallel C (UPC) codes.

Secondly, we describe the design of compiler-runtime interaction to automatically

extract coarse-grained dataflow parallelism in affine loop nests on both shared and dis-

tributed memory. We use techniques from the polyhedral compiler framework to extract

tasks and generate components of the runtime which are used to dynamically schedule

the generated tasks. The runtime includes a distributed decentralized scheduler that

dynamically schedules tasks on a node. The schedulers on different nodes cooperate

with each other through asynchronous point-to-point communication of data required

to preserve program semantics – all of this is achieved automatically by the compiler.

While running on 32 nodes with 8 threads each, our compiler-assisted runtime yields

a mean speedup of 143.6× over the sequential version, and a mean speedup of 1.6×

over the state-of-the-art automatic parallelization approach that uses bulk-synchronous

parallelism while using our own efficient data movement scheme. We also compare our

system with past work that addresses some of these challenges on shared-memory, and

an emerging runtime (Intel Concurrent Collections) that demands higher programmer

input and effort in parallelizing. To the best of our knowledge, ours is also the first

automatic scheme that allows for dynamic scheduling of affine loop nests on a cluster of

multicores.

Keywords

communication optimization, data movement, task parallelism, dy-
namic scheduling, dataflow runtime, compiler-runtime framework,
polyhedral model, distributed memory, heterogeneous architectures

vi

Contents

Acknowledgements i

Publications based on this Thesis iii

Abstract iv

Keywords vi

List of Figures xi

List of Tables xiii

List of Algorithms xiv

1 Introduction 1
1.1 Distributed-memory parallel architectures 1
1.2 Productivity and performance . 2
1.3 Existing approaches . 3
1.4 Automatic data movement and compilation for a dataflow runtime 4
1.5 Contributions . 6

2 Polyhedral Model 9

3 Generating Efficient Data Movement Code 11
3.1 Illustrative examples . 11
3.2 Background and motivation . 12

3.2.1 Flow-out (FO) scheme . 12
Overview . 13
Flow-out set . 14
Receiving iterations . 14
Packing and unpacking . 15
Communication volume . 16

3.3 Flow-out intersection flow-in (FOIFI) scheme 16
3.3.1 Overview . 19
3.3.2 Flow-in set . 20

vii

CONTENTS viii

3.3.3 Flow set . 20
3.3.4 Communication volume . 21

3.4 Flow-out partitioning (FOP) scheme . 22
3.4.1 Overview . 23
3.4.2 Partitioning of dependences . 25
3.4.3 Partitioned communication sets 26
3.4.4 Receiving iterations of the partition 27
3.4.5 Packing and unpacking . 27
3.4.6 Communication volume . 28

3.5 Implementation . 30
3.6 Experimental evaluation . 32

3.6.1 Distributed-memory architectures 32
Setup . 32
Benchmarks . 32
Evaluation . 33
Analysis . 34

3.6.2 Heterogeneous architectures . 38
Intel-NVIDIA system setup . 38
AMD system setup . 38
Benchmarks . 39
Evaluation . 39
Analysis . 41

4 Targeting a Dataflow Runtime 43
4.1 Motivation and design challenges . 43

4.1.1 Dataflow and memory-based dependences 43
4.1.2 Terminology . 44

Tasks . 44
Scheduling tasks . 45

4.1.3 Synchronization and communication code 46
4.1.4 Objectives . 47

4.2 Compiler-assisted dataflow runtime . 47
4.2.1 Overview . 47
4.2.2 Synthesized Runtime Interface (SRI) 50

Inter-task dependences . 52
Constraints on scheduling . 55
Communication and placement 55
Computation . 56
Thread-safety . 56

4.2.3 Distributed Function-based Dynamic Scheduling (DFDS) 57
Priority . 61
Dynamic a priori placement . 62

4.3 Implementation . 62
4.4 Experimental evaluation . 64

CONTENTS ix

Benchmarks . 64
Intel Concurrent Collections (CnC) implementations 65

4.4.1 Shared-memory architectures . 66
Setup . 66
Evaluation . 66
Analysis . 68

4.4.2 Distributed-memory architectures 70
Setup . 70
Evaluation . 70
Analysis . 72

5 Related Work 75
5.1 Data movement for distributed-memory architectures 75
5.2 Data movement for heterogeneous architectures 78
5.3 Automatic parallelization frameworks . 79
5.4 Dataflow runtime frameworks . 81

5.4.1 Frameworks for linear algebra computations 81
5.4.2 General-purpose frameworks . 83

6 Conclusions and Future Work 87
6.1 Conclusions . 87
6.2 Future work . 89

References 90

List of Figures

3.1 Jacobi-style stencil code . 12

3.2 Floyd-Warshall code . 12

3.3 Illustration of data movement schemes for Jacobi-style stencil example . 17

3.4 Illustration of data movement schemes for Floyd-Warshall example (CSi

sets are used only for illustration; communication sets are determined as

described in text) . 18

3.5 FOP – strong scaling on the distributed-memory cluster 37

3.6 floyd – speedup of FOP, FOIFI, FO and hand-optimized UPC code over

seq on the distributed-memory cluster 38

3.7 FOP – strong scaling on the Intel-NVIDIA system 41

4.1 Inter-task dependences example . 45

4.2 Overview of the scheduler on each node 48

4.3 Illustration of inter-task dependences for an example 53

4.4 Overview of our tool . 63

4.5 Speedup of auto-DFDS, auto-static, and manual-CnC over seq on a shared-

memory multicore (Note that performance of auto-DFDS and auto-static

on a single thread is different from that of seq due to automatic transfor-

mations) . 67

4.6 Maximum idle time across 32 threads on a shared-memory multicore . . 69

4.7 Speedup of auto-DFDS over manual-CnC on a shared-memory multicore . 70

x

LIST OF FIGURES xi

4.8 Speedup of auto-DFDS, auto-static, and manual-CnC over seq on a cluster

of multicores (Note that performance of auto-DFDS and auto-static on a

single thread is different from that of seq due to automatic transformations) 71

4.9 Maximum computation time and maximum communication time in auto-

static across all threads on 32 nodes (multicores) of a cluster 73

4.10 Non-overlapped communication time reduction: auto-DFDS over auto-

static on 32 nodes (multicores) of a cluster 73

4.11 Speedup of auto-DFDS over manual-CnC on a cluster of multicores 74

List of Tables

3.1 Problem and tile sizes - distributed-memory cluster 33

3.2 Total communication volume on the distributed-memory cluster – FO and

FOIFI normalized to FOP . 34

3.3 Total execution time on the distributed-memory cluster – FOIFI, FO,

OMPD and UPC normalized to FOP . 35

3.4 Problem and tile sizes - Intel-NVIDIA system 39

3.5 Problem and tile sizes - AMD system . 39

3.6 Total communication volume and execution time of FO and FOP on the

Intel-NVIDIA system . 40

3.7 Total communication volume and execution time of FO and FOP on the

AMD system . 40

4.1 Synthesized Runtime Interface (SRI) . 51

4.2 Synthesized Runtime Interface (SRI) that assists dynamic scheduling:

generated by analyzing inter-task dependences (decrementDependentOfRe-

mote() should be called for remote tasks while the rest should be called

for local tasks) . 54

4.3 Problem and tile sizes - shared-memory multicore (Note that computation

tiling transformations for auto and manual-CnC may differ; data is tiled in

manual-CnC but not in auto) . 65

xii

LIST OF TABLES xiii

4.4 Problem and tile sizes - cluster of multicores (Note that computation

tiling transformations for auto and manual-CnC may differ; data is tiled in

manual-CnC but not in auto) . 65

4.5 Standard-deviation over mean of computation times of all threads in %

on 32 threads of a shared-memory multicore: lower value indicates better

load balance . 68

4.6 Standard-deviation over mean of computation times of all threads in % on

32 nodes (multicores) of a cluster: lower value indicates better load balance 72

List of Algorithms

1 source-distinct partitioning of dependences 25

2 Distributed Function-based Dynamic Scheduling (DFDS) 57

3 initTasks() . 58

4 computeTasks() . 59

5 sendDataOfTask() . 59

6 receiveDataFromTasks() . 60

xiv

Chapter 1

Introduction

In this chapter, we discuss the problems being addressed in this thesis, the drawbacks of

the existing approaches that try to solve them, and our contributions in solving them.

1.1 Distributed-memory parallel architectures

Clusters of multicore processors have emerged as the parallel architecture of choice both

for medium and high-end high-performance computing. Different processors or nodes

in such a cluster do not typically share a global address space. Programming for such

distributed-memory architectures is difficult due to the need for explicit communication

between memories of different nodes. In addition, extraordinary amount of programming

effort is required to extract high parallel performance on such distributed-memory archi-

tectures. Key issues are the inability to extract parallelism beyond plain loop parallelism

and independent tasks: this impacts load balance and synchronization overheads.

The design of new languages, compilers, and runtime systems are crucial to provide

productivity and high performance while programming parallel architectures. Integrating

language and programming model design with compiler and runtime support is naturally

a powerful approach owing to the amount of information available to the compiler and

runtime in generating efficient code. Several systems [16,17,33,44,46] have been designed

in an integrated manner to various degrees.

1

CHAPTER 1. INTRODUCTION 2

1.2 Productivity and performance

MPI is the current de-facto parallel programming model for distributed-memory archi-

tectures. MPI requires the programmer to explicitly move data between memories of

different nodes, which makes it more tedious to program than programming models for

shared-memory architectures like OpenMP. If the compiler has to deal with partitioning

and scheduling computation on distributed-memory architectures, it has to address the

problem of moving data between memories. Since the volume of data transferred sig-

nificantly impacts performance, only those values should be moved that is required to

be moved in order to preserve program semantics. The problem of generating efficient

data movement code is common to all systems with distributed-memory architectures.

A heterogeneous system with CPUs and multiple GPUs, or a distributed-memory clus-

ter are examples of such systems. It is a key part of the larger parallelization problem

for such systems, which involves other orthogonal sub-problems, such as computation

and data transformations, computation placement and scheduling. A compiler that han-

dles data movement automatically would provide high productivity while programming

distributed-memory architectures.

Though OpenMP and MPI are the most commonly used programming models for

shared-memory and distributed-memory architectures respectively, using them to extract

task-level dataflow parallelism as opposed to bulk-synchronous parallelism is very difficult

to almost infeasible. Bulk-synchronous parallelism is one in which all iterations of a

parallel loop are synchronized in bulk after their execution, and before moving onto the

next set of parallel iterations. Task-level dataflow parallelism is the parallelism that can

be extracted from the dynamic dependence graph of tasks (a directed acyclic graph)

– each task itself can correspond to a block of iterations of a parallel loop or more

generally, a piece of computation that is to be executed in sequence atomically, i.e.,

synchronization or communication is performed only before and after execution of the

task but not during it. Asynchronous parallelization enabled by explicit point-to-point

synchronization between tasks that are actually dependent is known to provide better

performance than bulk-synchronous parallelization [8, 20, 22, 48]. Compiler and runtime

CHAPTER 1. INTRODUCTION 3

support for task-level dataflow parallelism would deliver high parallel performance on

distributed-memory architectures.

1.3 Existing approaches

Affine loop nests are any sequence of arbitrarily nested loops where the loop bounds and

array accesses are affine functions of surrounding loop iterators and program parameters.

They form the compute-intensive core of scientific computations like stencil-style com-

putations, linear algebra kernels, alternating direction implicit (ADI) integrations. Past

works on distributed-memory compilation deal with input more restrictive than affine

loop nests [2,34]. The schemes proposed in works which handle arbitrary affine loop nests

while automating data movement for distributed-memory architectures [1, 13, 23, 24] or

for multi-device heterogeneous architectures [32] can lead to excessive redundant com-

munication. Hence, there is no precise and efficient automatic data movement scheme

at present which handles affine loop nests for distributed-memory architectures.

Several programming models and runtimes have been proposed to support task-level

dataflow parallelism. Some recent works that address this include that of Baskaran et

al. [8], Song and Dongarra [46], DAGuE [17], DPLASMA [16], Concurrent Collections

(CnC) [18], the EARTH model [48], the codelet model [52], and SWARM [35], though in

varying contexts. The work of Baskaran et al. [8] is the only one which takes sequential

code as input and requires no additional programming effort (i.e., it is fully automatic),

but it is applicable for affine loop nests only on shared-memory architectures. Although

good performance can be extracted for both shared and distributed memory using the

other task-parallel approaches, it still requires considerable programming effort. The

programmer is responsible for identifying the data to be moved in such approaches too.

Moreover, one of the key issues in leveraging dynamic scheduling dataflow runtimes

such as CnC is in determining the right decomposition of tasks; the granularity of tasks

impacts load balance and synchronization overheads. Choosing the right decomposition

can improve the performance by orders of magnitude. The decomposition into tasks

CHAPTER 1. INTRODUCTION 4

and choice of granularity itself has a direct connection with loop transformations such

as tiling, making a strong case for integration of compiler support. However, there is no

existing framework that supports compiling affine loop nests automatically for a dynamic

scheduling dataflow runtime on distributed-memory architectures.

1.4 Automatic data movement and compilation for

a dataflow runtime

In this thesis, we propose a fully automatic compiler-assisted runtime framework that

takes sequential code containing affine loop nests as input, extracts coarse-grained dataflow

parallelism, statically analyzes data to be communicated, and generates the components

of the dynamic scheduling dataflow runtime along with efficient data movement code for

distributed-memory architectures. The techniques we present rely on a combination of

powerful static analyses employing the polyhedral compiler framework and lightweight

runtime routines generated using them. To this end, we propose a static analysis scheme

that minimizes data movement, and a compiler-assisted runtime framework that auto-

matically extracts coarse-grained dataflow parallelism for affine loop nests on distributed-

memory architectures. Thus, our framework provides high productivity while delivering

high parallel performance on distributed-memory architectures.

The static analysis techniques we develop determine data to be transferred between

compute devices in heterogeneous and distributed-memory systems with a goal to move

only those values that need to be moved in order to preserve program semantics. A com-

pute device is typically a GPU or the CPUs in a heterogeneous system, and a node in a

distributed-memory cluster. We show that by partitioning polyhedral data dependences

in a particular non-trivial way, and determining communication sets and their receivers

based on those partitions, one can determine communication data precisely, while avoid-

ing both unnecessary and duplicate data from being communicated – a notoriously hard

problem and a limitation of all previous polyhedral data movement works. Our scheme

can handle any choice of loop transformations and parallelization. The code it generates

CHAPTER 1. INTRODUCTION 5

is parametric in problem size symbols and number of processors, and valid for any com-

putation placement (static or dynamic). The data movement code generated minimizes

the volume of communication, given a particular choice of all these.

We build a source-to-source transformation tool that automatically generates com-

munication code, and demonstrate that the tool is scalable and leads to substantial

gains in efficiency. On a heterogeneous system, the communication volume is reduced

by a factor of 11× to 83× over state-of-the-art, translating into a geometric mean ex-

ecution time speedup of 1.53×. On a distributed-memory cluster, our scheme reduces

the communication volume by a factor of 1.4× to 63.5× over state-of-the-art, resulting

in a mean speedup of 1.55×. In addition, our scheme yields a mean speedup of 2.19×

over hand-optimized Unified Parallel C (UPC) [49] codes; UPC is a unified programming

model for shared and distributed memory systems.

While designing compiler support for dynamic scheduling dataflow runtimes, we also

develop and use our own runtime. However, the focus of our work is in effectively

exploiting runtime support and features through powerful compile-time analysis and

transformation to provide a fully automatic solution. This is done so that efficient

execution on shared as well as distributed memory is achieved with no programmer

input. Hence, a distributed-memory cluster of multicores is a typical target. This work’s

objective is not to compare the efficiency of the developed runtime itself with other

existing dynamic scheduling ones. Runtimes such as SWARM [35] and those employed

in CnC [18] and DAGuE [17] share some of the same design principles and concepts as

ours. The choice to develop our own runtime in conjunction with this work was driven by

the need to allow sufficient customization and flexibility for current and future compiler

support.

We describe the design of compiler-runtime interaction to automatically extract

coarse-grained dataflow parallelism in affine loop nests on both shared and distributed

memory. We use techniques from the polyhedral compiler framework to extract tasks

and generate components of the runtime which are used to dynamically schedule the

generated tasks. The runtime components are lightweight helper functions generated

CHAPTER 1. INTRODUCTION 6

by the compiler. The task dependence graph is also encapsulated in such compiler-

generated functions. This also allows the same generated code to execute in parallel on

shared-memory, distributed-memory, or a combination of both.

The runtime includes a distributed decentralized scheduler that dynamically sched-

ules tasks on a node. There is no coordination between the schedulers on each node,

and there is no synchronization between nodes. The only asynchronous point-to-point

communication messages between nodes is that of data required to preserve program

semantics, embedded with meta-data. The distributed schedulers cooperate with each

other using this meta-data. In this way, our system achieves cooperation without coordi-

nation in distributed dynamic schedulers. We are also able to thus automatically obtain

overlap of computation and communication, and load-balanced execution. All of this is

achieved automatically by the compiler.

We build a source-to-source transformation tool that automatically generates code

targeting a dynamic scheduling dataflow runtime. While running on 32 nodes with 8

threads each, our compiler-assisted runtime yields a geometric mean speedup of 143.6×

over the sequential version, and a mean speedup of 1.6× over the state-of-the-art auto-

matic parallelization approach that uses bulk-synchronization while using our own effi-

cient data movement scheme. We also compare our system with past work that addresses

some of these challenges on shared-memory, and an emerging runtime (Intel Concurrent

Collections) that demands higher programmer input and effort in parallelizing. To the

best of our knowledge, ours is also the first automatic scheme that allows for dynamic

scheduling of affine loop nests on a cluster of multicores.

1.5 Contributions

The main contributions of this thesis can be summarized as follows:

• We describe two new static analysis techniques to generate efficient data movement

code between compute devices that do not share an address space.

• We implement our data movement techniques in a source-level transformer to allow

CHAPTER 1. INTRODUCTION 7

automatic distribution of loop computations on multiple CPUs and GPUs of a

heterogeneous system, or on a distributed-memory cluster.

• We experimentally evaluate our data movement techniques and compare it against

existing schemes showing significant reduction in communication volume, translat-

ing into significantly better scaling and performance.

• We represent the dynamic dependence graph of tasks in a compact manner using

helper functions generated by the compiler.

• We design the compiler-runtime interface as a set of compiler-generated functions

that is required by the dataflow runtime.

• We design a novel compiler-assisted dataflow runtime framework that achieves

cooperation without coordination in distributed dynamic schedulers.

• We implement our compiler-assisted dataflow runtime in a source-level transformer

to allow for dynamic scheduling of affine loop nests on a cluster of multicores.

• We experimentally evaluate our compiler-assisted dataflow runtime and compare

it against the state-of-the-art automatic parallelization approach that uses bulk-

synchronization while using our own efficient data movement scheme, showing bet-

ter load balance and communication-computation overlap, translating into signifi-

cantly better scaling and performance.

• We also compare our fully automatic framework against manually optimized Intel

Concurrent Collections (CnC) codes making a strong case for building compiler

support for dataflow runtimes.

The rest of this thesis is organized as follows. Chapter 2 provides background on

the polyhedral model. Chapter 3 describes our static analysis techniques to generate

efficient data movement code along with its motivation, implementation and evaluation.

Chapter 4 describes our compiler-assisted dataflow runtime along with its motivation,

CHAPTER 1. INTRODUCTION 8

implementation and evaluation. Chapter 5 discusses related work and conclusions are

presented in Chapter 6.

Chapter 2

Polyhedral Model

If the array accesses in loops are affine functions of surrounding loop iterators and pro-

gram parameters, they are known as affine accesses. Affine loop nests are loop nests

with affine accesses and loop bounds. The polyhedral compiler framework provides a

representation that captures the execution of a sequence of arbitrarily nested affine loop

nests in a mathematical form suitable for analysis and transformation using machinery

from linear algebra and linear programming. We provide a brief description of the poly-

hedral model in this chapter. The reader is referred to the Clan user guide [9] for a more

detailed introduction to the polyhedral representation.

The iteration space, domain or index set of every statement can be represented as

the set of integer points inside a (convex) polyhedron. The polyhedron is typically rep-

resented by a conjunction of affine inequalities. The dimensions of the polyhedron corre-

spond to surrounding loop iterators as well as program parameters. Program parameters

are symbols that do not vary in the portion of the code we are representing; they are

typically the problem sizes. Each integer point in the polyhedron, also called an iteration

vector, contains values for induction variables of loops surrounding the statement from

outermost to innermost.

The data dependence graph, is a directed multi-graph with each vertex representing a

statement in the program and edge representing a polyhedral dependence from a dynamic

instance of one statement to another. Every edge is characterized by a polyhedron,

9

CHAPTER 2. POLYHEDRAL MODEL 10

called dependence polyhedron, which precisely captures dependences between dynamic

instances of the source statement and the target statement. The dependence polyhedron

is specific to a source access (in the source statement) and a target access (in the target

statement). The dependence polyhedron is also typically represented by a conjunction

of affine inequalities, and is in the sum of the dimensionalities of the source and target

iterations spaces, and the number of program parameters.

During analysis and transformation, one might end up with a union of convex polyhe-

dra. Polylib [42], Omega [43], and ISL [50] are three libraries that provide operations to

manipulate such a union of polyhedra. The latter two are precise and deal with integer

points. The various operations provided by the libraries to manipulate polyhedra include

union, intersection, and difference of polyhedra. The libraries also provide operations to

project out the dimensions within a polyhedron, and to get the image of a polyhedron

under an affine function treating certain dimensions as parameters. All of the sets that

we describe and compute in this thesis are unions of convex polyhedra, and any of the

above libraries can be used to manipulate them.

A code generator such as Cloog [12] is used to generate code that scans a union of

convex polyhedra, i.e., iterates over all the integer points in it. The code generator can

also be used to generate code that treats certain dimensions as parameters, and scans

the other dimensions. To achieve this, the dimensions are permuted so that certain

outermost dimensions are treated as parameters by the code generator while scanning

the other inner dimensions. Such a code generator can be used to iterate over all the

integer points in any set that we describe and compute in this thesis.

Chapter 3

Generating Efficient Data

Movement Code

In this chapter, we present our work on data movement code generation for distributed-

memory architectures. Sections 3.1 and 3.2 provide background on the existing communi-

cation schemes. Sections 3.3 and 3.4 describe the design of our static analysis techniques

to address the data movement problem. Section 3.5 describes our implementation and

experimental evaluation is presented in Section 3.6.

3.1 Illustrative examples

To illustrate the working of data movement schemes, we use two examples, which are

tiled and parallelized:

• Jacobi-style stencil code in Figure 3.1: It contains uniform array access functions

and uniform dependences. Since each iteration depends only on its neighboring

iterations in each dimension, it exhibits near-neighbor communication patterns.

• Floyd-Warshall code in Figure 3.2: It contains non-uniform array access functions

and non-uniform dependences. Since all iterations in a dimension depend on a

common iteration, it exhibits broadcast communication patterns.

11

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 12

for (t=1; t<=T−1; t++)
for (i=1; i<=N−1; i++)

a[t][i] = a[t−1][i−1]+a[t−1][i];

Figure 3.1: Jacobi-style stencil code

for (k=0; k<=N−1; k++)
for (i=0; i<=N−1; i++)

for (j=0; j<=N−1; j++)
a[i][j]=((a[i][k]+a[k][j])<a[i][j])?(a[i][k]+a[k][j]): a[i][j];

Figure 3.2: Floyd-Warshall code

3.2 Background and motivation

It is known that anti (WAR) dependences and output (WAW) dependences do not

necessitate communication; only the flow (RAW) dependences necessitate communica-

tion [13, 27]. Previous research [1] has also shown that it is essential for any communi-

cation scheme to perform optimizations like vectorization and coalescing.

• communication vectorization reduces communication frequency by aggregating the

data to be communicated between each pair of processors for all parallel iterations

of the distributed loop(s).

• communication coalescing reduces redundant communication by combining the

data to be communicated due to multiple data accesses or dependences.

3.2.1 Flow-out (FO) scheme

We provide a brief description of an existing communication scheme proposed by Bond-

hugula [13], termed flow-out (FO) scheme, that our schemes build upon. Bondhugula

describes static analysis techniques using the polyhedral compiler framework to deter-

mine data to be transferred between compute devices parametric in problem size sym-

bols and number of processors, which is valid for any computation placement (static or

dynamic). The key idea is that since code corresponding to a single iteration of the

innermost distributed loop will always be executed atomically by one compute device,

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 13

communication parameterized on that iteration can be determined statically.

The term innermost distributed loop is used to indicate the innermost among loops

that have been identified for parallelization or distribution across compute devices. So,

an iteration of the innermost distributed loop represents an atomic computation tile, on

which communication is parameterized; the computation tile may or may not be a result

of loop tiling. An iteration of the innermost distributed loop is uniquely identified by

its iteration vector, i.e., the tuple of values for induction variables of loops surround-

ing it from outermost to innermost (including the innermost distributed loop). Hence,

communication is parameterized on the iteration vector of an iteration of the innermost

distributed loop.

Overview

For each innermost distributed loop, consider an iteration of it represented by iteration

vector ~i. For each data variable x, that can be a multidimensional array or a scalar, the

following is determined at compile-time parameterized on ~i:

• Flow-out set, FOx(~i): the set of elements that need to be communicated from

iteration ~i.

• Receiving iterations, RIx(~i): the set of iterations of the innermost distributed

loop(s) that require some element in FOx(~i).

Using these parameterized sets, code is generated to execute the following in each com-

pute device c at runtime:

• multicast-pack: for each iteration ~i executed by c, if some ~i′ ∈ RIx(~i) will be

executed by another compute device c′ (c′ 6= c), pack FOx(~i) into a local buffer,

• Send the packed buffer to the set of other compute devices c′ (c′ 6= c) which will

execute some ~i′ ∈ RIx(~i) for any ~i executed by c, and receive data from other

compute devices,

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 14

• unpack corresponding to multicast-pack: for each iteration~i executed by another

compute device c′ (c′ 6= c), if some ~i′ ∈ RIx(~i) will be executed by some other

compute device c′′ (c′′ 6= c′), and if c received some data from c′, unpack FOx(~i)

from the received buffer associated with c′.

Flow-out set

The flow-out set represents the data that needs to be sent from an iteration. The set of

all values which flow from a write in an iteration to a read outside the iteration due to

a RAW dependence is termed as the per-dependence flow-out set corresponding to

that iteration and dependence. For a RAW dependence polyhedron D of data variable x

whose source statement is in~i, the per-dependence flow-out setDFOx(~i,D) is determined

by computing the region of data x written by those source iterations of D whose writes

are read outside~i. The region of data written by the set of source iterations of D can be

determined by computing an image of the set of source iterations of D under the source

access affine function of D. Wherever we use the term region of data in the rest of this

thesis, the region of data can be computed in a similar manner.

The flow-out set of an iteration is the set of all values written by that iteration, and

then read outside the iteration. Therefore:

FOx(~i) =
⋃
∀D

DFOx(~i,D) (3.1)

Since the flow-out set combines the data to be communicated due to multiple depen-

dences, communication coalescing is implicitly achieved. Code is generated to enumerate

the elements in the flow-out set of the given iteration at runtime.

Receiving iterations

RIx(~i) are the iterations ~i′ of the innermost distributed loop(s) that read values written

in ~i (~i′ 6= ~i). For each RAW dependence polyhedron D of data variable x whose source

statement is in ~i, RIx(~i) is determined by projecting out dimensions inner to ~i in D and

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 15

scanning the target iterators while treating the source iterators as parameters. Since the

goal is to determine the compute devices to communicate with, code is generated for a

pair of helper functions π(~i) and receiversx(~i).

• π(~i) returns the compute device that executes ~i.

• receiversx(~i) returns the set of compute devices that require at least one element

in FOx(~i).

π is the placement function which maps an iteration of an innermost distributed loop

to a compute device. It is the inverse of the computation distribution function which

maps a compute device to a set of iterations of the innermost distributed loop(s) (which

it executes). So, π can be easily determined from the given computation distribution

function. Since π is evaluated only at runtime, the computation placement (or distri-

bution) can be chosen dynamically. receiversx(~i) enumerates the receiving iterations

and makes use of π on each receiving iteration to aggregate the set of distinct receivers

(π(~i) /∈ receiversx(~i)).

Packing and unpacking

The flow-out set of an iteration could be discontiguous in memory. So, at runtime, the

generated code packs the flow-out set of each iteration executed by the compute device to

a single buffer. The data is packed for an iteration~i only if receiversx(~i) is a non-empty

set. The packed buffer is then sent to the set of receivers returned by receiversx(~i) for all

iterations~i executed by it. Note that for each variable, there is a single send-buffer for all

the receivers. Since the communication set for all iterations executed by a compute device

is communicated to all receivers at once, communication vectorization is achieved.

After receiving data from other compute devices, the generated code unpacks the flow-

out set of each iteration executed by every compute device other than itself from the

respective received buffer. The data is unpacked for an iteration ~i only if receiversx(~i)

is a non-empty set, and if some data has been received from the compute device that

executed ~i.

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 16

Both the packing code and the unpacking code traverse the iterations executed by

a compute device, and the flow-out set of each iteration in the same order. Therefore,

the offset of an element in the packed buffer of the sending compute device matches that

in the received buffer of the receiving compute device. In order to allocate buffers for

sending and receiving, reasonably tight upper bounds on the required size of buffers can

be determined from the communication set constraints, but we do not present details on

it due to space constraints.

Communication volume

A compute device might execute more than an iteration of the innermost distributed

loop. Since all the iterations of the innermost distributed loop can be run in parallel,

they cannot have any WAW dependences between them, and therefore, the writes in

each iteration are unique. This implies that the flow-out set for each iteration is disjoint,

and so, accumulating the flow-out set of each iteration does not lead to duplication of

data. However, all the elements in the flow-out set of an iteration might not be required

by all its receiving iterations. As illustrated in Figure 3.3a, if RT1 and RT3 are executed

by different compute devices, then unnecessary data is communicated to those compute

devices. Similarly, in Figure 3.4b, if RT1 and RT2 are executed by different compute

devices, then unnecessary data is communicated to the compute device that executes

RT2. Thus, this scheme could communicate large volume of unnecessary data since

every element in the packed buffer need not be communicated to every receiver compute

device; different receivers might require different elements in the packed buffer.

3.3 Flow-out intersection flow-in (FOIFI) scheme

FO scheme [13] could send unnecessary data since it only ensures that at least one

element in the communicated data is required by the receiver. The goal, however, is

that all elements in the data sent from one compute device to another compute device

should be required by the receiver compute device. The problem in determining this

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 17

t

i

Dependences Tiles Flow-out set of ST

FO(ST) is sent to {π(RT1) ∪ π(RT2) ∪ π(RT3)}

ST

RT1 RT2

RT3FO

(a) FO scheme

t

i

Dependences Tiles FOIFI sets of ST
F1 = FO(ST) ∩ FI(RT1) is sent to π(RT1),
F2 = FO(ST) ∩ FI(RT2) is sent to π(RT2),
F3 = FO(ST) ∩ FI(RT3) is sent to π(RT3)

ST

RT1 RT2

RT3

F1 F2

F3

(b) FOIFI scheme

t

i

Dependences Tiles Flow-out partitions of ST

PFO1 is sent to {π(RT1) ∪ π(RT2)},

PFO2 is sent to π(RT3), PFO3 is sent to π(RT3)

ST

RT1 RT2

RT3

PFO1

PFO3 PFO2

(c) FOP scheme using multicast-pack

t

i

Dependences Tiles Flow-out partitions of ST
PFO11 = PFO1(ST) ∩ FI(RT1) is sent to π(RT1),
PFO12 = PFO1(ST) ∩ FI(RT2) is sent to π(RT2),
PFO2 is sent to π(RT3), PFO3 is sent to π(RT3)

ST

RT1 RT2

RT3

PFO11 PFO12

PFO3 PFO2

(d) FOP scheme using unicast-pack

Figure 3.3: Illustration of data movement schemes for Jacobi-style stencil example

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 18

i

j

k

i=k+1

j=k+1

Dependences Tiles Communication sets of ST

ST

RT1RT2

RT3

RT4

RT5

CS1CS2

CS3 CS4 CS5

CS6

CS7CS8CS9

(a) Iteration space

FO(ST) = CS1∪ CS2∪ CS3∪ CS4∪ CS5∪ CS6∪ CS7∪ CS8∪ CS9

FO(ST) is sent to {π(RT1) ∪π(RT2) ∪π(RT3) ∪π(RT4) ∪π(RT5)}
(b) FO scheme

F1 = CS1∪ CS2∪ CS3∪ CS4∪ CS5∪ CS6∪ CS7∪ CS8∪ CS9

F1 represents FO(ST) ∩ FI(RT1)
F1 is sent to π(RT1)
F2 = CS1∪ CS4∪ CS8

F2 represents FO(ST) ∩ FI(RT2) and FO(ST) ∩ FI(RT4)
F2 is sent to π(RT2) and π(RT4)
F3 = CS1∪ CS2∪ CS6

F3 represents FO(ST) ∩ FI(RT3) and FO(ST) ∩ FI(RT5)
F3 is sent to π(RT3) and π(RT5)

(c) FOIFI scheme

PFO1 = CS1

PFO1 is sent to {π(RT1) ∪π(RT2) ∪π(RT3) ∪π(RT4) ∪π(RT5)}
PFO2 = CS4∪ CS8

PFO2 is sent to {π(RT2) ∪π(RT4)}
PFO3 = CS2∪ CS6

PFO3 is sent to {π(RT3) ∪π(RT5)}
PFO4 = CS3∪ CS5∪ CS7∪ CS9

PFO4 is sent to π(RT1)

(d) FOP scheme using multicast-pack

Figure 3.4: Illustration of data movement schemes for Floyd-Warshall example (CSi sets
are used only for illustration; communication sets are determined as described in text)

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 19

at compile-time is that placement of iterations to compute devices is not known, even

for a static computation distribution (like block-wise), since problem sizes and number

of processes are not known. Nevertheless, data that needs to be sent from one itera-

tion to another, parameterized on a sending iteration and a receiving iteration, can be

determined precisely at compile-time.

3.3.1 Overview

For each innermost distributed loop, consider an iteration of it represented by iteration

vector ~i. For each data variable x, that can be a multidimensional array or a scalar, the

following is determined at compile-time parameterized on ~i:

• Flow set, Fx(~i → ~i′): the set of elements that need to be communicated from

iteration ~i to iteration ~i′ of an innermost distributed loop.

• Receiving iterations, RIx(~i): the set of iterations of the innermost distributed

loop(s) that require some element written in iteration ~i.

Using these parameterized sets, code is generated to execute the following in each com-

pute device c at runtime:

• unicast-pack: for each iteration ~i executed by c and iteration ~i′ ∈ RIx(~i) that

will be executed by another compute device c′ = π(~i′) (c′ 6= c), pack Fx(~i → ~i′)

into the local buffer associated with c′,

• Send the packed buffers to the respective compute devices, and receive data from

other compute devices,

• unpack corresponding to unicast-pack: for each iteration ~i executed by another

compute device c′ (c′ 6= c) and iteration ~i′ ∈ RIx(~i) that will be executed by c, i.e.,

π(~i′) = c, unpack Fx(~i→ ~i′) from the received buffer associated with c′.

Note that this scheme requires a distinct buffer for each receiving compute device. Pack-

ing is required since the flow set could be discontiguous in memory. Both the packing

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 20

code and the unpacking code traverse the iterations ~i executed by a compute device,

the receiving iterations ~i′ ∈ RIx(~i), and the elements in Fx(~i → ~i′) in the same order.

Therefore, the offset of an element in the packed buffer of the sending compute device

matches that in the received buffer of the receiving compute device. The communication

set of each receiver for all iterations executed by a compute device is communicated to

that receiver at once, thereby achieving communication vectorization. Code generation

for RIx(~i) and π(~i) is same as that in FO scheme.

3.3.2 Flow-in set

The flow-in set represents the data that needs to be received by an iteration. The set

of all values which flow to a read in an iteration from a write outside the iteration due

to a RAW dependence is termed as the per-dependence flow-in set corresponding to

that iteration and dependence. For a RAW dependence polyhedron D of data variable x

whose target statement is in ~i, the per-dependence flow-in set DFIx(~i,D) is determined

by computing the region of data x read by those target iterations of D whose reads are

written outside ~i. The flow-in set of an iteration is the set of all values read by that

iteration, and previously written outside the iteration. Therefore:

FIx(~i) =
⋃
∀D

DFIx(~i,D) (3.2)

3.3.3 Flow set

The data that needs to be sent from one iteration to another is represented by the flow

set between the iterations. The flow set from an iteration ~i to an iteration ~i′ (~i 6= ~i′) is

the set of all values written by ~i, and then read by ~i′. For each data variable x, the flow

set Fx from an iteration~i to an iteration ~i′ is determined at compile-time by intersecting

the flow-out set of ~i with the flow-in set of ~i′:

Fx(~i→ ~i′) = FOx(~i) ∩ FIx(~i′) (3.3)

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 21

Hence, this communication scheme is termed as the flow-out intersection flow-in (FOIFI)

scheme. Since the flow set combines the data to be communicated due to multiple

dependences, communication coalescing is implicitly achieved. Code is generated to

enumerate the elements in the flow set between two given iterations at runtime.

3.3.4 Communication volume

The flow sets from different sending iterations are disjoint like the flow-out sets. In

contrast, the flow-in sets of different iterations can overlap; different iterations can receive

same data from the same sending iteration. This implies that the flow sets from a sending

iteration to different receiving iterations need not be disjoint. So, when different receiving

iterations of an iteration will be executed by the same compute device, a union of their

flow sets is required to avoid duplication. The union cannot be performed at compile-

time since the placement (or distribution) of iterations to compute devices is not known,

while performing the union at runtime can be prohibitively expensive. This scheme could

lead to duplication of data since it accumulates the flow sets to the buffer associated with

the receiver compute device.

When each receiving iteration is executed by a different compute device, FOIFI

scheme ensures that every element of the communicated data is required by the re-

ceiver, unlike FO scheme. The placement of iterations to compute devices, however,

cannot be assumed. Different iterations can receive the same elements from the same

sending iteration. So, when different receiving iterations of an iteration will be executed

by the same compute device, this scheme could lead to duplication of data since it ac-

cumulates the flow sets to the buffer associated with the receiver compute device. For

example, in Figure 3.3b, if RT1 and RT2 are executed by the same compute device,

then F2 is sent twice to that compute device. Similarly, in Figure 3.4c, if RT1, RT2 and

RT4 are executed by the same compute device, then F2 is sent thrice to that compute

device; the amount of duplication depends on the number of iterations a compute device

executes in j dimension with the same i and k. Thus, this scheme could communicate

a significantly large volume of duplicate data. The amount of redundancy cannot be

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 22

theoretically bounded, and can be more than that of a naive scheme in the worst case.

3.4 Flow-out partitioning (FOP) scheme

FO scheme does not communicate duplicate data, but ignores whether a receiver requires

most of the communication set or not. On the other hand, FOIFI scheme precisely

computes the communication set required by a receiving iteration, but could lead to huge

duplication when multiple receiving iterations are executed by the same compute device.

A better approach is one that avoids communication of both duplicate and unnecessary

elements. We show that this can be achieved by partitioning the communication set in

a particular non-trivial way, and sending each partition to only its receivers.

The motivation behind partitioning the communication set is that different receivers

could require different elements in the communication set. So ideally, the goal should

be to partition the communication set such that all elements within each partition are

required by all receivers of that partition. However, the receivers are not known at

compile-time and partitioning at runtime is expensive. RAW dependences determine the

receiving iterations, and ultimately, the receivers. Hence, we partition the communica-

tion set at compile-time, based on RAW dependences. To this end, we introduce new

classifications for RAW dependences below.

Definition 1. A set of dependences is said to be source-identical if the region of

data that flows due to each dependence in the set is the same.

Consider a set of RAW dependence polyhedra SD of an iteration ~i. If SD is source-

identical, then:

DFOx(~i,D1) = DFOx(~i,D2) ∀D1, D2 ∈ SD (3.4)

Definition 2. Two source-identical sets of dependences are said to be source-

distinct if the regions of data that flow due to the dependences in different sets are

disjoint.

If two source-identical sets of RAW dependence polyhedra S1
D and S2

D of an iteration

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 23

~i are source-distinct, then:

DFOx(~i,D1) ∩DFOx(~i,D2) = ∅

∀D1 ∈ S1
D, D2 ∈ S2

D

(3.5)

Definition 3. A source-distinct partitioning of dependences partitions the

dependences such that all dependences in a partition are source-identical and any two

partitions are source-distinct. (Note that a single dependence polyhedron might be

partitioned into multiple dependence polyhedra).

A source-identical set of dependences determines a communication set identical for

those dependences. Each such set in a source-distinct partitioning will therefore generate

bookkeeping code to handle its own communication set. If the number of source-identical

sets is more, then the overhead of executing the bookkeeping code might outweigh the

benefits of reducing redundant communication. Hence, it is beneficial to reduce the

number of source-identical sets of dependences, i.e., the source-distinct partitions. A

source-distinct partitioning of dependences is said to be minimal if the number of parti-

tions is minimum across all such partitioning of dependences.

3.4.1 Overview

For each innermost distributed loop, consider an iteration of it represented by iteration

vector ~i. For each data variable x, that can be a multidimensional array or a scalar,

a minimal source-distinct partitioning of RAW dependence polyhedra, whose source

statement is in~i, is determined at compile-time. For each source-identical set (partition)

of RAW dependence polyhedra SD, the following is determined parameterized on ~i:

• Partitioned flow-out set, PFOx(~i, SD): the set of elements that need to be com-

municated from iteration ~i due to SD.

• Partitioned flow set, PFx(~i→ ~i′, SD): the set of elements that need to be commu-

nicated from iteration ~i to iteration ~i′ due to SD.

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 24

• Receiving iterations of the partition, RIx(~i, SD): the set of iterations of the inner-

most distributed loop(s) that require some element in PFOx(~i, SD).

Using these parameterized sets, code is generated to execute the following in each com-

pute device c at runtime:

• For each source-identical set of RAW dependence polyhedra SD and iteration ~i

executed by c, execute one of these:

– multicast-pack: for each other compute device c′ (c′ 6= c) that will execute

some ~i′ ∈ RIx(~i, SD), i.e., c′ = π(~i′), pack PFOx(~i, SD) into the local buffer

associated with c′,

– unicast-pack: for each iteration ~i′ ∈ RIx(~i, SD) that will be executed by

another compute device c′ = π(~i′) (c′ 6= c), pack PFx(~i → ~i′, SD) into the

local buffer associated with c′,

• Send the packed buffers to the respective compute devices, and receive data from

other compute devices,

• For each source-identical set of RAW dependence polyhedra SD and iteration ~i

executed by another compute device c′ (c′ 6= c), execute one of these:

– unpack corresponding to multicast-pack: if c will execute some ~i′ ∈ RIx(~i, SD),

i.e., π(~i′) = c, unpack PFOx(~i, SD) from the received buffer associated with

c′,

– unpack corresponding to unicast-pack: for each iteration ~i′ ∈ RIx(~i, SD)

that will be executed by c, i.e., π(~i′) = c, unpack PFx(~i→ ~i′, SD) from the

received buffer associated with c′.

Note that this scheme requires a distinct buffer for each receiving compute device. Both

the packing code and the unpacking code traverse the sets of RAW dependence polyhedra

SD, the iterations~i executed by a compute device, the receiving iterations ~i′ ∈ RIx(~i, SD),

and the elements in PFOx(~i, SD) or PFx(~i → ~i′, SD) in the same order. Therefore, the

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 25

offset of an element in the packed buffer of the sending compute device matches that

in the received buffer of the receiving compute device. The communication set of each

receiver for all iterations executed by a compute device is communicated to that receiver

at once, thereby achieving communication vectorization. Code generation for π(~i) is

same as that in FO scheme.

Algorithm 1: source-distinct partitioning of dependences
Input: RAW dependence polyhedra Di and Dj

1 (IS , AS)← source (iterations, access) of Di

2 (IT , AT)← source (iterations, access) of Dj

3 D ← dependence from (IS , AS) to (IT , AT)
4 if D is empty then
5 DS ← DT ← empty
6 return

7 (I ′S , I
′
T)← (source, target) iterations of D

8 DS ← source I ′S and target unconstrained
9 DT ← source I ′T and target unconstrained

Output: source-distinct partitions {Di −DS}, {Dj −DT }, {Di ∩DS , Dj ∩DT }

3.4.2 Partitioning of dependences

In order to partition dependences, it is necessary to determine whether the regions of

data that flow due to two dependences overlap, i.e., whether the region of data written

by the source iterations of one dependence overlaps with that of the other. This can be

determined by an explicit dependence test between the source iterations of one depen-

dence and the source iterations of another dependence. Such a dependence might not

be semantically valid (e.g., when there is overlap in the regions of data that flow due to

dependences with the same source statement). It is just a virtual dependence between

two dependences, that captures the overlap in the regions of data that flow due to those

dependences.

Algorithm 1 partitions two dependence polyhedra using this ‘dependence between

dependences’ concept. If a virtual dependence does not exist between the two depen-

dences, then they are source-distinct. Otherwise, the virtual dependence polyhedron

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 26

contains the source iterations of each dependence polyhedron that access the same re-

gion of data. A new dependence polyhedron is formed from each dependence polyhedron

by restricting the source iterations to their corresponding source iterations in the vir-

tual dependence polyhedron. These two new dependences are source-identical. From

the original dependence polyhedra, their corresponding source iterations in the virtual

dependence polyhedron are subtracted out. These modified original dependences and

the source-identical set of the new dependences are source-distinct.

Before partitioning dependences whose source statement is in ~i, each RAW depen-

dence polyhedron D is restricted to those source iterations of D whose writes are read

outside ~i. Initially, each dependence is in a separate partition. For any two partitions,

Algorithm 1 is used as a subroutine for each pair of dependences in different partitions;

the source-identical set of new dependences, if any, formed by all of these pairs is a new

partition. This is repeated until no new partitions can be formed, i.e., until all partitions

are source-distinct. The number of dependences in each new partition is the sum of those

in the two partitions, and cannot be more than the number of initial dependences. The

source iterations in each new dependence polyhedron keep monotonically decreasing.

So, the partitioning should terminate, and a source-distinct partitioning always exists

for any set of dependences. Such a source-distinct partitioning is minimal since it creates

a new partition only if it is necessary. This simple approach can be improved upon and

optimized; it is presented as is for clarity of exposition.

3.4.3 Partitioned communication sets

If SP is the set of source-distinct partitions of RAW dependence polyhedra whose source

statement is in ~i, then ∀SD ∈ SP :

PFOx(~i, SD) =
⋃

∀D∈SD

DFOx(~i,D)

= DFOx(~i,D) ∀D ∈ SD (from (3.4))

(3.6)

PFx(~i→ ~i′, SD) = PFOx(~i, SD) ∩ FIx(~i′) (3.7)

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 27

From Equation (3.5) and (3.6):

PFOx(~i, S1
D) ∩ PFOx(~i, S2

D) = ∅

∀S1
D, S

2
D ∈ SP | S1

D 6= S2
D

(3.8)

From Equation (3.1) and Definition 3:

FOx(~i) =
⋃

∀SD∈SP

PFOx(~i, SD) (3.9)

Hence, this communication scheme is termed as flow-out partitioning (FOP) scheme.

Since the flow-out partitions are disjoint and each of them combines the data to be

communicated due to multiple dependences, this scheme reduces duplication, thereby

achieving communication coalescing.

3.4.4 Receiving iterations of the partition

For iteration ~i and each RAW dependence polyhedron D in the set of RAW dependence

polyhedra SD, RIx(~i, SD) is determined by projecting out dimensions inner to ~i in D

and scanning the target iterators while treating the source iterators as parameters. To

determine the compute devices to communicate with, the generated code makes use of

π on each receiving iteration of this partition to aggregate the set of distinct receivers

that require at least one element in PFOx(~i, SD).

3.4.5 Packing and unpacking

Code for multicast-pack and unicast-pack, the two methods of packing, is generated

similar to that in FO and FOIFI schemes respectively. For each iteration and partition,

either multicast-pack or unicast-pack is executed, the choice of which could be de-

termined either at compile-time or at runtime. Since the method of packing determines

the communication volume, the goal of choosing the method of packing is to minimize

redundant communication. We choose:

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 28

• unicast-pack at compile-time if the set of dependence polyhedra determining the

partition contains only one dependence polyhedron such that each source iteration

in it has at most one target iteration dependent on it: each element in the partition

is required by only one receiving iteration of the partition, and therefore, there is no

duplication in the communicated data for any placement of iterations to compute

devices.

• multicast-pack at compile-time if the flow-in of the partition is independent of

the parallel dimension(s): each element in the partition is required by all receiving

iterations of the partition, and therefore, unnecessary data is not communicated

for any placement of iterations to compute devices.

• unicast-pack at runtime if each receiving iteration of the executed iteration and

partition is allocated to a different compute device: there is no duplication in the

communicated data since each element of the communicated data is required by

only one iteration that will executed by the receiving compute device.

• multicast-pack at runtime if all the receiving iterations of the executed iteration

and partition are allocated to the same compute device: unnecessary data is not

communicated since each element of the communicated data is required by some

iteration that will be executed by that compute device.

These conditions ensure no redundancy in communication. In the absence or failure of

these non-redundancy conditions, we choose multicast-pack since unicast-pack could

lead to more redundant communication in the worst case.

3.4.6 Communication volume

The flow (RAW) dependence polyhedra for the Floyd-Warshall example in Figure 3.2,

where (k, i, j) is the source iteration and (k
′
, i

′
, j

′
) the target iteration, are: (the bounds

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 29

on i, j, k are omitted for brevity)

D1 = {k′
= k + 1, i

′
= i, j

′
= j}

D2 = {k′
= k + 1, i

′
= i, j = k + 1, 0 <= j

′
<= N − 1}

D3 = {k′
= k + 1, i = k + 1, j

′
= j, 0 <= i

′
<= N − 1}

The source-distinct partitioning of these dependence polyhedra yields four partitions: P1

containing subsets of D1, D2 and D3; P2 containing subsets of D1 and D2; P3 containing

subsets of D1 and D3; P4 containing a subset of D1. As shown in Figure 3.4d, PFO1,

PFO2, PFO3 and PFO4 are the partitioned flow-out sets of P1, P2, P3 and P4 respec-

tively, which are sent to their respective receivers using multicast-pack. There is no

redundancy in communication for any placement of iterations to compute devices.

For the Jacobi-style stencil example in Figure 3.1, where (t, i) is the source iteration

and (t
′
, i

′
) the target iteration, the flow (RAW) dependence polyhedra are:

(the bounds on t, i are omitted for brevity)

D1 = {t′ = t+ 1, i
′
= i+ 1}

D2 = {t′ = t+ 1, i
′
= i}

D3 = {t′ = t+ 1, i
′
= i− 1}

The source-distinct partitioning of these dependence polyhedra yields three partitions:

P1 containing subsets of D1, D2 and D3; P2 containing subsets of D1 and D2; P3 con-

taining a subset of D1. As shown in Figure 3.3c, PFO1, PFO2 and PFO3 are the

partitioned flow-out sets of P1, P2 and P3 respectively. There could be some redun-

dancy in communication for PFO1, depending on the placement of iterations to com-

pute devices. However, the non-redundancy conditions can be used to choose between

unicast-pack and multicast-pack at runtime. If unicast-pack is chosen for PFO1

as shown in Figure 3.3d when RT1 and RT2 are allocated to different compute devices,

and multicast-pack is chosen otherwise (Figure 3.3c) (in this case, RT1 and RT2 are

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 30

allocated to same compute device), then there is no redundancy in communication for

any placement of iterations to compute devices.

In general, if unicast-pack is used for all partitions, then FOP scheme behaves

similar to FOIFI scheme. If multicast-pack is used for all partitions, then the commu-

nication volume of FOP scheme cannot be more than that of FO scheme. Depending on

the method of packing, FOP scheme is at least as good as FO and FOIFI schemes. FOP

scheme is effective in minimizing redundant communication since the partitions of the

communication set reduce the granularity at which receivers are determined. To further

minimize redundant data movement, FOP schemes uses the non-redundancy conditions

to choose between unicast-pack and multicast-pack; the communication set parti-

tions also reduce the granularity at which these conditions are applied. Hence, FOP

scheme minimizes communication volume better than FO and FOIFI schemes.

3.5 Implementation

Our framework is fully implemented as part of a publicly available source-to-source

polyhedral tool chain. Clan [11], ISL [50], Pluto [14], and Cloog-isl [10] are used to

perform polyhedral extraction, dependence testing, automatic transformation, and code

generation, respectively. Polylib [42] is used to implement the polyhedral operations in

Sections 3.2.1, 3.3 and 3.4. ISL [50] is used to eliminate transitive dependences and com-

pute last writers or the exact dataflow. This ensures that when there are multiple writes

to a location before a subsequent read due to transitively covered RAW dependences,

only the last write to the location is communicated to the compute device that reads it.

The input to our framework is sequential code containing arbitrarily nested affine

loop nests, which is tiled and parallelized using the Pluto algorithm [5, 15]; loop tiling

helps reduce the bookkeeping overhead at runtime while being precise in communication.

Communication sets are statically determined for a parametric tile. Our framework

then automatically generates code for distributed-memory systems from this transformed

code using techniques described in the work of Bondhugula [13]. The entire data is

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 31

initially made available in every compute device, and the final result is collected at

the master compute device, without violating sequential semantics. FO, FOIFI and

FOP schemes take the parallelized code as input and insert data movement code soon

after each parallelized loop nest. So, at runtime, data movement code is executed after

each distributed phase. In FOP, partitions with the same receiving tile constraints are

merged and partitions with constant volume are merged at compile-time so as to minimize

the bookkeeping overhead at runtime without sacrificing communication volume. Non-

blocking MPI primitives are used to communicate between nodes in the distributed-

memory system.

For heterogeneous systems, the host CPU acts both as a compute device and as

the orchestrator of data movement between compute devices, while the GPU acts only

as a compute device. The data movement code is automatically generated in terms of

OpenCL calls invoked from the host CPU. Each compute device has an associated man-

agement thread on the host CPU. This thread is responsible for launching computation

kernels and handling data movement to and from the compute device it is managing. The

computations are distributed onto each device at the granularity of tiles. Once all the

tiles are executed on a compute device, the management thread for that device calls the

copyOut function which copies the communication set for each computed tile from the

source device onto the host CPU. Once copyOut() completes, the management thread

issues the copyIn function which copies the communication set now residing on the host

CPU onto the destination compute devices. On heterogeneous systems, packing function-

ally corresponds to copyOut() and unpacking corresponds to copyIn(). We notice that,

for most of the cases, the data to be communicated is in a rectangular region of memory.

OpenCL 1.1 provides clEnqueueReadBufferRect() and clEnqueueWriteBufferRect()

to copy such rectangular regions of data in a single call. We make use of these func-

tions everywhere to minimize the number of OpenCL calls and thereby minimize the

associated call overheads.

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 32

3.6 Experimental evaluation

In this section, we evaluate our data movement techniques on a distributed-memory

cluster, and on heterogeneous systems with CPUs and multiple GPUs.

We compare FOP, FOIFI and FO schemes using the same parallelizing transforma-

tion. This implies that the frequency of communication is the same for them. The

schemes differ only in the communication volume, and in the way the data is packed

and unpacked. Since everything else is the same, comparing the total execution times of

these communication schemes directly compares their efficiency.

3.6.1 Distributed-memory architectures

Setup

The experiments were run on a 32-node InfiniBand cluster of dual-SMP Xeon servers.

Each node on the cluster consists of two quad-core Intel Xeon E5430 2.66 GHz processors

with 12 MB L2 cache and 16 GB RAM. The InfiniBand host adapter is a Mellanox

MT25204 (InfiniHost III Lx HCA). All nodes run 64-bit Linux kernel version 2.6.18.

The cluster uses MVAPICH2-1.8 as the MPI implementation. It provides a point-to-

point latency of 3.36 µs, unidirectional and bidirectional bandwidths of 1.5 GB/s and

2.56 GB/s respectively. All codes were compiled with Intel C compiler (ICC) version 11.1

with flags ‘-O3 -fp-model precise’. All Unified Parallel C (UPC) codes were compiled

with Berkeley Unified Parallel C compiler [19] version 2.16.0.

Benchmarks

We present results for Floyd Warshall (floyd), LU Decomposition (lu), Alternating

Direction Implicit solver (adi), 2-D Finite Different Time Domain Kernel (fdtd-2d),

Heat 2D equation (heat-2d) and Heat 3D equation (heat-3d) benchmarks. The first

four are from the publicly available Polybench/C 3.2 suite [41]; heat-2d and heat-3d are

widely used stencil computations [47]. All benchmarks were manually ported to UPC,

while sharing data only if it may be accessed remotely and incorporating UPC-specific

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 33

optimizations like localized array accesses, block copy, one-sided communication, where

applicable. The outermost parallel loop in heat-2d, heat-3d and adi was marked

as parallel using OpenMP, and given as input to OMPD [34]; since the data to be

communicated in floyd and lu is dependent on the outer serial loop, OMPD does not

handle them. In our tool which implements FOP, FOIFI and FO, the benchmark itself

was the input and tile sizes were chosen such that the performance on a single node

is optimized, as listed in Table 3.1. All benchmarks use double-precision floating-point

operations. Problem sizes used are listed in Table 3.1.

Evaluation

Though our tool generates MPI+OpenMP code, we ran all the benchmarks with one

OpenMP thread per process and one MPI process per node to focus on the distributed-

memory part. We evaluate both the communication volume and execution time of FO,

FOIFI and FOP. In addition, we intend to evaluate systems that provide abstractions

to free the user from the burden of moving data on distributed-memory architectures,

either fully automatically like ours or at least those that provided some runtime support.

OMPD falls into the former category, while UPC falls into the latter category. Though

the computation transformations or the underlying runtime may be different, we compare

the execution time of OMPD and UPC with FOP with an intention of evaluating the

efficiency of these approaches.

Benchmark Problem sizes Tile sizes
floyd N=8192 64 (2d)
lu N=4096 64 (3d)
fdtd-2d N=4096, T=1024 16 (2d)
heat-2d N=8192, T=1024 256 (3d)
heat-3d N=512, T=256 16 (4d)
adi N=8192, T=128 256 (2d)

Table 3.1: Problem and tile sizes - distributed-memory cluster

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 34

Benchmark
4 nodes 8 nodes

FOP FOIFI FO FOP FOIFI FO
floyd 1.51GB 31.8× 63.5× 3.53GB 15.9× 63.5×
lu 0.45GB 5.3× 1.4× 0.99GB 3.0× 1.4×
fdtd-2d 0.21GB 1.0× 14.3× 0.47GB 1.0× 15.1×
heat-2d 0.75GB 1.0× 2.0× 1.74GB 1.0× 2.0×
heat-3d 5.61GB 1.0× 2.0× 13.09GB 1.0× 2.0×
adi 191.24GB 1.0× 4.0× 223.11GB 1.0× 8.0×

Benchmark
16 nodes 32 nodes

FOP FOIFI FO FOP FOIFI FO
floyd 7.56GB 7.9× 63.5× 15.62GB 4.0× 63.5×
lu 1.88GB 1.9× 1.4× 2.59GB 1.5× 1.5×
fdtd-2d 0.97GB 1.0× 15.5× 1.97GB 1.0× 15.7×
heat-2d 3.73GB 1.0× 2.0× 7.72GB 1.0× 2.0×
heat-3d 28.07GB 1.0× 2.0× 58.01GB 1.0× 2.0×
adi 239.05GB 1.0× 16.0× 247.02GB 1.0× 32.0×

Table 3.2: Total communication volume on the distributed-memory cluster – FO and
FOIFI normalized to FOP

Analysis

Table 3.2 compares the total communication volume of FO, FOIFI and FOP. Table 3.3

compares the total execution time of hand-optimized UPC codes with that of OMPD,

FO, FOIFI and FOP. seq – sequential time, is the time taken to run the serial code

compiled with ICC. Execution time of one node is different for each of the schemes,

indicating the bookkeeping overhead when there is no data to be packed, unpacked or

communicated. Execution time of FO, FOIFI and FOP on one node is different from

seq time due to tiling and other loop transformations performed by our tool on the

sequential code.

Across all benchmarks and number of nodes, FOP reduced communication volume

by a factor of 1.4× to 63.5× over FO. This translates to a huge improvement in exe-

cution time, except for heat-2d, where the communication time is a minor component

of the total execution time (less than 2% in most cases). For adi and floyd which are

communication intensive, the reduction in communication volume for FOP gives up to

15.9× speedup over FO.

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 35

Nodes FOP FOIFI FO UPC

1 2065.2s 1.01× 1.00× 0.97×
4 521.4s 1.10× 1.20× 0.97×
8 263.9s 1.18× 1.75× 0.97×
16 137.6s 1.33× 3.93× 0.97×
32 81.1s 1.46× 11.18× 0.93×

(a) floyd – seq time is 2012s

Nodes FOP FOIFI FO OMPD UPC

1 228.3s 1.00× 1.00× 3.42× 5.33×
4 59.8s 1.00× 1.01× 3.29× 5.11×
8 31.4s 1.00× 1.02× 3.92× 5.47×
16 17.3s 1.00× 1.03× 3.58× 5.00×
32 10.2s 1.00× 1.04× 3.06× 4.25×

(b) heat-2d – seq time is 796.4s

Nodes FOP FOIFI FO UPC

1 29.5s 1.00× 1.00× 2.86×
4 9.1s 1.42× 1.02× 2.42×
8 5.4s 1.70× 1.05× 2.30×
16 4.1s 1.84× 1.05× 1.50×
32 3.9s 1.58× 1.00× 1.25×

(c) lu – seq time is 82.9s

Nodes FOP FOIFI FO OMPD UPC

1 235.5s 1.00× 1.00× 2.51× 2.68×
4 65.4s 1.00× 1.05× 2.39× 2.46×
8 36.1s 1.00× 1.15× 2.82× 2.54×
16 21.4s 1.00× 1.23× 2.58× 2.21×
32 14.1s 1.00× 1.33× 2.29× 1.78×

(d) heat-3d – seq time is 590.6s

Nodes FOP FOIFI FO UPC

1 359.5s 1.00× 1.00× 0.98×
4 90.8s 1.00× 1.03× 1.26×
8 66.9s 1.00× 1.04× 1.01×
16 33.8s 1.00× 1.09× 1.01×
32 16.8s 1.00× 1.24× 0.99×

(e) fdtd-2d – seq time is 351.7s

Nodes FOP FOIFI FO OMPD UPC

1 422.7s 1.00× 0.95× 6.27× 7.90×
4 231.7s 1.00× 2.11× 3.55× 4.68×
8 143.6s 1.00× 4.00× 3.43× 4.29×
16 78.6s 1.00× 7.87× 2.88× 4.47×
32 41.0s 1.00× 15.9× 2.95× 5.22×

(f) adi – seq time is 2717s

Table 3.3: Total execution time on the distributed-memory cluster – FOIFI, FO, OMPD
and UPC normalized to FOP

In adi, data written by a compute device should be distributed across all compute

devices (matrix transpose) twice every outer serial loop iteration. FO just sends the

entire data written by a compute device to all other compute devices, whereas FOP and

FOIFI use unicast-pack (satisfies the non-redundancy condition at compile-time) to

only send what is required by the receiver compute device, thereby eliminating redundant

communication.

For floyd, FO communicates around 63.5× more than FOP. The redundancy in

communication is closely related to the tile size, which is 64 in this case. As seen in

Figure 3.4b, FO broadcasts the entire region of data written by the tile when it has

some receivers. On the other hand, as seen in Figure 3.4d, FOP sends partitions of the

data set to their own receivers. Since the same distribution is being used for every outer

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 36

sequential iteration, four of those partitions (corner partitions) are not communicated,

which significantly reduces the communication volume. Since communication time is

a major component of the total execution time (more than 50% in some cases), the

reduction in communication volume for FOP gives 1.53× to 5.74× speedup over FO for

4 or more nodes.

For floyd and lu, FOIFI communicates 1.5× to 31.8× more volume of data than

FOP due to duplication in communicated data when multiple receiving iterations are

placed (executed) on the same node. This yields 1.1× to 1.84× speedup of FOP over

FOIFI. For lu, the redundancy in communication of FOIFI is much more than even

that of FO and consequently, FOIFI performs much worse than FO. In summary, FOP

gives a mean speedup of 1.55× and 1.11× over FO and FOIFI respectively across all

benchmarks and number of nodes.

OMPD communicates the same volume of data as FOP for adi. However, OMPD

incurs some additional overhead since it determines the communication sets at runtime.

Moreover, our tool automatically tiles the parallel loop. For heat-2d and heat-3d, our

tool transforms and tiles the code to yield both locality and load balance [5]. OMPD

cannot handle such transformed code since the communication set is dependent on the

outer serial loop. Even though OMPD is communicating the minimum volume of data for

the non-transformed codes, FOP gives a mean speedup of 3.06× over OMPD across all

benchmarks and number of nodes since it handles transformed codes with lesser runtime

overhead.

Manually optimized UPC codes communicate the same volume of data for fdtd-2d

and floyd as FOP. Since the data to be communicated is contiguous in global memory,

UPC code has no additional overhead, and so, performs slightly better than FOP. On the

other hand, the data to be communicated for adi is not contiguous in global memory.

FOP packs and unpacks such non-contiguous data with very little runtime overhead

while UPC incurs significant runtime overhead to handle such multiple shared memory

requests to non-contiguous data. So, even though the data to be communicated is the

same, FOP outperforms UPC code. For lu, heat-2d and heat-3d, manually writing

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 37

 0

 5

 10

 15

 20

 25

1 2 4 8 16 32

S
p

e
e
d
u

p

Number of nodes

floyd

fdtd-2d

heat-3d

lu

heat-2d

adi

Figure 3.5: FOP – strong scaling on the distributed-memory cluster

code incorporating the transformations automatically used by our tool is not trivial.

Moreover, the UPC model is not suitable when the same data element could be written

by different nodes in different parallel phases, as is the case with these transformations;

without such transformations, UPC code performs poorly. Due to these limitations of

UPC, FOP gives a mean speedup of 2.19× over hand-optimized UPC codes across all

benchmarks and number of nodes.

Manually determining communication sets for the tiled and transformed code is not

trivial – this prohibits a fair comparison of our schemes with hand-written MPI codes.

However, for the transformations and placement chosen in the benchmarks, we manually

verified that FOP was achieving the minimum communication volume across different

number of nodes, resulting in the best performance and facilitating the benchmarks to

scale well. As shown in Figure 3.5, execution times of FOP decrease as the number of

nodes are increased for all benchmarks, except for lu going from 16 to 32 nodes. In

this case, performance does not improve by much due to the large volume of data that

is required to be communicated. Nevertheless, floyd with the existing FO could not

scale beyond 4 nodes, while FOP enables scaling similar to hand-optimized UPC codes

as shown in Figure 3.6.

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 38

 0

 5

 10

 15

 20

 25

1 2 4 8 16 32

S
p

e
e
d
u

p

Number of nodes

FOP

FOIFI

FO

UPC

Figure 3.6: floyd – speedup of FOP, FOIFI, FO and hand-optimized UPC code over
seq on the distributed-memory cluster

3.6.2 Heterogeneous architectures

Intel-NVIDIA system setup

The Intel-NVIDIA system consists of an Intel Xeon multicore server consisting of 12

Xeon E5645 cores running at 2.4 GHz. The server has 4 NVIDIA Tesla C2050 graphics

processors connected on the PCI express bus, each having 2.5 GB of global memory.

NVIDIA driver version 304.64 supporting OpenCL 1.1 was used as the OpenCL runtime.

Double-precision floating-point operations were used in all benchmarks. The host codes

were compiled with gcc version 4.4 with -O3. The problem sizes are chosen such that

the entire array data fits within each GPU’s global memory. Problem and tile sizes used

are listed in Table 3.4.

AMD system setup

The AMD system consists of a AMD A8-3850 Fusion APU, consisting of 4 CPU cores

running at 2.9 GHz and an integrated GPU based on the AMD Radeon HD 6550D archi-

tecture. The system has two ATI FirePro V4800 discrete graphics processors connected

on the PCI express bus, each having 512 MB of global memory. Since these GPUs do

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 39

not support double-precision floating-point operations, we use single-precision floating-

point operations in all benchmarks. AMD driver version 9.82 supporting OpenCL 1.2

was used as the OpenCL runtime. The host codes were compiled with g++ version 4.6.1

with -O3. The problem sizes are chosen such that the entire array data fits within each

GPU’s global memory. Problem and tile sizes used are listed in Table 3.5.

Benchmarks

We evaluate FO and FOP for floyd, lu, fdtd-2d, heat-2d and heat-3d benchmarks.

All these benchmarks have an outer serial loop containing a set of inner parallel loops.

Wherever multiple nested parallel loops existed, the outermost among them was dis-

tributed across devices. The OpenCL kernels were manually written by mapping the

parallel loops in a DOALL manner onto the OpenCL work groups and work items.

Benchmark Problem sizes Tile sizes
floyd N=10240 32 (2d)
lu N=11264 256 (2d)
fdtd-2d N=10240, T=4096 32 (2d)
heat-2d N=10240, T=4096 32 (2d)
heat-3d N=512, T=4096 32 (3d)

Table 3.4: Problem and tile sizes - Intel-NVIDIA system

Benchmark Problem sizes Tile sizes
floyd N=10240 32 (2d)
fdtd-2d N=5120, T=4096 32 (2d)
heat-2d N=8192, T=4096 32 (2d)

Table 3.5: Problem and tile sizes - AMD system

Evaluation

We consider the following combination of compute devices: (1) 1 CPU, (2) 1 GPU, (3)

1 CPU + 1 GPU, (4) 2 GPUs, (5) 4 GPUs. We evaluate FO and FOP on the Intel-

NVIDIA system for all these cases. On the AMD system, we evaluate FO and FOP for

(1), (2) and (4) cases, using only the discrete GPUs. In the first two cases, the devices

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 40

Benchmark
Device Total execution time Total communication volume
combination - FOP FO Speedup FOP FO Reduction

floyd

1 CPU (12 cores) 890s – – – – – –
1 GPU 113s – – – – – –
1 CPU + 1 GPU – 148s 180s 1.22 0.8 GB 25.0 GB 32
2 GPUs – 65s 104s 1.60 1.6 GB 51.0 GB 32
4 GPUs – 43s 107s 2.49 3.1 GB 102.0 GB 32

lu

1 CPU (12 cores) 412s – – – – – –
1 GPU 77s – – – – – –
1 CPU + 1 GPU – 92s 132s 1.43 0.9 GB 63 GB 70
2 GPUs – 64s 147s 2.30 0.7 GB 62.0 GB 83
4 GPUs – 60s 208s 3.47 1.2 GB 63.0 GB 51

fdtd-2d

1 CPU (12 cores) 1915s – – – – – –
1 GPU 397s – – – – – –
1 CPU + 1 GPU – 580s 603s 1.03 0.9 GB 11.0 GB 11
2 GPUs – 207s 236s 1.14 0.9 GB 22.0 GB 22
4 GPUs – 117s 164s 1.40 2.2 GB 62.0 GB 28

heat-2d

1 CPU (12 cores) 1112s – – – – – –
1 GPU 266s – – – – – –
1 CPU + 1 GPU – 242s 255s 1.05 0.6 GB 21.0 GB 32
2 GPUs – 138s 157s 1.14 0.6 GB 21.0 GB 32
4 GPUs – 80s 124s 1.55 1.9 GB 62.0 GB 32

heat-3d

1 CPU (12 cores) 3080s – – – – – –
1 GPU 1932s – – – – – –
1 CPU + 1 GPU – 1718s 2018s 1.17 16.0 GB 512.0 GB 32
2 GPUs – 1086s 1379s 1.26 16.0 GB 512.0 GB 32
4 GPUs – 670s 1658s 2.47 49.0 GB 1535.4 GB 32

Table 3.6: Total communication volume and execution time of FO and FOP on the
Intel-NVIDIA system

Benchmark
Device Total execution time Total communication volume
combination - FOP FO Speedup FOP FO Reduction

floyd
1 CPU (4 cores) 1084s – – – – – –
1 GPU 512s – – – – – –
2 GPUs – 286s 305s 1.07 0.8 GB 25.0 GB 32

fdtd-2d
1 CPU (4 cores) 1529s – – – – – –
1 GPU 241s – – – – – –
2 GPUs – 133s 242s 1.82 0.2 GB 2.15 GB 17

heat-2d
1 CPU (4 cores) 3654s – – – – – –
1 GPU 256s – – – – – –
2 GPUs – 142s 353s 2.49 0.25 GB 8.0 GB 32

Table 3.7: Total communication volume and execution time of FO and FOP on the AMD
system

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 41

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1GPU 1CPU+1GPU 2GPUs 4GPUs

S
p

e
e
d
u

p

Device combination

floyd
fdtd-2d
heat-3d
lu
heat-2d

Figure 3.7: FOP – strong scaling on the Intel-NVIDIA system

run the entire OpenCL kernel. For cases (3), (4) and (5), kernel execution is partitioned

across devices. For (4) and (5), the computation is equally distributed (block-wise).

Since the CPU and GPUs have different compute powers, the computation distributions

were chosen to be asymmetric for case (3). For all benchmarks, case (3) had 10% of

computation distributed onto the CPU and 90% onto the GPU.

Analysis

Table 3.6 shows results obtained on the Intel-NVIDIA system. For all benchmarks, the

running time on 1 GPU is much lower than that on the 12-core CPU. This running

time is further improved by distributing the computation onto 2 and 4 GPUs. For all

benchmarks, we see that FOP significantly reduces communication volume over FO. The

computation tile sizes directly affects the communication volume (e.g., 32× for floyd).

For the transformations and placement chosen for these benchmarks, we manually ver-

ified that FOP achieved the minimum communication volume across different device

combinations. This reduction in communication volume results in a corresponding re-

duction in execution time facilitating strong scaling of these benchmarks, as shown in

Figure 3.7 – this was not possible with the existing FO. For example, FO for heat-3d

has very high communication overhead and does not scale beyond two GPUs. For floyd

CHAPTER 3. GENERATING EFFICIENT DATA MOVEMENT CODE 42

and lu, FO scales up to 2 GPUs, but not beyond it. However, FOP easily scales up to

4 GPUs for all benchmarks. For floyd, lu and fdtd-2d, CPU’s performance becomes

the bottleneck, even when it only executed 10% of the computation. Hence, we observe

1 CPU + 1 GPU performance to be worse than 1 GPU performance for these bench-

marks. On the other hand, 1 CPU + 1 GPU gives 9% and 11% improvement over 1 GPU

for heat-2d and heat-3d respectively. FOP gives a mean speedup of 1.53× over FO

across all benchmarks and applicable device combinations.

Table 3.7 shows results obtained on the AMD system. The OpenCL functions used to

transfer rectangular regions of memory are crucial for copying non-contiguous (strided)

data efficiently. We found these functions to have a prohibitively high overhead on this

system. This compelled us to use only those functions which could copy contiguous

regions of memory. Hence, we present results only for floyd, heat-2d and fdtd-2d

since the data to be moved for these benchmarks is contiguous. For all benchmarks,

the running time on 1 GPU is much lower than that on the 4-core CPU. We could not

evaluate them on 1 CPU + 1 GPU since the OpenCL data transfer functions crashed

when CPU was used as an OpenCL device. Distributing computation of floyd onto

2 GPUs with FO performs better than 1 GPU, even though FO communicates large

amounts of redundant data, because the compute-to-copy ratio is high in this case.

However, FO does not perform well on 2 GPUs for heat-2d and fdtd-2d since these

benchmarks have a low compute-to-copy ratio and the high volume of communication

in FO leads to a slowdown. The FOP scheme, on the other hand, performs very well on

2 GPUs, yielding a near-ideal speedup of 1.8× over 1 GPU for all benchmarks.

Chapter 4

Targeting a Dataflow Runtime

In this chapter, we present our work on compiling for a dataflow runtime using our data

movement techniques described in Chapter 3. Section 4.1 provides background on run-

time design issues. Section 4.2 describes the design of our compiler-assisted dataflow

runtime. Section 4.3 describes our implementation and experimental evaluation is pre-

sented in Section 4.4.

4.1 Motivation and design challenges

In this section, we discuss the motivation, challenges and objectives in designing a

compiler-assisted dataflow runtime.

4.1.1 Dataflow and memory-based dependences

It is well known that flow dependences lead to communication when parallelizing across

nodes with private address spaces. Previous work [13] has shown that when multiple

writes to an element occur on different nodes before a read to it, only the last write value

before the read can be communicated using non-transitive flow dependences. Previous

work [13] has also shown that the last write value of an element across the iteration space

can be determined independently (write-out set). Memory-based dependences, namely

anti and output dependences, do not lead to communication but have to be preserved

43

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 44

when parallelizing across multiple cores that share memory. We will see that a compiler

that targets a runtime for a distributed-memory cluster of multicores should pay special

attention to these.

4.1.2 Terminology

Tasks

Task is a part of a program that represents an atomic unit of computation. A task is

to be atomically executed by a single thread, but multiple tasks can be simultaneously

executed by different threads in different nodes. Each task can have multiple accesses

to multiple shared data variables. A flow (RAW) data dependence from one task to

another would require the data written by the former to be communicated to the latter,

if they will be executed on different nodes. Even otherwise, it enforces a constraint on

the order of execution of those tasks, i.e., the dependent task can only execute after the

source task has executed. Anti (WAR) and output (WAW) data dependences between

two tasks are memory-based, and do not determine communication. Since two tasks that

will be executed on different nodes do not share an address space, memory-based data

dependences between them do not enforce a constraint on their order of execution. On

the other hand, for tasks that will be executed on the same node, memory-based data

dependences do enforce a constraint on their order of execution, since they share the

local memory.

There could be many data dependences between two tasks with source access in one

task and target access in the other. All these data dependences can be encapsulated in

one inter-task dependence to enforce that the dependent task executes after the source

task. So, it is sufficient to have only one inter-task dependence from one task to another

that represents all data dependences whose source access is in the former and target

access is in the latter. In addition, it is necessary to differentiate between an inter-

task dependence that is only due to memory-based dependences, and one that is also

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 45

Task-A

Task-B

Task-DTask-E

Task-C

Node2Node1

RAW dependences
WAR/WAW dependences

Figure 4.1: Inter-task dependences example

due to a flow dependence. If two tasks will be executed on different nodes, an inter-

task dependence between them that is only due to memory-based dependences does not

enforce a constraint on the order of execution. Finally, our notion of task here is same

as that of a “codelet” in the codelet execution model [52].

Scheduling tasks

Consider the example shown in Figure 4.1, where there are 5 tasks Task-A, Task-B,

Task-C, Task-D and Task-E. The inter-task dependences determine when a task can be

scheduled for execution. For instance, the execution of Task-A, Task-B, Task-C, Task-

D and Task-E in that order by a single thread on a single node is valid since it does

not violate any inter-task dependence. Let Task-A, Task-B and Task-D be executed

on Node2, while Task-C and Task-E be executed on Node1, as shown in Figure 4.1.

On Node2, Task-A can be scheduled for execution since it does not depend on any task.

Since Task-B depends on Task-A, it can only be scheduled for execution after Task-A has

finished execution. Task-C in Node1 depends on Task-B in Node2, but the dependence is

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 46

only due to WAR or WAW data dependences. So, Task-C can be scheduled for execution

immediately. Similarly, Task-E in Node1 can ignore its WAR or WAW dependence on

Task-D in Node2, but it has to wait for Task-C’s completion before it can be scheduled

for execution. On the other hand, Task-D in Node2 depends on Task-C in Node1, and

it can only be scheduled for execution once it receives the required data from Task-C.

4.1.3 Synchronization and communication code

On shared-memory, threads use synchronization constructs to coordinate access to shared

data. Bulk synchronization is a common technique used in conjunction with loop paral-

lelism to ensure that all threads exiting it are able to see writes performed by others. For

distributed-memory, data is shared typically through message passing communication

code. Nodes in a distributed-memory cluster are typically shared-memory multicores.

Bulk synchronization of threads running on these cores could lead to under-utilization of

threads. Dynamically scheduling tasks on threads within each node eliminates bulk syn-

chronization and balances the load among the threads better. Hence, dynamic scheduling

would scale better than static scheduling as the number of threads per node increase.

Globally synchronized communication in a distributed cluster of nodes has significant

runtime overhead. Asynchronous point-to-point communication not only reduces run-

time overhead, but also allows overlapping computation with communication. Even with

a single thread on each node, dynamically scheduling tasks within each node with asyn-

chronous point-to-point communication would significantly outperform statically sched-

uled tasks with globally synchronized communication.

To dynamically schedule tasks, inter-task dependences are used at runtime. If the

task dependence graph is built and maintained in shared-memory, then the performance

might degrade as the number of tasks increase. So, the semantics of the task dependence

graph (i.e., all tasks and dependences between tasks) should be maintained without

building the graph in memory. In a distributed cluster of nodes, maintaining a consistent

semantic view of the task dependence graph across nodes might add significant runtime

overhead, thereby degrading performance as the number of tasks increase. To reduce

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 47

this overhead, each node can maintain its own semantic view of the task dependence

graph, and the required communication between nodes can help them to cooperatively

maintain their semantics without any coordination.

4.1.4 Objectives

Our key objectives are:

1. extraction of coarse-grained dataflow parallelism,

2. allowing load-balanced execution on shared and distributed-memory parallel archi-

tectures,

3. overlap of computation and communication, and

4. exposing sufficient functionality that allows the compiler to exploit all of these

features automatically including generation of communication code.

We leverage recent work [13] along with our techniques described in Chapter 3 for the

application of loop transformations and parallelism detection, and subsequent generation

of communication sets.

4.2 Compiler-assisted dataflow runtime

In this section, we first present an overview of the design of our compiler-assisted dataflow

runtime. We then present the detailed design of our compiler-runtime interaction, fol-

lowed by the detailed design of our dataflow runtime.

4.2.1 Overview

A task is a portion of computation that operates on a smaller portion of data than the

entire iteration space. Tasks exhibit better data locality, and those that do not depend

on one another can be executed in parallel. With compiler assistance, tasks can be au-

tomatically extracted from affine loop nests with precise dependence information. Given

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 48

a distributed-memory cluster of multicores, a task is executed atomically by a thread

on a core of a node. A single task’s execution itself is sequential with synchronization

or communication performed only before and after its execution but not during it. Our

aim is to design a distributed decentralized dataflow runtime that dynamically schedules

tasks on each node effectively.

Data space
(shared

memory)

Buf 1

Buf mr

Receive buffers

Buf 1

Buf ms

Send buffers

Fetch task from queue

Compute

Pack
Post async sends

Update status

Each compute thread

n− 1 threads

Post async receives

Check for new messages

Unpack

Update status

The receiver thread

1 thread

Task queue

Task status

Figure 4.2: Overview of the scheduler on each node

Each node runs its own scheduler without centralized coordination. Figure 4.2 depicts

the scheduler on each node. Each node maintains a status for each task, and a queue

for the tasks which are ready to be scheduled for execution. There are multiple threads

on each node, all of which can access and update these data structures. Each thread

maintains its own pool of buffers that are reused for communication. It adds more buffers

to this pool if all the buffers are busy in communication.

A single dedicated thread on each node receives data from other nodes. The rest of

the threads on each node compute tasks that are ready to be scheduled for execution.

The computation can update data variables in the local shared memory. After comput-

ing a task, for each node that requires some data produced by this task, the thread packs

the data from the local shared memory to a buffer from its pool that is not being used,

and asynchronously sends this buffer to the node that requires it. After packing the data,

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 49

it updates the status of the tasks which are dependent on the task that completed exe-

cution. The receiver thread preemptively posts anonymous asynchronous receives using

all the buffers in its pool, and continuously checks for new completion messages. Once

it receives the data from another node, it unpacks the data from the buffer to the local

shared memory. After unpacking the data, it preemptively posts another anonymous

asynchronous receive using the same buffer, and updates the status of the tasks which

are dependent on the task that sent the data. When the status of a task is updated, it

is added to the queue if it is ready to be scheduled for execution.

Each compute thread fetches a task from the task queue and executes it. While

updating the status of tasks, each thread could add a task to the task queue. A concurrent

task queue is used so that the threads do not wait for each other (lock-free). Such dynamic

scheduling of tasks by each compute thread on a node balances the load shared by the

threads better than a static schedule, and improves resource utilization. In addition,

each compute thread uses asynchronous point-to-point communication and does not

wait for its completion. After posting the non-blocking send communication messages,

the thread progresses to execute another task from the task queue (if it is available)

while some communication may still be in progress. In this way, the communication is

automatically overlapped with computation, thereby reducing the overall communication

cost.

Each node asynchronously sends data without waiting for confirmation from the

receiver. Each node receives data without prior coordination with the sender. There

is no coordination between the nodes for sending or receiving data. The only messages

between the nodes is that of the data which is required to be communicated to preserve

program semantics. These communication messages are embedded with meta-data about

the task sending the data. The meta-data is used to update the status of dependent tasks,

and schedule them for execution. The schedulers on different nodes use the meta-data to

cooperate with each other. In this way, the runtime is designed for cooperation without

coordination.

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 50

4.2.2 Synthesized Runtime Interface (SRI)

The status of tasks are updated based on dependences between them. A task can be

scheduled for execution only if all its dependent tasks have finished execution. Since

building and maintaining the task dependence graph in memory could have excessive

runtime overhead, our aim is to encapsulate the semantics of the task dependence graph

to yield minimal runtime overhead. To achieve this, we rely on the observation that,

for affine loop nests, the incoming or outgoing edges of a task in a task dependence

graph can be captured as a function (code) of that task using dependence analysis.

In other words, the semantics of the task dependence graph can be encapsulated at

compile time in functions parametric on a task. These functions are called at runtime

to dynamically schedule the tasks. The set of parameterized task functions (PTFs)

generated for a program form the Synthesized Runtime Interface (SRI) for that program.

We now define the SRI that is required, and show that it can be generated using static

analysis techniques.

A task is an iteration of the innermost parallelized loop that should be executed

atomically. The innermost parallelized loop is the innermost among loops that have been

identified for parallelization, and we will use this term in the rest of this section. A task

is uniquely identified using the iteration vector of the innermost parallelized loop, i.e.,

the tuple task id of integer iterator values ordered from the outermost iterator to the

innermost iterator. In addition to task id, some of the PTFs are parameterized on a data

variable and a node. A data variable is uniquely identified by an integer data id, which

is its index position in the symbol table. A node is uniquely identifiable by an integer

node id, which is typically the rank of the node in the global communicator.

The PTFs can access and update data structures which are local to the node, and

are shared by the threads within the node. The PTFs we define can access and update

these locally shared data structures:

1. readyQueue (task queue): a priority queue containing task id of tasks which are

ready to be scheduled for execution.

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 51

2. numTasksToWait (task status): a hash map from task id of a task to a state or

counter, indicating the number of tasks that the task has to wait before it is ready

to be scheduled for execution.

The PTFs do not coordinate with other nodes to maintain these data structures, since

maintaining a consistent view of data structures across nodes might add significant run-

time overhead. So, all operations within a PTF are local and non-blocking.

Function call Category Operation
incrementForLocalDependent(task id) Scheduling Increment numTasksToWait of the task

task id for each local task that it is de-
pendent on

incrementForRemoteDependent(task id) Scheduling Increment numTasksToWait of the task
task id for each remote task that it is
dependent on

decrementDependentOfLocal(task id) Scheduling Decrement numTasksToWait of the
tasks that are dependent on the local
task task id

decrementDependentOfRemote(task id) Scheduling Decrement numTasksToWait of the lo-
cal tasks that are dependent on the re-
mote task task id

countLocalDependent(task id) Scheduling Returns the number of local tasks that
are dependent on the task task id

countRemoteDependent(task id) Scheduling Returns the number of remote tasks
that are dependent on the task task id

isReceiver(node id,data id,task id) Communication Returns true if the node node id is a
receiver of elements of data variable
data id from the task task id

pack(data id,task id, node id, buffer) Communication Packs elements of data variable data id
from local shared-memory into the
buffer, that should be communicated
from the task task id to the node
node id

unpack(data id,task id, node id, buffer) Communication Unpacks elements of data variable
data id to local shared-memory from
the buffer, that has been communi-
cated from the task task id to the node
node id

pi(task id) Placement Returns the node node id on which the
task task id will be executed

compute(task id) Computation Executes the computation of the task
task id

Table 4.1: Synthesized Runtime Interface (SRI)

The name, arguments, and operation of the PTFs in the SRI are listed in Table 4.1.

The PTFs are categorized into those that assist scheduling, communication, placement,

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 52

and computation.

Inter-task dependences

Baskaran et al. [8] describe a way to extract inter-tile dependences from data dependences

between statements in the transformed iteration space. Inter-task dependences can be

extracted in a similar way. Figure 4.3 illustrates the inter-task dependences for an

example. Recall that a task is an iteration of the innermost parallelized loop. For each

data dependence polyhedron in the transformed iteration space, all dimensions inner to

the innermost parallelized loop in the source domain and the target domain are projected

out to yield an inter-task dependence polyhedron corresponding to that data dependence.

As noted in Section 4.1.2, it is sufficient to have only one inter-task dependence between

two tasks for all data dependences between them. Therefore, a union of all inter-task

dependence polyhedra corresponding to data dependences is taken to yield the inter-task

dependence polyhedron.

Note that a single task can be associated with multiple statements in the polyhedral

representation. In particular, all statements inside the innermost parallelized loop char-

acterizing the task are the ones associated with the task. A task can also be created for

a statement with no surrounding parallel loops, but is part of a sequence of loop nests

with parallel loops elsewhere.

We now introduce notation corresponding to background presented on the polyhe-

dral framework in Chapter 2. Let S1, S2, . . . , Sm be the statements in the polyhedral

representation of the program, mS be the dimensionality of statement S, di and dj be

the depths of the innermost parallelized loops corresponding to tasks Ti and Tj respec-

tively, s(T) be the set of polyhedral statements in task T , and De be the dependence

polyhedron for a dependence between Sp and Sq. Let project out(P, i, n) be the poly-

hedral library routine that projects out n dimensions from polyhedron P starting from

dimension number i (0-indexed). Then, the inter-task dependence polyhedron for tasks

Ti and Tj is computed as follows:

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 53

for (t=1; t<=T−1; t++)
for (i=1; i<=N−1; i++)

a[t][i] = a[t−1][i−1]+a[t−1][i];

(a) Original code

t

i

Dependence (1,0)

Dependence (1,1)

Tasks

(b) Dependences between iterations

t

i

Tasks Inter-task dependences

(c) Dependences between tasks

Figure 4.3: Illustration of inter-task dependences for an example

D
′

e = project out
(
De,mSp + dj,mSq − dj

)
DT

e = project out
(
D

′

e, di,mSp − di
)

DT (Ti → Tj) =
⋃
e

(
〈~s,~t〉 ∈ DT

e , ∀e ∈ E, e = (Sp, Sq),

∀Sp ∈ Ti, Sq ∈ Tj
)
. (4.1)

The inter-task dependence polyhedron is a key compile-time structure. All PTFs that

assist in scheduling rely on it. A code generator such as Cloog [12] is used to generate

code iterating over certain dimensions of DT (Ti → Tj) while treating a certain number

of outer ones as parameters. For example, if the target tasks need to be iterated over for

a given source task, we treat the outer di dimensions in DT as parameters and generate

code scanning the next dj dimensions. If the source tasks are to be iterated over given

a target task, the dimensions are permuted before a similar step is performed.

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 54

Type of Parame- Iterates Condition on Conditional action
dependence terized on over enumerated

task
RAW, WAR

target task
source

local task numTasksToWait[target task id]++
or WAW tasks

(a) incrementForLocalDependent

Type of Parame- Iterates Condition on Conditional action
dependence terized on over enumerated

task
RAW target task source

tasks
remote task numTasksToWait[target task id]++

(b) incrementForRemoteDependent

Type of Parame- Iterates Condition on Conditional action
dependence terized on over enumerated

task

source task none

numTasksToWait[target task id]−−
RAW, WAR target If target task is local AND

or WAW tasks numTasksToWait[target task id] == 0:
readyQueue.push(target task id)

(c) decrementDependentOfLocal

Type of Parame- Iterates Condition on Conditional action
dependence terized on over enumerated

task

RAW source task local task
numTasksToWait[target task id]−−

target If numTasksToWait[target task id] == 0:
tasks readyQueue.push(target task id)

(d) decrementDependentOfRemote

Type of Parame- Iterates Condition on Conditional action
dependence terized on over enumerated

task
RAW, WAR

source task
target

local task return count++
or WAW tasks

(e) countLocalDependent

Type of Parame- Iterates Condition on Conditional action
dependence terized on over enumerated

task
RAW source task target

tasks
remote task return count++

(f) countRemoteDependent

Table 4.2: Synthesized Runtime Interface (SRI) that assists dynamic scheduling: gen-
erated by analyzing inter-task dependences (decrementDependentOfRemote() should be
called for remote tasks while the rest should be called for local tasks)

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 55

Constraints on scheduling

As illustrated in the example in Section 4.1.2, memory-based data dependences, i.e.,

WAR and WAW dependences, do not enforce a constraint on the order of execution of

tasks on different nodes since those tasks will not share an address space at execution

time. So, the inter-task dependence polyhedron between tasks placed on different nodes

is extracted using RAW dependence polyhedra alone. On the other hand, memory-

based data dependences do enforce a constraint on the order of execution of tasks on the

same node. So, the inter-task dependence polyhedron between tasks on the same node is

extracted using RAW, WAR and WAW dependence polyhedra. For a PTF that traverses

the incoming edges of a task, the target task in the inter-task dependence polyhedron

is treated as a parameter, and code is generated to enumerate the source tasks. For

a PTF that traverses the outgoing edges of a task, the source task in the inter-task

dependence polyhedron is treated as a parameter, and code is generated to enumerate

the target tasks. Each PTF can check if the enumerated task is local or remote (using the

placement PTF), and then perform an action dependent on that. Table 4.2 summarizes

this for each PTF that assists scheduling.

Communication and placement

In Chapter 3, we generated efficient data movement code for distributed-memory archi-

tectures by parameterizing communication on an iteration of the innermost parallelized

loop. Since the data to be communicated could be discontiguous in memory, the sender

packs it into a buffer before sending it, and the receiver unpacks it from the buffer after

receiving it. We adapt the same techniques to parameterize communication on a task.

A PTF is generated to pack elements of a data variable written in a task from local

shared-memory into a buffer that should be communicated to a node. Similarly, a PTF is

generated to unpack elements of a data variable written in a task to local shared-memory

from a buffer that has been communicated to a node. Any of the communication schemes

described in Chapter 3 can be used - Flow-out (FO) scheme, Flow-out intersection Flow-

in (FOIFI) scheme or Flow-out partitioning (FOP) scheme. We use FOP scheme since it

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 56

communicates the minimum volume of data for a vast majority of cases, and outperforms

the other schemes, as demonstrated in Section 3.6. Therefore, the code generated for the

pack or unpack PTF iterates over each communication partition of the given task, and

packs or unpacks it only if the given node is a receiver of that communication partition.

A PTF is generated to determine if a node is a receiver of the elements of a data

variable written in a task. This corresponds to the receiversx function described in

Section 3.2.1. Since we are using FOP scheme, a PTF is generated for each communica-

tion partition to determine if a node is a receiver of that communication partition of a

task. These PTFs are not included in Table 4.1 for the sake of brevity. The pi function

(Table 4.1) provides the placement of tasks. It is the same function used in Chapter 3.

Information on when the placement is determined and specified will be discussed in

Section 4.2.3.

Computation

We enumerate all tasks and extract computation for a parameterized task using tech-

niques described by Baskaran et al. [8]. For each innermost parallelized loop in the

transformed iteration space, from the iteration domain of a statement within the loop,

all dimensions inner to the innermost parallelized loop are projected out. The code gen-

erated to traverse this domain will enumerate all tasks in that parallelized loop nest at

runtime. To extract the computation PTF, the iteration domain of all statements within

the innermost parallelized loop is considered. All outer dimensions up to and includ-

ing the innermost parallelized loop are treated as parameters, and code is generated to

traverse dimensions inner to the innermost parallelized loop.

Thread-safety

A concurrent priority queue is used as the readyQueue. Atomic increments and decre-

ments are used on the elements of numTasksToWait. unpack is the only PTF that modifies

original data variables in local shared-memory. So, the runtime has to ensure that the

function is called according to the inter-task dependence constraints of the program. As

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 57

Algorithm 2: Distributed Function-based Dynamic Scheduling (DFDS)

1 〈numTasksToCompute, numTasksToReceive〉 ← initTasks()
2 begin parallel region
3 if thread id == 0 then

// single dedicated receiver thread
4

5 receiveDataFromTasks(numTasksToReceive)

// compute threads
6 computeTasks(numTasksToCompute)

long as the unpack PTF respects the inter-task dependence constraints, all PTFs can be

simultaneously called with different parameters by different threads in a node without

affecting program semantics.

4.2.3 Distributed Function-based Dynamic Scheduling (DFDS)

Compiler assistance or hints can make a runtime more efficient by reducing runtime

overhead. A runtime, that a compiler can automatically generate code for, is even more

useful since efficient parallel code is directly obtained from sequential code, thereby

eliminating programmer burden in parallelization. As mentioned earlier, our goal is

to build a runtime that is designed to be targeted by a compiler. In particular, we

design a distributed decentralized runtime that uses the SRI generated by a compiler

to dynamically schedule tasks on each node. Hence, we call this runtime Distributed

Function-based Dynamic Scheduling (DFDS). Algorithm 2 shows the high-level code

generated for DFDS that is executed by each node. Initially, each node initializes the

status of all tasks. It also determines the number of tasks it has to compute and the

number of tasks it has to receive from. After initialization, a single dedicated thread

receives data from tasks executed on other nodes, while the rest of the threads compute

tasks that are assigned to this node and these could send data to other nodes.

Algorithm 3 shows the code generated to initialize the status of tasks. For each local

task, its numTasksToWait is initialized to the sum of the number of local and remote

tasks that it is dependent on. If a local task has no tasks that it is dependent on, then

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 58

Algorithm 3: initTasks()

1 my node id ← node id of this node
2 numTasksToCompute ← 0
3 numTasksToReceive ← 0
4 for each task id do
5 if pi(task id) == my node id then // local task
6 numTasksToCompute++
7 incrementForLocalDependent(task id)
8 incrementForRemoteDependent(task id)
9 if numTasksToWait[task id] == 0 then

10 readyQueue.push(task id)

11 else // remote task
12 numReceivesToWait[task id] ← 0
13 for each data id do
14 if isReceiver(my node id,data id,task id) then
15 numReceivesToWait[task id]++

16 if numReceivesToWait[task id] > 0 then
17 numTasksToReceive++
18 incrementForLocalDependent(task id)

Output: 〈numTasksToCompute, numTasksToReceive〉

it is added to the readyQueue. For each remote task, a counter numReceivesToWait is

determined, which indicates the number of data variables that this node should receive

from that remote task. If any data is going to be received from a remote task, then its

numTasksToWait is initialized to the number of local tasks that it is dependent on. This

is required since the unpack PTF cannot be called on a remote task until all the local

tasks it depends on have completed. Note that the for-each task loop can be parallelized

with numTasksToCompute and numTasksToReceive as reduction variables, and atomic

increments to elements of numReceivesToWait.

Algorithm 4 and Algorithm 5 show the generated code that is executed by a compute

thread. A task is fetched from the readyQueue and its computation is executed. Then, for

each data variable and receiver, the data that has to be communicated to that receiver

is packed from local shared-memory into a buffer which is not in use. If all the buffers in

the pool are being used, then a new buffer is created and added to the pool. The task id

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 59

Algorithm 4: computeTasks()

Input: numTasksToCompute
1 while numTasksToCompute > 0 do
2 (pop succeeded, task id)← readyQueue.try pop()
3 if pop succeeded then
4 compute(task id)
5 sendDataOfTask(task id)
6 decrementDependentOfLocal(task id)
7 atomic numTasksToCompute−−

Algorithm 5: sendDataOfTask()

Input: task id
1 my node id ← node id of this node
2 for each data id do
3 for each node id 6= my node id do
4 if isReceiver(node id,data id,task id) then
5 Let i be the index of a send buffer that is not in use
6 Put task id to send buffer[i]
7 pack(data id, task id, node id, send buffer[i])
8 Post asynchronous send from send buffer[i] to node id

of this task is added as meta-data to the buffer. The buffer is then sent asynchronously

to the receiver, without waiting for confirmation from the receiver. Note that the pack

PTF and the asynchronous send will not be called if all the tasks dependent on this task

due to RAW dependences will be executed on the same node. A local task is considered

to be complete from this node’s point-of-view only after the data it has to communicate

is copied into a separate buffer. Once a local task has completed, numTasksToWait of

its dependent tasks is decremented. This is repeated until there are no more tasks to

compute.

Algorithm 6 shows the generated code that is executed by the receiver thread. Ini-

tially, for each data variable, an asynchronous receive from any node (anonymous) is

preemptively posted to each buffer for the maximum number of elements that can be

received from any task. Reasonably tight upper bounds on the required size of buffers

are determined from the communication set constraints that are all affine. This is used

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 60

Algorithm 6: receiveDataFromTasks()

Input: numTasksToReceive
1 my node id ← node id of this node
2 for each data id and index i of receive buffer do
3 Post asynchronous receive to receive buffer[i] with any node id as source

4 while numTasksToReceive > 0 do
5 for each data id and index i of receive buffer do
6 if asynchronous receive to receive buffer[i] has completed then
7 Extract task id from receive buffer[i]
8 if numTasksToWait[task id] == 0 then
9 unpack(data id,task id, my node id, receive buffer[i])

10 numReceivesToWait[task id]−−
11 if numReceivesToWait[task id] == 0 then
12 decrementDependentOfRemote(task id)
13 numTasksToReceive−−
14 Post asynchronous receive to receive buffer[i] with any node id as

source

to determine the maximum number of elements that can be received from any task.

Each receive is checked for completion. If the receive has completed, then the meta-

data task id is fetched from the buffer. If all the local tasks that task id depends on have

completed, then the data that has been received from the task task id is unpacked from

the buffer into local shared-memory, and numReceivesToWait of task id is decremented. A

data variable from a task is considered to be received only if the data has been updated

in local shared-memory, i.e., only if the data has been unpacked. Once the data has

been unpacked from a buffer, an asynchronous receive from any node (anonymous) is

preemptively posted to the same buffer. A remote task is considered to be complete

from this node’s point-of-view only if it has received all the data variables it needs from

that task. Once a remote task has completed, numTasksToWait of its dependent tasks

is decremented. If all the receive buffers have received data, but have not yet been

unpacked, then more buffers are created and an asynchronous receive from any node

(anonymous) is preemptively posted to each new buffer. This is repeated until there are

no more tasks to receive from.

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 61

While evaluating our runtime, we observed that a dedicated receiver thread is under-

utilized since almost all its time is spent in busy-waiting for one of the non-blocking

receives to complete. Hence, we believe that a single receiver thread is sufficient to

manage any amount of communication. To avoid under-utilization, the generated code

was modified such that the receiver thread also executed computation (and its associated

functions) instead of busy-waiting. We observed that there was almost no difference

in performance between a dedicated receiver thread and a receiver thread that also

computed. There is a trade-off: although a dedicated receiver thread is under-utilized, it

is more responsive since it can unpack data (and enable other tasks) soon after a receive.

The choice might depend on the application. Our tool can generate code for both such

that it can be chosen at compile-time. The algorithms are presented as is for clarity of

exposition.

Priority

Priority on tasks can improve performance by enabling the priority queue to choose be-

tween many ready tasks more efficiently. There are plenty of heuristics to decide the

priority of tasks to be executed. Though this is not the focus of our work, we use

PTFs to assist in deciding the priority. A task with more remote tasks dependent on

it (countRemoteDependent()) has higher priority since data written in it is required to

be communicated to more remote tasks. This helps initiate communication as early as

possible, increasing its overlap with computation. For tasks with the same number of

remote tasks dependent on it, the task with more local tasks dependent on it (count-

LocalDependent()) has higher priority since it could enable more tasks to be ready for

execution. We also assign thread affinity hints by using a block distribution of local

tasks onto the threads. When tasks cannot be differentiated on remote or local tasks

dependent on it, a task that has affinity to this thread has higher priority over one that

does not have affinity to this thread. This can help improve spatial locality because

consecutive iterations (in source code) could be accessing spatially-near data. When

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 62

none of these can differentiate between tasks, a task whose task id is the lexicographi-

cally least is chosen. We use this priority scheme in our evaluation (Section 4.4). The

priority scheme in our design is a pluggable component, and we plan to explore more

sophisticated priority schemes (or scheduling policies in general) in the future.

Dynamic a priori placement

When the status of the tasks are being initialized at runtime, DFDS expects the place-

ment of all tasks to be known, since its behavior depends on whether a task is local

or remote. The placement of all tasks can be decided at runtime before initializing the

status of tasks. In such a case, a hash map from a task to the node which will execute

that task should be set consistently across all nodes before the call to initTasks() in line

1 of Algorithm 2. The placement PTF would then read the hash map. DFDS is thus

designed to support dynamic a priori placement.

To find the optimal placement automatically is not the focus of this work. In our

evaluation, we use a block placement function except in cases where non-rectangular

iteration spaces are involved – in such cases, we use a block-cyclic placement. This

placement strategy yields good strong scaling on distributed-memory for the benchmarks

we have evaluated, as we will see in Section 4.4.2. Determining more sophisticated

placements including dynamic a priori placements is orthogonal to our work. Recent

work by Reddy et al. [45] explores this independent problem.

4.3 Implementation

We implement our compiler-assisted runtime as part of a publicly available source-to-

source polyhedral tool chain. Clan [11], ISL [50], Pluto [14], and Cloog-isl [10] are used to

perform polyhedral extraction, dependence testing, automatic transformation, and code

generation, respectively. Polylib [42] is used to implement the polyhedral operations in

Section 4.2.2.

Figure 4.4 shows the overview of our tool. The input to our compiler-assisted runtime

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 63

Pluto
transformation

framework

Task extractor
Inter-task

dependences
extractor

Data
movement
framework

DFDS
code generator

input code

polyhedral representation of
tiled and parallelized code

tasks inter-task dependences

computation and placement SRI

scheduling SRI

communication SRI

output code with embedded scheduler

Figure 4.4: Overview of our tool

is sequential code containing arbitrarily nested affine loop nests. The sequential code

is tiled and parallelized using the Pluto algorithm [5, 15]. Loop tiling helps reduce the

runtime overhead and improve data locality by increasing the granularity of tasks. The

SRI is automatically generated using the parallelized code as input; the communication

code is automatically generated using our own FOP scheme described in Section 3.4.

The DFDS code for either shared-memory or distributed-memory systems is then auto-

matically generated. The code generated can be executed either on a shared-memory

multicore or on a distributed-memory cluster of multicores. Thus, ours is a fully au-

tomatic source-transformer of sequential code that targets a compiler-assisted dataflow

runtime.

The concurrent priority queue in Intel Thread Building Blocks (TBB) [29] is used to

maintain the tasks which are ready to execute. Parametric bounds of each dimension

in the task id tuple are determined, and these, at runtime, yield bounds for each of the

outer dimensions that were treated as parameters. A multi-dimensional array of dimen-

sion equal to the length of the task id tuple is allocated at runtime. The size of each

dimension in this array corresponds to the difference in the bounds of the corresponding

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 64

dimension in the task id tuple. This array is used to maintain the task statuses num-

TasksToWait and numReceivesToWait, instead of a hash map. The status of a task id can

then be accessed by offsetting each dimension in the array by the lower bound of the

corresponding dimension in the task id tuple. Thus, the memory required to store the

task status is minimized, while its access is efficient. Asynchronous non-blocking MPI

primitives are used to communicate between nodes in the distributed-memory system.

4.4 Experimental evaluation

In this section, we evaluate our compiler-assisted runtime on a shared-memory multicore,

and on a distributed cluster of multicores.

Benchmarks

We present results for Floyd-Warshall (floyd), LU Decomposition (lu), Cholesky Factor-

ization (cholesky), Alternating Direction Implicit solver (adi), 2d Finite Different Time

Domain Kernel (fdtd-2d), Heat 2d equation (heat-2d) and Heat 3d equation (heat-3d)

benchmarks. The first five are from the publicly available Polybench/C 3.2 suite [41];

heat-2d and heat-3d are widely used stencil computations [47]. All benchmarks use

double-precision floating-point operations. The compiler used for all experiments is ICC

13.0.1 with options ‘-O3 -ansi-alias -ipo -fp-model precise’. These benchmarks were

selected from a larger set since (a) their parallelization involves communication and

synchronization that cannot be avoided, and (b) they capture different kinds of com-

munication patterns that result from uniform and non-uniform dependences including

near-neighbor, multicast, and broadcast style communication. Table 4.3 and 4.4 list the

problem and tile sizes used. The results are presented for a single execution of a bench-

mark - the best performing one among at least 3 runs; the variation wherever it existed

was negligible.

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 65

Benchmark Problem sizes
Tile sizes

auto manual-CnC
heat-2d N=8192, T=1024 64 (3d) 256 (2d)
heat-3d N=512, T=256 16 (4d) 64 (3d)
fdtd-2d N=4096, T=1024 16 (3d) 256 (2d)
floyd N=4096 256 (2d) 256 (2d)
cholesky N=8192 8 (3d) 128 (3d)
lu N=8192 64 (3d) 128 (3d)

Table 4.3: Problem and tile sizes - shared-memory multicore (Note that computation
tiling transformations for auto and manual-CnC may differ; data is tiled in manual-CnC
but not in auto)

Benchmark Problem sizes
Tile sizes

auto manual-CnC
heat-2d N=8192, T=1024 16 (3d) 256 (2d)
adi N=8192, T=128 256 (2d) -
fdtd-2d N=8192, T=1024 32 (3d) 256 (2d)
floyd N=8192 512 (2d) 512 (2d)
cholesky N=16384 128 (3d) 128 (3d)
lu N=16384 256 (3d) 128 (3d)

Table 4.4: Problem and tile sizes - cluster of multicores (Note that computation tiling
transformations for auto and manual-CnC may differ; data is tiled in manual-CnC but not
in auto)

Intel Concurrent Collections (CnC) implementations

To compare our automatically generated codes against a manually optimized imple-

mentation, we implemented heat-2d, heat-3d, fdtd-2d and lu using Intel Concurrent

Collections (CnC) [28]. We include floyd and cholesky from the Intel CnC samples; the

cholesky benchmark we compare against does not use MKL routines. The Intel CnC

version used is 0.9.001 for shared-memory experiments, and 0.8.0 for distributed-memory

experiments.

The cholesky implementation is detailed in a previous performance evaluation of

Intel CnC [22]. Our Intel CnC implementations use computation and data tiling for

coarsening task granularity and improving locality. Tables 4.3 and 4.4 show the tile sizes

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 66

chosen for each benchmark. In case of distributed-memory, we also ensure that commu-

nication is precise, i.e., we only communicate that which is necessary to preserve program

semantics. Tiling and precise data communication constitute most of the programming

effort. Additionally, we specify the nodes which consume the data produced in a task

(the consumed on() tuner) that helps the runtime to push the data to be communicated

to the nodes that require it. We observe that the push model performs much better than

the default pull model (pulling data when it is required) in our context. We also provide

the exact number of uses for each data buffer so that the CnC runtime can efficiently

garbage collect it and reduce memory footprint. For each benchmark, we assign higher

priority to tasks that communicate to other nodes. Thus, our Intel CnC implementa-

tions have been tuned with considerable effort to extract high performance. Note that all

these components which are tedious and error prone to write manually are automatically

generated by our framework.

4.4.1 Shared-memory architectures

Setup

The experiments were run on a four socket machine of AMD Opteron 6136 2.4 GHz, 128

KB L1, 512 KB L2, and 6 MB L3 cache. The memory architecture is NUMA, and we

use numactl to bind threads and pages suitably for all our experiments.

Evaluation

We compare the performance of our automatic approach (auto-DFDS) with:

• hand-optimized Intel CnC codes (manual-CnC),

• state-of-the-art automatic dynamic scheduling approach [8] that constructs the

entire task dependence graph in memory (auto-graph-dynamic), and

• state-of-the-art automatic static scheduling approach [5,15] that uses bulk-synchronization

(auto-static).

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 67

 0

 5

 10

 15

 20

 25

 30

1 2 4 8 16 32

Number of Threads

S
p
e
e
d
u
p

auto-DFDS
auto-static
manual-CnC
manual-CnC-no-data-tiling
auto-graph-dynamic

 45
 50
 55

S
p
e
e
d
u
p

(a) floyd – seq time is 231s

 0

 10

 20

 30

 40

 50

 60

1 2 4 8 16 32

Number of Threads

S
p
e
e
d
u
p

auto-DFDS
auto-static
manual-CnC
manual-CnC-no-data-tiling
auto-graph-dynamic

 80

 90

 100

S
p
e
e
d
u
p

(b) lu – seq time is 796s

 0

 5

 10

 15

 20

 25

1 2 4 8 16 32

S
p
e
e
d
u
p

Number of Threads

auto-DFDS
auto-static
manual-CnC
auto-graph-dynamic

(c) fdtd-2d – seq time is 222s

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 4 8 16 32

S
p
e
e
d
u
p

Number of Threads

auto-DFDS
auto-static
manual-CnC
auto-graph-dynamic

(d) heat-2d – seq time is 875s

 0

 5

 10

 15

 20

 25

 30

1 2 4 8 16 32

S
p
e
e
d
u
p

Number of Threads

auto-DFDS
auto-static
manual-CnC
auto-graph-dynamic

(e) heat-3d – seq time is 609s

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 4 8 16 32

S
p
e
e
d
u
p

Number of Threads

auto-DFDS
auto-static
manual-CnC
auto-graph-dynamic

(f) cholesky – seq time is 640s

Figure 4.5: Speedup of auto-DFDS, auto-static, and manual-CnC over seq on a shared-
memory multicore (Note that performance of auto-DFDS and auto-static on a single
thread is different from that of seq due to automatic transformations)

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 68

For auto-graph-dynamic, the graph is constructed using Intel Thread Building Blocks

(TBB) [29] Flow Graph (TBB is a popular work stealing based library for task paral-

lelism). All the automatic schemes use the same polyhedral compiler transformations

(and the same tile sizes). The performance difference in the automatic schemes thus

directly relates to the efficiency in their scheduling mechanism.

Analysis

Figure 4.5 shows the scaling of all approaches relative to the sequential version (seq)

which is the input to our compiler. auto-DFDS scales well with an increase in the num-

ber of threads, and yields a geometric mean speedup of 23.5× on 32 threads over the

sequential version. The runtime overhead of auto-DFDS (to create and manage tasks)

on 32 threads is less than 1% of the overall execution time for all benchmarks, except

cholesky for which it is less than 3%.

Benchmarks Static DFDS
heat-2d 23.74 0.65
heat-3d 46.66 0.09
fdtd-2d 22.28 1.14
lu 37.48 1.36
cholesky 57.34 0.39
floyd 102.35 0.08

Table 4.5: Standard-deviation over mean of computation times of all threads in % on 32
threads of a shared-memory multicore: lower value indicates better load balance

auto-DFDS scales better than or comparably to both auto-graph-dynamic and auto-

static. For auto-DFDS and auto-static, we measured the computation time of each thread,

and calculated the mean and standard deviation of these values. Table 4.5 shows the

standard deviation divided by mean, which provides a fair measure of the load balance.

auto-DFDS balances load much better than auto-static, thereby decreasing the overall

execution time. We also measured the maximum idle time across threads for both auto-

DFDS and auto-static, which includes the synchronization time. Figure 4.6 shows that

all threads are active for most of the time in auto-DFDS, unlike auto-static.

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 69

 0

 20

 40

 60

 80

 100

heat-2d
heat-3d

fdtd-2d
lu cholesky

floyd

%
 o

f
to

ta
l
ti
m

e

auto-static

auto-DFDS

Figure 4.6: Maximum idle time across 32 threads on a shared-memory multicore

Figure 4.7 shows the speedup of auto-DFDS over manual-CnC on both 1 thread and 32

threads. The speedup on 32 threads is as good as or better than that on 1 thread, except

for floyd. This shows that auto-DFDS scales as well as or better than manual-CnC. In the

CnC model, programmers specify tasks along with data they consume and produce. As

a result, data is decomposed along with tasks, i.e., data is also tiled. For example, a 2d

array when 2d tiled yields a 2d array of pointers to a 2d sub-array (tile) that is contiguous

in memory. Such explicit data tiling transformations yield better locality at all levels

of memory or cache. Due to this, manual-CnC outperforms auto-DFDS for floyd, lu,

and cholesky. manual-CnC also scales better for floyd because of privatization of data

tiles with increase in the number of threads; privatization allows reuse of data along the

outer loop, thereby achieving an effect similar to that of 3d tiling. To evaluate this, we

implemented manual-CnC without the data tiling optimizations for both floyd and lu.

Figure 4.5 validates our hypothesis by showing that manual-CnC-no-data-tiling versions

perform similar to auto-DFDS, indicating the need for improved compiler transformations

for data tiling. For fdtd-2d, heat-2d, and heat-3d, automatic approaches find load-

balanced computation tiling transformations [5] that also tile the outer serial loop. These

are hard and error prone to implement manually and almost never done in practice.

Consequently, manual-CnC codes only tile the parallel loops and not the outer serial

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 70

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

heat-2d
heat-3d

fdtd-2d
lu cholesky

floyd

S
p
e
e
d
u
p

1-thread

32-threads

Figure 4.7: Speedup of auto-DFDS over manual-CnC on a shared-memory multicore

loop. In these cases, auto-DFDS significantly outperforms manual-CnC: this highlights

the power of automatic task generation frameworks used in conjunction with runtimes.

Automatic data tiling transformations [45] can make our approach even more effective,

and match the performance of manual implementations like CnC.

4.4.2 Distributed-memory architectures

Setup

The experiments were run on a 32-node InfiniBand cluster of dual-SMP Xeon servers.

Each node on the cluster consists of two quad-core Intel Xeon E5430 2.66 GHz processors

with 12 MB L2 cache and 16 GB RAM. The InfiniBand host adapter is a Mellanox

MT25204 (InfiniHost III Lx HCA). All nodes run 64-bit Linux kernel version 2.6.18.

The cluster uses MVAPICH2-1.8.1 as the MPI implementation. It provides a point-to-

point latency of 3.36 µs, unidirectional and bidirectional bandwidths of 1.5 GB/s and

2.56 GB/s respectively. The MPI runtime used for running CnC samples is Intel MPI

as opposed to MVAPICH2-1.8.1, as CnC works only with the Intel MPI runtime.

Evaluation

We compare our fully automatic approach (auto-DFDS) with:

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 71

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 4 8 16 32

S
p
e
e
d
u
p

Number of Nodes (x 8 Threads)

auto-DFDS
auto-static
manual-CnC

(a) floyd – seq time is 2012s

 0

 100

 200

 300

 400

 500

1 2 4 8 16 32

S
p
e
e
d
u
p

Number of Nodes (x 8 Threads)

auto-DFDS
auto-static
manual-CnC

(b) lu – seq time is 5354s

 0

 20

 40

 60

 80

 100

 120

 140

1 2 4 8 16 32

S
p
e
e
d
u
p

Number of Nodes (x 8 Threads)

auto-DFDS
auto-static
manual-CnC

(c) fdtd-2d – seq time is 1432s

 0

 50

 100

 150

 200

1 2 4 8 16 32

S
p
e
e
d
u
p

Number of Nodes (x 8 Threads)

auto-DFDS
auto-static
manual-CnC

(d) heat-2d – seq time is 796s

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 4 8 16 32

S
p
e
e
d
u
p

Number of Nodes (x 1 Threads)

auto-DFDS
auto-static

(e) adi – seq time is 2717s

 0

 50

 100

 150

 200

 250

1 2 4 8 16 32

S
p
e
e
d
u
p

Number of Nodes (x 8 Threads)

auto-DFDS
auto-static
manual-CnC

(f) cholesky – seq time is 2270s

Figure 4.8: Speedup of auto-DFDS, auto-static, and manual-CnC over seq on a cluster of
multicores (Note that performance of auto-DFDS and auto-static on a single thread is
different from that of seq due to automatic transformations)

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 72

• hand optimized Intel CnC codes (manual-CnC), and

• state-of-the-art automatic parallelization approach on distributed-memory [13] that

uses bulk-synchronization, coupled with our own efficient data movement scheme

(auto-static).

Both auto-DFDS and auto-static use the FOP scheme described in Section 3.4. As demon-

strated in Section 3.6, FOP significantly improved upon the state-of-the-art automatic

approach [13] (FO). Thus, our intention is to evaluate the utility of auto-DFDS on top

of our previous state-of-the-art extension (Chapter 3). All the automatic schemes use

the same polyhedral compiler transformations (and the same tile sizes). The perfor-

mance difference in the automatic schemes thus directly relates to the efficiency in their

scheduling mechanism.

Analysis

Figure 4.8 shows the scaling of all approaches relative to the sequential version (seq)

which is the input to our compiler. auto-DFDS scales well with an increase in the number

of nodes, and yields a geometric mean speedup of 143.6× on 32 nodes over the sequential

version. The runtime overhead of auto-DFDS (to create and manage tasks) on 32 nodes

is less than 1% of the overall execution time for all benchmarks.

Benchmarks Static DFDS
adi 2.58 3.12
heat-2d 3.67 2.22
fdtd-2d 3.52 1.29
lu 67.45 16.13
cholesky 48.96 8.09
floyd 174.78 3.25

Table 4.6: Standard-deviation over mean of computation times of all threads in % on 32
nodes (multicores) of a cluster: lower value indicates better load balance

auto-DFDS yields a geometric mean speedup of 1.6× over auto-static on 32 nodes.

For both of them, we measured the computation time of each thread on each node,

and calculated the mean and standard deviation of these values. Table 4.6 shows the

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 73

standard deviation divided by mean, which provides a fair measure of the load balance.

auto-DFDS achieves good load balance even though the computation across nodes is

statically distributed. auto-DFDS balances load much better than auto-static, thereby

decreasing the overall execution time.

floyd
lu heat-2d

fdtd-2d

adi
cholesky

%
 o

f
th

e
ir
 s

u
m

computation time
communication time

Figure 4.9: Maximum computation time and maximum communication time in auto-
static across all threads on 32 nodes (multicores) of a cluster

 0

 1

 2

 3

 4

 5

 6

 7

 8

floyd
lu heat-2d

fdtd-2d

adi
cholesky

R
e
d
u
c
ti
o
n
 f
a
c
to

r

Figure 4.10: Non-overlapped communication time reduction: auto-DFDS over auto-static
on 32 nodes (multicores) of a cluster

We measured the maximum communication time across all threads in auto-static,

and the maximum idle time across all threads in auto-DFDS, which would include the

CHAPTER 4. TARGETING A DATAFLOW RUNTIME 74

 0

 0.5

 1

 1.5

 2

 2.5

 3

heat-2d
fdtd-2d

lu cholesky

floyd

S
p
e
e
d
u
p

1-node

32-nodes

Figure 4.11: Speedup of auto-DFDS over manual-CnC on a cluster of multicores

non-overlapped communication time. Figure 4.9 compares the maximum communication

time and the maximum computation time for auto-static on 32 nodes, and shows that

communication is a major component of the overall execution time. Figure 4.10 shows

the reduction factor in non-overlapped communication time achieved by auto-DFDS on

32 nodes. The graphs show that auto-DFDS outperforms auto-static mainly due to bet-

ter communication-computation overlap achieved by performing asynchronous point-to-

point communication. On 32 nodes, auto-DFDS yields a geometric mean speedup of 1.6×

over auto-static.

Figure 4.11 shows the speedup of auto-DFDS over manual-CnC on both 1 node and 32

nodes. The speedup on 32 nodes is as good as or better than that on 1 node. This shows

that auto-DFDS scales as well as or better than manual-CnC. The performance difference

between auto-DFDS and manual-CnC on 32 nodes is due to that on a single node (shared-

memory multicore). Hence, as shown in our shared-memory evaluation in Section 4.4.1,

auto-DFDS outperforms manual-CnC when compiler transformations like computation

tiling are better than manual implementations, and manual-CnC outperforms auto-DFDS

in other cases due to orthogonal explicit data tiling transformations.

Chapter 5

Related Work

In this chapter, we discuss existing literature related to communication code generation

(Sections 5.1 and 5.2), automatic parallelization frameworks (Section 5.3), and other

dynamic scheduling dataflow runtime frameworks (Section 5.4).

5.1 Data movement for distributed-memory archi-

tectures

Works from literature closely related to communication code generation for distributed-

memory architectures are:

• LWT – Amarasinghe and Lam [2];

• dHPF – Adve and Mellor-Crummey [1], Chavarŕıa-Miranda and Mellor-Crummey [23];

• CLGR – Claßen and Griebl [24];

• FO – Bondhugula [13]; and

• OMPD – Kwon et al. [34].

These abbreviations will be used to refer to these works.

75

CHAPTER 5. RELATED WORK 76

LWT, dHPF, CLGR and FO statically determine the data to be communicated and

generate code for it, whereas OMPD determines the data to be communicated primar-

ily using a runtime dataflow analysis technique. LWT handles only perfectly nested

loops; OMPD handles only those affine loop nests which have a repetitive communi-

cation pattern (i.e., those which transfer the same set of data on every invocation of

the parallel loop); dHPF, CLGR and FO are based on the polyhedral framework, like

our schemes, and can handle any sequence of affine loop nests. Our framework builds

upon and subsumes the state-of-the-art automatic distributed-memory code generation

framework [13], while generalizing it to target heterogeneous architectures.

LWT, dHPF and CLGR use a virtual processor to physical processor mapping to

handle symbolic problem sizes and number of processors. If iterations of the innermost

distributed loop(s) are treated as virtual processors, then FOIFI statically determines the

communication set between two virtual processors, and uses π at runtime as a mapping

function from virtual to physical processors. Thus, FOIFI also uses a virtual processor

model. For all these schemes, the communication code is generated such that virtual

processors communicate with each other only when they are mapped to different physi-

cal processors. In spite of this, when the data being sent to different virtual processors

is not disjoint and when some of those virtual processors are mapped to the same phys-

ical processor, the common portion of the data is sent multiple times to that physical

processor. dHPF [23] overcomes some of this redundancy by statically coalescing data

required by multiple loop nests. FOP and FO also achieve communication coalescing

across multiple loop nests by determining the communication set for all dependences,

i.e., for all dependent loop nests. Moreover, instead of a virtual processor approach, FOP

and FO determine the set of receivers precisely so as to not communicate duplicate data.

dHPF determines communication code by analyzing data accesses as opposed to

dependences in a way that lacks exact dataflow information. dHPF could be either

pulling data just before it is consumed or pushing data soon after it is produced. In

the former scenario, when there are multiple reads to the same location that are spread

across distributed phases, the read in each distributed phase is expected to get the data

CHAPTER 5. RELATED WORK 77

at that location from the owning processor, though only the first read is required to

pull it. In the latter scenario, when there are multiple writes to the same location that

are spread across distributed phases, the write in each distributed phase is expected to

send the data to all processors which read that location, though only the last write is

required to be pushed. In contrast, FOP, FOIFI and FO use the last writer property of

flow dependences to communicate only the last write.

In LWT and dHPF, the data is always communicated to and from its owner(s). Only

the owner can send the latest value of an element to its subsequent read in another

processor, which requires the owner to receive any previous write to that element in any

other processor. However, any processor which writes an element could directly send the

updated value to its subsequent read in any other processor, as in FO, FOIFI and FOP.

As for communication coalescing, LWT and CLGR do not perform it for arbitrary

affine accesses, unlike FOP, FOIFI and FO. So, they could communicate duplicate data

when there are multiple references to the same data.

FO only ensures that the receiver requires at least one element in the communicated

data since it determines the set of receivers for the entire communication set. FO un-

necessarily communicates the entire communication set when different receivers require

different elements in the communication set. FOP reduces such unnecessary communica-

tion by partitioning the communication set and precisely determining the set of receivers

for each partition.

Thus, LWT, dHPF, CLGR, FO and FOIFI schemes could lead to substantially larger

volume of redundant communication than FOP scheme. Since FOIFI precisely deter-

mines the data which needs to be communicated between virtual processors by analyzing

multiple dependences simultaneously, any scheme which uses the virtual processor model

cannot communicate lesser volume than it. In particular, it is theoretically at least as

good as schemes that use the virtual processor model, like LWT, dHPF and CLGR. Our

evaluation shows that FOP clearly outperforms OMPD, FO, FOIFI, and consequently,

LWT, dHPF and CLGR.

CHAPTER 5. RELATED WORK 78

5.2 Data movement for heterogeneous architectures

Existing works for heterogeneous architectures that address problems similar to ours can

be classified into those that support computation distribution on multiple heterogeneous

devices [21, 32, 36, 40, 46] and those that support only single GPU device, but provide

automatic data movement between CPU and GPU [30,31,39].

Among existing works that support distributing computation on multiple devices

of a heterogeneous system [26, 32, 36, 40, 46], the work of Kim et al. [32] is the only

one which completely automates data movement. Their input is an OpenCL program

for a single device, which is distributed across multiple compute devices. The kernels

in the program can only have affine array accesses. They determine the first and last

memory location accessed by a computation partition and then send the entire data in

that range to the compute device which would execute that partition. This could lead

to false sharing since there could be many memory locations within the range that are

not required by the associated partition. Thus, their scheme communicates significantly

large volume of redundant data. To ensure consistency, they maintain a separate virtual

buffer in the host, which is ‘diff’ed and ‘merge’d with the GPUs’ buffers at runtime

when required. This introduces additional runtime overhead. FOP, on the other hand,

precisely determines memory locations that need to be communicated through static

analyses and with minimal runtime overhead. However, we are unable to present an

experimental comparison with their scheme as it is not available.

Leung et al. [36] describe an automatic source-level transformer in the RSTREAM

compiler [37] which generates CUDA code from serial C code. Their work targets systems

with multiple GPUs, but no details on inter-device data movement or results on multiple

GPUs are provided.

Song and Dongarra [46] execute linear algebra kernels on heterogeneous GPU-based

clusters. They develop a multi-level partitioning and distribution method, which is

orthogonal to the problem we address. Their communication scheme is not automatic,

but specific to the kernels addressed. Communication is driven by data dependences

between atomic tasks. Since they send the entire output data of a task to any task that

CHAPTER 5. RELATED WORK 79

reads at least one value in that output data, they could send unnecessary data like FO.

In contrast, FOP minimizes such redundant communication for the chosen distribution.

Among production compilers, PGI [51] and CAPS [26] have a proprietary directive

based accelerator programming model, and also support OpenACC. However, to the

best of our knowledge, they do not automatically distribute loop computations across

different devices of a heterogeneous system. So, the issues of automatic data movement

or synchronization between different devices do not arise.

CGCM [31], DyManD [30], and AMM [39] are recent works that support only a

single GPU device, but automate data movement between CPU and GPU. Unlike our

schemes, these do not support distributing computation on multiple devices since they

cannot handle different elements of the same array being written simultaneously by

different devices. They allocate the entire data on every device. AMM moves data to a

device only if the existing data is stale. FOP scheme also achieves this by minimizing

unnecessary data transfer. Data is transferred at the granularity of an allocation unit in

CGCM and DyManD, and at the granularity of a CUDA X10 Rail in AMM, which could

lead to redundant communication. FOP, by contrast, is precise in determining data to

be transferred at the granularity of array elements. However, our approach is for affine

array accesses and is thus complementary to CGCM and DyManD that are designed to

also handle pointers and recursive data structures respectively.

Baskaran et al. [6, 7] deal with optimizing data movement between off-chip and on-

chip memories on GPUs. These works are orthogonal to the problem we address in this

thesis.

5.3 Automatic parallelization frameworks

Previous techniques for automatic parallelization of affine loop nests for distributed-

memory architectures [1,13,24] handle only static scheduling of loops across nodes. They

perform communication in a bulk-synchronous manner, i.e., after the loop is executed

in parallel, communication and synchronization is performed using a “push” approach

CHAPTER 5. RELATED WORK 80

before the parallel loop is invoked again due to an outer surrounding sequential loop.

They do not overlap communication with computation. Our approach uses dynamic

scheduling on each node and communication across nodes is done in an asynchronous

fashion, thereby achieving communication-computation overlap. Our evaluation demon-

strates that it scales better than bulk-synchronous approaches. Our framework builds

upon the state-of-the-art automatic distributed-memory parallelization framework [13]

and subsumes it to target a dataflow runtime.

Reddy and Bondhugula [45] build upon the work presented in this thesis. They use

our dynamic scheduling dataflow runtime framework (along with our data movement

techniques) in conjunction with techniques for on-demand data allocation via data tiling,

and more general computation placement schemes including sudoku mappings as well as

arbitrary ones. The computation placement schemes used in their work are all dynamic

a priori, but the choice of the placement function is made at compiler time itself. Their

work improves data locality further and allows weak scaling.

Baskaran et al. [8] provide techniques for extracting tasks and constructing the task

dependence graph. They construct the entire task dependence graph in memory and

then schedule it. Since the task graph is shared and modified across all threads, it could

become a bottleneck when there are huge number of threads. Moreoever, their compiler-

assisted runtime is limited to shared-memory and does not deal with challenges associated

with distributed-memory. Their work has been the main motivation behind our compiler-

assisted runtime, and our goal was to target a distributed-memory cluster of multicores.

In contrast to their techniques, our approach does not build the entire task dependence

graph in memory but uses compiler generated routines that semantically encapsulate

it. We also generate runtime components to manage memory-based dependences and

communication across nodes in distributed-memory. Our tool generates code that can

be executed on shared-memory, distributed-memory, or a combination of both. Our

evaluation shows that the performance of our approach on shared-memory is similar to

or better than that of their approach. Thus, our framework builds upon and subsumes

the state-of-the-art automatic dynamic scheduling framework.

CHAPTER 5. RELATED WORK 81

5.4 Dataflow runtime frameworks

In this section, we first discuss frameworks that are specific to linear algebra computa-

tions, and then discuss frameworks that handle arbitrary computations.

5.4.1 Frameworks for linear algebra computations

A number of works have focused on building scalable frameworks for a certain class of

applications, like linear algebra kernels [16,17,46]. Our work has been motivated by these

approaches, with the main difference being that we intend to provide a fully automatic

solution through compiler support. Our techniques are also applicable to a more general

class of computation – affine loop nests.

Directed Acyclic Graph Engine (DAGuE) [17] is driven by a domain specific language

in which the user is expected to express the computation as a DAG of tasks, where

the nodes are sequential computation tasks, and the edges are dependences between

tasks. Hence, the burden of expressing parallelism and locality is shifted to the user. In

contrast, our framework automatically extracts such a DAG of tasks. DPLASMA [16]

implements linear algebra kernels based on DAGuE. DAGuE does not build or unroll

the entire task graph in memory, but encapsulates the DAG concisely in memory using

a representation conceptually similar to the Parameterized Task Graph (PTG) [25]. Our

techniques to compactly represent the task graph use Parameterized Task Functions

(PTFs). In contrast to PTG, PTFs encapsulate differences in dependences between tasks

on the same node and dependences between tasks on different nodes, thereby allowing

handling of memory-based dependences; PTFs also encapsulate precise communication

semantics (at the granularity of array elements).

In DAGuE, the user also defines how the tasks should be distributed across the cores

via the data distribution. DAGuE uses a fully distributed decentralized scheduler with-

out global synchronization, like our framework. The scheduler on each core dynamically

schedules tasks waiting only on dependences between tasks, while allowing work stealing

CHAPTER 5. RELATED WORK 82

between cores of the same node. Communications are determined by the dataflow be-

tween tasks, and are handled by a separate thread. Communication is non-blocking and

is overlapped with computation. Their communication component is thus conceptually

similar to ours, but unlike our approach, the threads on different nodes coordinate with

each other (using control messages) to send and receive communication.

Song and Dongarra [46] design a distributed dynamic scheduling runtime system for

a cluster of nodes containing CPUs and multiple GPUs. They distribute data to CPUs

and GPUs statically. The tasks are statically distributed to CPUs and GPUs using

the owner-computes rule. Each node runs its own runtime system that schedules tasks

within the node dynamically, similar to our framework. For each data tile that a node

owns, the node maintains an ordered list of tasks that accesses that data tile. To act on

its task instance, the node requires specific information. For example, for a task instance

that writes a data tile, a node requires the ready status of the task’s inputs to know if

it can execute it; for a task instance that reads a data tile, a node requires the location

of the task’s output to know the node (or device) it should communicate to. They

design a distributed protocol such that each node maintains the required information

locally for each of its task instances based on a predetermined distribution without any

communication with other nodes. We achieve the same objective using the Synthesized

Runtime Interface to maintain the status locally for all the tasks that will be computed

or received on a node.

In the system designed by Song and Dongarra [46], the node that will execute a

task instance maintains its inputs, output, and the ready status of each input. Each

node, therefore, has a partition of the DAG of tasks in memory, using which tasks are

scheduled dynamically driven by data-availability; the partial task graph is built with-

out any coordination with other nodes. Our framework, on the other hand, does not

maintain even a partial task graph in memory, but only maintains status on tasks that

is built and maintained without any coordination with other nodes. Communication

in their system is determined by the dataflow between tasks at the granularity of data

CHAPTER 5. RELATED WORK 83

tiles, whereas communication in our system is precise at the granularity of array ele-

ments. Communication is asynchronous and is overlapped with computation. There is

a separate thread each for intra-node and inter-node communication. The inter-node

communication thread preemptively posts an anonymous receive, and checks whether it

has finished with busy-polling. Our communication framework is designed similarly.

5.4.2 General-purpose frameworks

Recent works like the codelet model [35, 52] (which is inspired by the EARTH sys-

tem [48]), StarPU [4], and Concurrent Collections (CnC) [18] focus on providing high-

level programming models which enable easy expression of parallelism. These models

decouple scheduling and program specification, which is tightly coupled in current pro-

gramming models. The notion of a “task” in our work is conceptually similar to that

of a “codelet” in the codelet model, a “task” in StarPU, and a “step” in CnC. In these

models, the application developer or user specifies the program in terms of tasks along

with its inputs and outputs, while the system (or system developer) is responsible for

scheduling the tasks efficiently on the parallel architecture. However, the user is not

completely isolated from locality aspects of modern architectures. As an example, one

of the key issues in leveraging task scheduling runtimes such as CnC is in determining

the right decomposition into tasks and granularity for the tasks, i.e., block or tile size;

a smaller block size increases the degree of available asynchronous parallelism, but also

increases the overhead in maintaining tasks and managing data. Choosing the right de-

composition can improve the performance by orders of magnitude – this is evident from

our experimental results. The decomposition into tasks and choice of granularity has

a direct connection with loop transformations such as tiling, making a strong case for

integration of compiler support.

The CnC model expects the user to provide dependences between tasks. Intel

CnC [28] allows the user to also specify the nodes which would consume the data pro-

duced in a task. This enables the Intel CnC runtime to push the produced data to the

nodes preemptively on task completion, instead of pulling the required data once a task

CHAPTER 5. RELATED WORK 84

is scheduled. For affine loop nests, our techniques can be used to automatically extract

this information parameterized on a task – the tasks that are dependent on it, and the

nodes that consume data produced in it (i.e., the receivers).

The CnC model allows the user to provide tags that are used to specify control

dependencies between tasks. The Intel CnC runtime, by default, schedules a task when

all its tags are prescribed or generated, but if the data required by the task is not

available, it is put back on the waiting queue (requeued). The user has the option to

either pre-generate the tags or generate them on-the-fly when data becomes available.

A recent performance evaluation of the Intel CnC runtime [18] has observed that pre-

generating the tags might not perform well due to requeue events, and it might be useful

to generate the tags when the data becomes available. In our framework, a task is ready

to be scheduled on a node only when all the tasks it depends on have completed, and the

data required by it is available on that node. For affine loop nests, our techniques can

be used to automatically generated tags in CnC only when the data becomes available.

The CnC model adheres to the dynamic single assignment form; the data is accessed

by value and there is no overwriting of values. This helps increase the degree of available

asynchronous parallelism since there are no memory-based data dependences (WAW

and WAR). As a consequence, the memory footprint of the program could be higher.

This could drastically affect performance, unless the memory is managed efficiently and

the unused data is garbage collected. Intel CnC allows the user to provide the total

uses or references of a value, so that its memory location can be garbage collected

efficiently. For affine loop nests, our techniques can be used to automatically extract

the number of tasks that reference a value produced in a task, which is the same as the

number of tasks that are dependent on a task due to flow (RAW) dependences. On the

other hand, our framework does not have the dynamic single assignment restriction; our

framework handles memory-based dependences by ignoring it across cores which do not

share memory, but preserving it across cores which share memory.

CHAPTER 5. RELATED WORK 85

The StarPU runtime [3, 4] designs a scheduling framework for heterogeneous com-

putational resources or workers. The framework provides a uniform interface for imple-

menting different scheduling policies. Each worker is associated with an abstract queue,

on which it can push and pop tasks. A scheduling policy is defined by the way the

workers interact with the set of queues. For instance, the queue could be shared among

the workers or each worker could have its own queue. StarPU provides several predefined

scheduling policies for the user to choose from. Our framework uses a scheduling policy

similar to their greedy scheduling policy with priority, where a worker greedily chooses

a task from a shared queue (local to the node) based on some priority; a worker does

not choose to stay idle when a task is ready to be executed. Such a greedy scheduling

policy might not be suitable for heterogeneous computational resources because some

workers might be better equipped to execute a task than others. The scheduling policies

in StarPU are orthogonal to our work, and our framework could be adapted to use any

of their scheduling policies, including those that require per-worker queues.

Several new dynamic scheduling runtimes have emerged in the recent past and are

under active development. These include StarPU [3, 4], ETI SWARM (for the codelet

model) [35], Intel CnC [18], and Open Community Runtime (OCR) (inspired by the

codelet and CnC models) [38]. The StarPU runtime is targeted for heterogeneous mul-

ticore architectures (CPUs along with accelerators like GPUs); SWARM runtime and

OCR are targeted for exascale architectures; Intel CnC runtime is targeted for shared

and distributed memory architectures. The design of these runtimes is focused on their

targeted architectures, but is not limited to it, similar to our work. These runtimes

share some of the same design objectives as those of our work, like efficiently utilizing

resources on parallel architectures by balancing the load, and overlapping data move-

ment with computation. Our techniques are sufficiently generic, and could possibly be

adapted to generate code for these runtimes. However, the thrust of our work is in cou-

pling runtime support with powerful compiler transformation, parallelization, and code

generation support to provide a fully automatic solution. This is done so that efficient

CHAPTER 5. RELATED WORK 86

execution on shared as well as distributed memory is achieved with no programmer in-

put. Our objective here is not to compare the efficiency of the developed runtime with

emerging ones. The choice to develop our own runtime was driven by the need to allow

sufficient customization and flexibility for current and future compiler support. Our run-

time is specialized for affine loop nests; it maintains only a counter or two per task on

each node, handles memory-based dependences, and incorporates precise communication

semantics by packing and unpacking values of array elements to and from buffers.

Chapter 6

Conclusions and Future Work

In this chapter, we first present conclusions of the work done in this thesis, and then

discuss the scope for future work.

6.1 Conclusions

We first proposed compilation techniques to free programmers from the burden of mov-

ing data on architectures that do not have a shared address space. We were able to

generate efficient data movement code statically using a source-distinct partitioning of

dependences. Minimum communication volume was achieved with a majority of depen-

dence patterns and for all benchmarks considered. To the best of our knowledge, our

tool is the first one to parallelize affine loop nests for a combination of CPUs and GPUs

while providing precision of data movement at the granularity of array elements.

On a heterogeneous system, we showed that our data movement scheme (FOP) re-

duces the communication volume by a factor of 11× to 83×, resulting in a mean execution

time speedup of 1.53× over the best existing scheme (FO). For communication-intensive

benchmarks like Floyd-Warshall, when running on 4 GPUs, we demonstrated that our

data movement scheme yields a mean speedup of 2.56× over 1 GPU. On a distributed-

memory cluster, we showed that our scheme (FOP) reduces the communication volume

87

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 88

by a factor of 1.4× to 63.5×, resulting in a mean speedup of 1.55× over the best ex-

isting scheme (FO). Our scheme gave a mean speedup of 3.06× over another existing

scheme (OMPD) and a mean speedup of 2.19× over hand-optimized UPC versions of

these codes.

We then described the design and implementation of a new dataflow runtime system

for modern parallel architectures that are suitable for target by compilers capable of

extracting tasks and dependence information between tasks. We coupled the runtime

with a source-to-source polyhedral optimizer to enable fully automatic dynamic schedul-

ing on a distributed-memory cluster of multicores. The design of the runtime takes into

account simultaneous load-balanced execution on shared and distributed memory cores,

handling of memory-based dependences, and asynchronous point-to-point communica-

tion. The resulting system is also the first automatic parallelizer that uses dynamic

scheduling for affine loop nests on distributed-memory.

On 32 nodes with 8 threads per node, our compiler-assisted runtime yields a mean

speedup of 1.6× over the state-of-the-art automatic approach, and a mean speedup of

143.6× over the sequential version. On a shared-memory system with 32 cores, our

runtime yields a speedup of up to 2.5× over the state-of-the-art dynamic scheduling

approach, and a mean speedup of 23.5× over the sequential version. Our automatic

framework also significantly outperformed hand-optimized Intel CnC codes in some cases

due to advanced compiler transformations like loop tiling.

The compiler-assisted dataflow runtime framework we proposed is thus end-to-end

fully automatic, thereby providing high productivity while delivering high parallel per-

formance on distributed-memory architectures. We believe that our techniques will be

able to provide OpenMP-like programmer productivity and deliver CnC-like parallel

performance for distributed-memory architectures if implemented in compilers.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 89

6.2 Future work

• Our framework can be extended to target a distributed-memory cluster of nodes

with CPUs and multiple GPUs. Both the data movement techniques and the

coarse-grained dataflow parallelism extraction techniques are generic and can be

adapted to such systems.

• Sophisticated priority heuristics for scheduling tasks that exploit data locality can

be explored to further improve performance.

• Techniques for on-demand data allocation via data tiling can be integrated into

our framework to further improve data locality and allow weak scaling.

• Other sub-problems in automatic parallelization of sequential code for distributed-

memory architectures, like automatically choosing an optimal computation distri-

bution or placement, are orthogonal and solutions to these orthogonal problems

can be coupled with our framework.

References

[1] Vikram Adve and John Mellor-Crummey. Using integer sets for data-parallel pro-

gram analysis and optimization. In Proceedings of the ACM SIGPLAN 1998 con-

ference on Programming Language Design and Implementation, PLDI ’98, pages

186–198, New York, NY, USA, 1998. ACM.

[2] Saman P. Amarasinghe and Monica S. Lam. Communication optimization and code

generation for distributed memory machines. In Proceedings of the ACM SIGPLAN

1993 conference on Programming Language Design and Implementation, PLDI ’93,

pages 126–138, New York, NY, USA, 1993. ACM.

[3] Cédric Augonnet, Samuel Thibault, and Raymond Namyst. StarPU: a Runtime

System for Scheduling Tasks over Accelerator-Based Multicore Machines. Technical

Report 7240, INRIA, March 2010.

[4] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacre-

nier. StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore

Architectures. Concurrency and Computation: Practice and Experience, Special

Issue: Euro-Par 2009, 23:187–198, February 2011.

[5] Vinayaka Bandishti, Irshad Pananilath, and Uday Bondhugula. Tiling stencil com-

putations to maximize parallelism. In Proceedings of the International Conference

on High Performance Computing, Networking, Storage and Analysis, SC ’12, pages

40:1–40:11, Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

90

REFERENCES 91

[6] Muthu Manikandan Baskaran, Uday Bondhugula, Sriram Krishnamoorthy, J. Ra-

manujam, Atanas Rountev, and P. Sadayappan. Automatic Data Movement and

Computation Mapping for Multi-level Parallel Architectures with Explicitly Man-

aged Memories. In Proceedings of the 13th ACM SIGPLAN Symposium on Princi-

ples and Practice of Parallel Programming, PPoPP ’08, pages 1–10, New York, NY,

USA, 2008. ACM.

[7] Muthu Manikandan Baskaran, J. Ramanujam, and P. Sadayappan. Automatic C-

to-CUDA Code Generation for Affine Programs. In Rajiv Gupta, editor, Compiler

Construction, volume 6011 of Lecture Notes in Computer Science, pages 244–263.

Springer Berlin Heidelberg, 2010.

[8] Muthu Manikandan Baskaran, Nagavijayalakshmi Vydyanathan, Uday Ku-

mar Reddy Bondhugula, J. Ramanujam, Atanas Rountev, and P. Sadayappan.

Compiler-assisted Dynamic Scheduling for Effective Parallelization of Loop Nests

on Multicore Processors. In Proceedings of the 14th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, PPoPP ’09, pages 219–228, New

York, NY, USA, 2009. ACM.

[9] Cédric Bastoul. The Clan User guide. http://icps.u-strasbg.fr/people/

bastoul/public_html/development/clan/docs/clan.pdf.

[10] Cedric Bastoul. Code Generation in the Polyhedral Model Is Easier Than You

Think. In Proceedings of the 13th International Conference on Parallel Architectures

and Compilation Techniques, PACT ’04, pages 7–16, Washington, DC, USA, 2004.

IEEE Computer Society.

[11] Cédric Bastoul. Clan: The Chunky Loop Analyzer, 2012. http://icps.u-strasbg.

fr/people/bastoul/public_html/development/clan/.

[12] Cédric Bastoul. CLooG: The Chunky Loop Generator, 2013. http://www.cloog.

org.

http://icps.u-strasbg.fr/people/bastoul/public_html/development/clan/docs/clan.pdf
http://icps.u-strasbg.fr/people/bastoul/public_html/development/clan/docs/clan.pdf
http://icps.u-strasbg.fr/people/bastoul/public_html/development/clan/
http://icps.u-strasbg.fr/people/bastoul/public_html/development/clan/
http://www.cloog.org
http://www.cloog.org

REFERENCES 92

[13] Uday Bondhugula. Compiling Affine Loop Nests for Distributed-memory Parallel

Architectures. In Proceedings of SC13: International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis, SC ’13, pages 33:1–33:12,

New York, NY, USA, 2013. ACM.

[14] Uday Bondhugula. PLUTO: A polyhedral automatic parallelizer and locality opti-

mizer for multicores, 2013. http://pluto-compiler.sourceforge.net.

[15] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A practical

automatic polyhedral parallelizer and locality optimizer. In Proceedings of the 2008

ACM SIGPLAN conference on Programming Language Design and Implementation,

PLDI ’08, pages 101–113, New York, NY, USA, 2008. ACM.

[16] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Azzam

Haidar, Thomas Herault, Jakub Kurzak, Julien Langou, Pierre Lemarinier, Hatem

Ltaief, Piotr Luszczek, Asim Yarkhan, and Jack Dongarra. Distibuted Dense Nu-

merical Linear Algebra Algorithms on massively parallel architectures: DPLASMA.

Univ. of Tennessee, CS Technical Report, UT-CS-10-660, 2010.

[17] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Thomas Herault, Pierre

Lemarinier, and Jack Dongarra. DAGuE: A generic distributed DAG engine for

high performance computing. Parallel Computing, 38(1):37–51, 2012.

[18] Zoran Budimlic, Aparna Chandramowlishwaran, Kathleen Knobe, Geoff Lowney,

Vivek Sarkar, and Leo Treggiari. Multi-core Implementations of the Concurrent

Collections Programming Model. In CPC09: 14th International Workshop on Com-

pilers for Parallel Computers, 2009.

[19] Berkeley UPC - Unified Parallel C. http://upc.lbl.gov.

[20] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. A class of par-

allel tiled linear algebra algorithms for multicore architectures. Parallel Computing,

35(1):38–53, 2009.

http://pluto-compiler.sourceforge.net
http://upc.lbl.gov

REFERENCES 93

[21] Compiler and Architecture for Superscalar and Embedded Processors. http://www.

irisa.fr/caps/.

[22] Aparna Chandramowlishwaran, Kathleen Knobe, and Richard Vuduc. Performance

evaluation of concurrent collections on high-performance multicore computing sys-

tems. In 2010 IEEE International Symposium on Parallel Distributed Processing

(IPDPS), pages 1–12, April 2010.

[23] Daniel Chavarŕıa-Miranda and John Mellor-Crummey. Effective communication

coalescing for data-parallel applications. In Proceedings of the tenth ACM SIGPLAN

symposium on Principles and Practice of Parallel Programming, PPoPP ’05, pages

14–25, New York, NY, USA, 2005. ACM.

[24] Michael Claßen and Martin Griebl. Automatic code generation for distributed mem-

ory architectures in the polytope model. In 11th International Workshop on High-

Level Parallel Programming Models and Supportive Environments, Parallel and Dis-

tributed Processing Symposium, 2006. IPDPS 2006. 20th International., 2006.

[25] M. Cosnard and M. Loi. Automatic task graph generation techniques. In Proceedings

of the 28th Hawaii International Conference on System Sciences, HICSS ’95, pages

113–, Washington, DC, USA, 1995. IEEE Computer Society.

[26] Romain Dolbeau, Stéphane Bihan, and François Bodin. HMPP: A Hybrid Multi-

core Parallel Programming Environment. In Workshop on General Purpose Pro-

cessing on Graphics Processing Units (GPGPU), 2007.

[27] Martin Griebl. Automatic Parallelization of Loop Programs for Distributed Memory

Architectures. University of Passau, 2004. Habilitation thesis.

[28] Intel R© Concurrent Collections (CnC) for C/C++, 2013. http://software.intel.

com/en-us/articles/intel-concurrent-collections-for-cc.

[29] Intel R© Thread Building Blocks (TBB), 2014. https://www.

threadingbuildingblocks.org/.

http://www.irisa.fr/caps/
http://www.irisa.fr/caps/
http://software.intel.com/en-us/articles/intel-concurrent-collections-for-cc
http://software.intel.com/en-us/articles/intel-concurrent-collections-for-cc
https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/

REFERENCES 94

[30] Thomas B. Jablin, James A. Jablin, Prakash Prabhu, Feng Liu, and David I. August.

Dynamically managed data for CPU-GPU architectures. In Proceedings of the Tenth

International Symposium on Code Generation and Optimization, CGO ’12, pages

165–174, New York, NY, USA, 2012. ACM.

[31] Thomas B. Jablin, Prakash Prabhu, James A. Jablin, Nick P. Johnson, Stephen R.

Beard, and David I. August. Automatic CPU-GPU communication management

and optimization. In Proceedings of the 32nd ACM SIGPLAN conference on Pro-

gramming Language Design and Implementation, PLDI ’11, pages 142–151, New

York, NY, USA, 2011. ACM.

[32] Jungwon Kim, Honggyu Kim, Joo Hwan Lee, and Jaejin Lee. Achieving a single

compute device image in OpenCL for multiple GPUs. In Proceedings of the 16th

ACM symposium on Principles and Practice of Parallel Programming, PPoPP ’11,

pages 277–288, New York, NY, USA, 2011. ACM.

[33] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita

Bala, and L. Paul Chew. Optimistic Parallelism Requires Abstractions. In Proceed-

ings of the 2007 ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’07, pages 211–222, New York, NY, USA, 2007. ACM.

[34] Okwan Kwon, Fahed Jubair, Rudolf Eigenmann, and Samuel Midkiff. A hybrid

approach of openmp for clusters. In Proceedings of the 17th ACM SIGPLAN sympo-

sium on Principles and Practice of Parallel Programming, PPoPP ’12, pages 75–84,

New York, NY, USA, 2012. ACM.

[35] Christopher Lauderdale and Rishi Khan. Towards a Codelet-based Runtime for Ex-

ascale Computing: Position Paper. In Proceedings of the 2nd International Work-

shop on Adaptive Self-Tuning Computing Systems for the Exaflop Era, EXADAPT

’12, pages 21–26, New York, NY, USA, 2012. ACM.

[36] Allen Leung, Nicolas Vasilache, Benôıt Meister, Muthu Baskaran, David Wohlford,

Cédric Bastoul, and Richard Lethin. A mapping path for multi-GPGPU accelerated

REFERENCES 95

computers from a portable high level programming abstraction. In Proceedings of

the 3rd Workshop on General-Purpose Computation on Graphics Processing Units,

GPGPU ’10, pages 51–61, New York, NY, USA, 2010. ACM.

[37] Benôıt Meister, Nicolas Vasilache, David Wohlford, Muthu Manikandan Baskaran,

Allen Leung, and Richard Lethin. R-Stream Compiler. In David A. Padua, editor,

Encyclopedia of Parallel Computing, pages 1756–1765. Springer, 2011.

[38] Open Community Runtime, 2013. https://01.org/projects/

open-community-runtime.

[39] Sreepathi Pai, R. Govindarajan, and Matthew J. Thazhuthaveetil. Fast and ef-

ficient automatic memory management for GPUs using compiler-assisted runtime

coherence scheme. In Proceedings of the 21st international conference on Parallel

Architectures and Compilation Techniques, PACT ’12, pages 33–42, New York, NY,

USA, 2012. ACM.

[40] Portland Group Inc. Application Programming Interface. http://www.pgroup.com.

[41] PolyBench/C - the Polyhedral Benchmark suite, 2012. http://polybench.

sourceforge.net.

[42] PolyLib - A library of polyhedral functions, 2010. http://icps.u-strasbg.fr/

polylib/.

[43] William Pugh. The Omega Test: A Fast and Practical Integer Programming Algo-

rithm for Dependence Analysis. In Proceedings of the 1991 ACM/IEEE Conference

on Supercomputing, Supercomputing ’91, pages 4–13, New York, NY, USA, 1991.

ACM.

[44] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Du-

rand, and Saman Amarasinghe. Halide: A Language and Compiler for Optimizing

https://01.org/projects/open-community-runtime
https://01.org/projects/open-community-runtime
http://www.pgroup.com
http://polybench.sourceforge.net
http://polybench.sourceforge.net
http://icps.u-strasbg.fr/polylib/
http://icps.u-strasbg.fr/polylib/

REFERENCES 96

Parallelism, Locality, and Recomputation in Image Processing Pipelines. In Pro-

ceedings of the 34th ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI ’13, pages 519–530, New York, NY, USA, 2013. ACM.

[45] Chandan Reddy and Uday Bondhugula. Effective automatic computation place-

ment and data allocation for parallelization of regular programs. In International

Conference on Supercomputing, 2014.

[46] Fengguang Song and Jack Dongarra. A scalable framework for heterogeneous GPU-

based clusters. In Proceedinbgs of the 24th ACM Symposium on Parallelism in

Algorithms and Architectures, SPAA ’12, pages 91–100, New York, NY, USA, 2012.

ACM.

[47] Yuan Tang, Rezaul Alam Chowdhury, Bradley C. Kuszmaul, Chi-Keung Luk, and

Charles E. Leiserson. The Pochoir Stencil Compiler. In Proceedings of the 23rd

ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’11, pages

117–128, New York, NY, USA, 2011. ACM.

[48] Kevin Bryan Theobald. Earth: An Efficient Architecture for Running Threads. PhD

thesis, Montreal, Que., Canada, Canada, 1999. AAINQ50269.

[49] UPC Consortium. UPC Language Specifications, v1.2. Technical Report LBNL-

59208, Lawrence Berkeley National Lab, 2005.

[50] Sven Verdoolaege. Integer Set Library - an integer set library for program analysis,

2014. http://www.ohloh.net/p/isl.

[51] Michael Wolfe. Implementing the PGI Accelerator model. In Proceedings of the 3rd

Workshop on General-Purpose Computation on Graphics Processing Units, GPGPU

’10, pages 43–50, New York, NY, USA, 2010. ACM.

[52] Stéphane Zuckerman, Joshua Suetterlein, Rob Knauerhase, and Guang R. Gao. Us-

ing a ”codelet” program execution model for exascale machines: Position paper. In

Proceedings of the 1st International Workshop on Adaptive Self-Tuning Computing

http://www.ohloh.net/p/isl

REFERENCES 97

Systems for the Exaflop Era, EXADAPT ’11, pages 64–69, New York, NY, USA,

2011. ACM.

	Acknowledgements
	Publications based on this Thesis
	Abstract
	Keywords
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Distributed-memory parallel architectures
	Productivity and performance
	Existing approaches
	Automatic data movement and compilation for a dataflow runtime
	Contributions

	Polyhedral Model
	Generating Efficient Data Movement Code
	Illustrative examples
	Background and motivation
	Flow-out (FO) scheme
	Overview
	Flow-out set
	Receiving iterations
	Packing and unpacking
	Communication volume

	Flow-out intersection flow-in (FOIFI) scheme
	Overview
	Flow-in set
	Flow set
	Communication volume

	Flow-out partitioning (FOP) scheme
	Overview
	Partitioning of dependences
	Partitioned communication sets
	Receiving iterations of the partition
	Packing and unpacking
	Communication volume

	Implementation
	Experimental evaluation
	Distributed-memory architectures
	Setup
	Benchmarks
	Evaluation
	Analysis

	Heterogeneous architectures
	Intel-NVIDIA system setup
	AMD system setup
	Benchmarks
	Evaluation
	Analysis

	Targeting a Dataflow Runtime
	Motivation and design challenges
	Dataflow and memory-based dependences
	Terminology
	Tasks
	Scheduling tasks

	Synchronization and communication code
	Objectives

	Compiler-assisted dataflow runtime
	Overview
	Synthesized Runtime Interface (SRI)
	Inter-task dependences
	Constraints on scheduling
	Communication and placement
	Computation
	Thread-safety

	Distributed Function-based Dynamic Scheduling (DFDS)
	Priority
	Dynamic a priori placement

	Implementation
	Experimental evaluation
	Benchmarks
	Intel Concurrent Collections (CnC) implementations

	Shared-memory architectures
	Setup
	Evaluation
	Analysis

	Distributed-memory architectures
	Setup
	Evaluation
	Analysis

	Related Work
	Data movement for distributed-memory architectures
	Data movement for heterogeneous architectures
	Automatic parallelization frameworks
	Dataflow runtime frameworks
	Frameworks for linear algebra computations
	General-purpose frameworks

	Conclusions and Future Work
	Conclusions
	Future work

	References

