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Abstract

Image processing pipelines are ubiquitous. Every image captured by a camera and every

image uploaded on social networks like Google+ or Facebook is processed by a pipeline.

Applications in a wide range of domains like computational photography, computer vision

and medical imaging use image processing pipelines. Many of these applications demand

high-performance which requires effective utilization of modern architectures. Given the

proliferation of camera enabled devices and social networks optimizing these emerging

workloads has become important both at the data center and the embedded device scales.

An image processing pipeline can be viewed as a graph of interconnected stages which

process images successively. Each stage typically performs one of point-wise, stencil, sam-

pling, reduction or data-dependent operations on image pixels. Individual stages in a

pipeline typically exhibit abundant data parallelism that can be exploited with relative

ease. However, the stages also require high memory bandwidth preventing effective uti-

lization of parallelism available on modern architectures. The traditional options are using

optimized libraries like OpenCV or to optimize manually. While using libraries precludes

optimization across library routines, manual optimization accounting for both parallelism

and locality is very tedious.

In this thesis, we present the design and implementation of PolyMage, a domain-specific

language and compiler for image processing pipelines. The focus of the system is on au-

tomatically generating high-performance implementations of image processing pipelines

expressed in a high-level declarative language. We achieve such automation with:

• tiling techniques to improve parallelism and locality by introducing redundant com-

putation,

v
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• a model-driven fusion heuristic which enables a trade-off between locality and re-

dundant computations, and

• an autotuner which leverages the fusion heuristic to explore a small subset of pipeline

implementations and find the best performing one.

Our optimization approach primarily relies on the transformation and code generation ca-

pabilities of the polyhedral compiler framework. To the best of our knowledge, this is the

first model-driven compiler for image processing pipelines that performs complex fusion,

tiling, and storage optimization fully automatically. We evaluate our framework on a mod-

ern multicore system using a set of seven benchmarks which vary widely in structure and

complexity. Experimental results show that the performance of pipeline implementations

generated by our approach is:

• up to 1.81× better than pipeline implementations manually tuned using Halide, a

state-of-the-art language and compiler for image processing pipelines,

• on average 5.39× better than pipeline implementations automatically tuned using

Halide and OpenTuner, and

• on average 3.3× better than naive pipeline implementations which only exploit par-

allelism without optimizing for locality.

We also demonstrate that the performance of PolyMage generated code is better or compa-

rable to implementations using OpenCV, a state-of-the-art image processing and computer

vision library.
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Chapter 1

Introduction

This chapter introduces image processing pipelines, describes the need for optimized im-

plementations of these pipelines and motivates our automatic optimization approach for

image processing pipelines.

1.1 Image Processing Pipelines

Cameras and other imaging sensors are ubiquitous in today’s world. Applications spanning

across a wide range of domains like computational photography, computer vision and med-

ical imaging rely on processing data acquired by these sensors. For example, enhancing the

capabilities of digital cameras and emerging devices like Google Glass [22], autonomous

driving cars, Magnetic Resonance Imaging (MRI) and analyzing astronomical data cap-

tured by telescopes. Figure 1.1 shows two specific applications, on the left is a scan of an

eye used in the diagnosis of diabetic retinopathy and the right image shows a face detection

algorithm in action.

Processing and analyzing the data generated from imaging systems often demands high

performance. This need is due to: (a) the sheer volume of data compounded by high res-

olution and frame rates, (b) increasing complexity of algorithms used to process the data,

and (c) potential real-time requirements of interactive and mission-critical applications.

The emergence and evolution of multicore architectures, GPUs, FPGAs, single instruction

1
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Fundus of the Eye (c) Ignis, CC By A-SA 3.0 Face detetction (c) Beatrice Murch, CC By 3.0

Figure 1.1: On the left is a scan of an eye used in the diagnosis of diabetic retinopathy. The
image on the right shows the output of a face detection algorithm.

multiple data (SIMD) instruction sets through MMX, SSE, and AVX, are examples of ad-

vances on the hardware front that have benefited the image processing domain. Coping up

with the increased demand in performance requires software to effectively utilize multiple

cores, SIMD parallelism and caches.

A wide range of algorithms for processing image data can be viewed as pipelines con-

sisting of several interconnected processing stages. Every image captured by a camera

and every image uploaded on social networks like Google+ or Facebook is processed by a

pipeline. For example, Figure 1.2 shows the result of the Google+ Auto Enhance pipeline

on an image and Figure 1.3 is a panorama stitched together from several camera shots.

Given the proliferation of camera enabled devices and social networks optimizing these

emerging workloads has become important both at the data center and the embedded

device scales.

Each pipeline can be represented as a directed acyclic graph, with the stages as nodes

and producer-consumer relationships between the stages as edges. Pipeline structure can

vary from a few stages, with only point-wise operations, to tens of stages having a combina-

tion of point-wise, stencil, sampling and data dependent access patterns. Individual stages

in a pipeline typically exhibit abundant data parallelism that can be exploited with rela-

tive ease. However, the stages also require high memory bandwidth necessitating locality

optimization. Manually exploiting both parallelism and locality on modern architectures
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Figure 1.2: Google+ Auto Enhance

Golden Horn Panorama (c) Ggia, CC By A-SA 3.0

Figure 1.3: Panorama shot

for complex pipelines is a daunting task. However, implementations that account for both

the factors can perform significantly better as illustrated by the execution times of imple-

mentations of harris corner detection show in Figure 1.5, where the hand-tuned imple-

mentation is more than 4× faster than a naive parallel implementation. Libraries such as

OpenCV [39], CImg [15] and MATLAB image processing toolboxes do not completely solve

the problem. They only provide tuned implementations for a limited set of algorithms on

specific architectures. Even when optimized implementations of the individual stages of a

pipeline are available, the inability to optimize across stages prevents effective utilization

of the target architecture.
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Figure 1.4: Harris corner detection

Figure 1.5: Performance of various imple-
mentations of the Harris corner detection
pipeline.
seq – Naive sequential implementation in C
par – Naive parallel implementation using
OpenMP and vector pragmas
tuned – Hand optimized parallel implemen-
tation accounting for locality and using vec-
tor intrinsics.
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1.2 Domain-Specific Languages and Optimizers

A promising way to address the tension between ease of programming and performance is

to provide a high-level domain-specific language (DSL) to express algorithms, and use an

optimizing compiler to map them to a target architecture. Such an approach has been used

successfully in the context of several DSLs [33, 19, 49]. For image processing, languages

like CoreImage [42] and functional image synthesis [20] have focused on creating easy-

to-use abstractions with minimal compiler optimization. Halide [45, 46] a recent domain-

specific language and compiler for image processing pipelines focuses on both productivity
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and performance. However, the Halide compiler requires a schedule specification to gen-

erate an implementation. Determining an effective schedule requires manual effort and

expertise, or relying on extensive and prolonged autotuning over a vast space of sched-

ules.

1.3 Thesis Contributions and Organization

In this thesis, we describe our framework, PolyMage, comprising a DSL, an optimizer,

and an autotuner, for generating high performance implementations of image processing

pipelines. We first describe the input language in Chapter 2; it also serves the purpose

of describing the class of image processing computations we currently handle. We then

describe our automatic optimization framework, our main contribution, in Chapter 3. The

key optimization techniques that we present are:

• a method for overlapped tiling tailored for heterogeneous image processing stages,

• a heuristic, modeling the trade-off between locality and redundant computation, for

partitioning a pipeline into groups of stages that are later fused together with over-

lapping tiles,

• storage optimization and code generation for general-purpose multicores accounting

for SIMD parallelism,

• and an autotuning mechanism for exploring a small parameter space resulting from

our model-driven approach.

Chapter 4 details our experimental evaluation on a 16-core Intel Xeon (Sandybridge)

server. We use a set of seven applications of varying structure and complexity to demon-

strate the effectiveness of our approach when compared to:

• pipeline implementations manually tuned using Halide [45],

• pipeline implementations automatically tuned using Halide and OpenTuner,
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• naive pipeline implementations which only exploit parallelism without optimizing

for locality across image processing stages, and

• OpenCV, a widely used library for image processing and computer vision.

In cases where feasible, we also show that the schedule determined by our system when

specified using Halide provides improved performance. In Chapter 5 we discuss related

work, and conclusions are presented in Chapter 6.



Chapter 2

PolyMage Domain-Specific Language

In this chapter, we give the design rationale of our DSL, an overview of the language con-

structs, and the computation patterns that can be expressed with it.

2.1 Design Criteria

The primary goals of the language are (a) allowing expression of common patterns in image

processing in an intuitive manner, and (b) enabling compiler analysis and optimization. To

achieve these goals we target a common set of of patterns in image processing and design

language constructs to effectively express these patterns.

Common computation patterns in image processing include point-wise operations, sten-

cils, upsampling and downsampling, histograms, and time-iterated methods. Point-wise

operations take one pixel from the input and produce an output pixel. An example of such

an operation is gray scale conversion, where each pixel in the color image is converted

into a gray scale pixel. Stencil operations take a small neighborhood of pixels around each

pixel in the input image and use them to compute a pixel in the output image. Convolu-

tions, correlations and image derivatives are some of the operations that follow the stencil

pattern. They are used to perform tasks like edge detection [13], optical flow [34] and

patch matching [6], which are in turn used in applications like object detection, tracking

and segmentation.

7
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Downsampling and Upsampling operations reduce and increase the resolution of an

image respectively. These operations are used to construct image pyramids which provide

a multi-scale representation of an image. These pyramids are integral in computing widely

used feature descriptors like SIFT [37], SURF [8] and HOG [18]. Image pyramids are also

used in several image manipulation and enhancement applications like panorama stitching

and edge aware smoothing. Histograms are used to compute patch local as well as global

statistics in an image. For example, histogram equalization uses the pixel intensity his-

togram for the entire image to adjust the contrast. The data access patterns corresponding

to some of these operations are shown in Table 2.1. The Figure 2.1 illustrates examples of

the operations on an image.

All these patterns can be captured by abstracting an image as a function on a multi-

dimensional integer grid, i.e., it maps a multi-dimensional integer coordinate to an inten-

sity value. Using this abstraction, new images can be constructed as expressions involv-

ing other images, thus enabling implicit expression of producer-consumer relationships

that are a characteristic of image processing pipelines. Our language design is inspired by

Halide [45]which provides a similar functional abstraction. However, our language design

also enables powerful compiler analysis.

Instead of building a standalone language we chose to embed the language in python.

This enables seamless integration with the vast collection libraries that have python inter-

faces (OpenCV, Numpy).

Operation Example

Point-wise f (x , y) = g(x , y)

Stencil f (x , y) =
+1
∑

σx=−1

+1
∑

σy=−1
g(x +σx , y +σy)

Upsample f (x , y) =
+1
∑

σx=−1

+1
∑

σy=−1
g((x +σx)/2, (y +σy)/2)

Downsample f (x , y) =
+1
∑

σx=−1

+1
∑

σy=−1
g(2x +σx , 2y +σy)

Histogram f (g(x)) + = 1
Time-iterated f (t, x , y) = g( f (t − 1, x , y))

Table 2.1: Typical computation patterns in image processing
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Language Construct Syntax

Image Name = Image(type, list of dimensions)

Parameter Name = Parameter(type)

Interval Name = Interval(lower bound, upper bound, stride)

Variable Name = Variable()

Condition Name = Condition(expression, operator, expression)
where operator can be >, =, !=, <, >=, <=

Case Name = Case(condition, expression)

Function Name = Function((list of variables, list of intervals), type)
Name.defn = List of cases

Reduction Name = Reduction((list of reduction domain variables, list of inter-
vals), (list of variable domain variables, list of intervals), type)
Name.defn = Reduce(Name(expression), expression, operation)
where operation can be Sum, Prod, And, Or
Name.default = constant
optional initialization of all values to a constant

Table 2.2: Syntax of key constructs in the PolyMage DSL

2.2 Language Constructs

All the key constructs in the language and their syntax is listed in the table 2.2. Each of

the constructs is explained in the context of two example pipelines that follow. The Harris

Corner Detection [29] pipeline, description of the algorithm in the PolyMage DSL and the

corresponding C pseudo code is shown in Figure 2.2. The DSL allows an user to specify

the computation without needing to worry about the memory allocation, parallelism or

the target architecture. To describe the pipeline in our DSL the user starts by specifying

parameters, inputs and outputs. Parameters like image width, height, and other constants,

which are inputs to the pipeline, can be declared using the Parameter construct as shown

in Line 1. The input data to the pipeline is declared using the Image construct, as in Line 2,

by specifying both its data type and its extent along each dimension. Extents are restricted

to expressions involving parameters and constants. Function is a central construct in the
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g f

(a) Point-wise

g f

(b) Stencil

g

f

(c) Downsample

g
f

(d) Upsample

Figure 2.1: Point-wise, Stencil, Downsampling and Upsampling operations
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language, and is used to declare a function mapping a multi-dimensional integer domain

to a scalar value. The domain of a function is a list of variables followed by their ranges.

Variable is used to declare integer variables which serve as labels for function dimensions.

The range of a variable is declared using the Interval construct. An interval is defined by a

lower bound, an upper bound, and a step value. Lower and upper bounds are restricted to

affine expressions involving constants and parameters. Lines 3 and 4 show how variables

and intervals are created.

For a function, the expressions which define it over the domain need to be specified. A

function can be defined in a piece-wise manner using a list of cases. Each Case construct

takes a condition and an expression as arguments. Piece-wise definitions allow for express-

ing custom boundary conditions, interleaving, and other complex patterns. Condition can

be used to specify constraints involving variables, function values, and parameters as shown

in lines 6 and 8. Two conditions can be combined to form a disjunction or a conjunction

using the operators | and & respectively. All the cases defining a function are expected to be

mutually exclusive; otherwise, the function definition is considered ambiguous. The Case

construct is optional for functions that are defined by a single expression over the entire

domain. Expressions defining a function can involve its domain variables, parameters, and

other function values. The Stencil construct is a compact way to specify a spatial filtering

operation; it can also be expressed using simple arithmetic operations. Lines 31 and 34

show how the host language Python is used for meta-programming, enabling compact spec-

ification of complex pipelines. Function definitions allow referencing image values under

the function being defined – this allows expression of important patterns like time-iterated

computations and summed area tables [17].

The language allows expressing histograms and other reduction operations using a spe-

cialization of the function construct called Reduction. The reduction construct has two

domains:

• a variable domain which much like the function’s variable domain defines the extent

of the reduction and

• a reduction domain on which the reduction is performed.
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Figure 2.3 shows an reduction used to compute a histogram by counting the number of

pixels of each intensity value, ranging from 0-255, in the image I.

Overall, our language allows intuitive and compact expression of image processing

pipelines at the algorithm level. The number of lines of code required to specify such

pipelines in our DSL is significantly less than that in an equivalent naive C/C++ imple-

mentation.

Iin

Ix I y

Ix x Ix y I y y

Sx x Sy ySx y

det t race

harris

Figure 2.2: Harris corner detection
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1 R, C = Parameter(Int), Parameter(Int)
2 I = Image(Float, [R+2, C+2])
3 x, y = Variable(), Variable()
4 row, col = Interval(0,R+1,1), Interval(0,C+1,1)
5

6 c = Condition(x,’>=’,1) & Condition(x,’<=’,R) & Condition(y,’>=’,1) &
7 Condition(y,’<=’,C)
8 cb = Condition(x,’>=’,2) & Condition(x,’<=’,R-1) & Condition(y,’>=’,2) &
9 Condition(y,’<=’,C-1)

10

11 Iy = Function(varDom = ([x,y],[row,col]),Float)
12 Iy.defn = [ Case(c, Stencil(I(x,y), 1.0/12, [[-1, -2, -1],
13 [ 0, 0, 0],
14 [ 1, 2, 1]]) ]
15 Ix = Function(varDom = ([x,y],[row,col]),Float)
16 Ix.defn = [ Case(c, Stencil(I(x,y), 1.0/12, [[-1, 0, 1],
17 [-2, 0, 2],
18 [-1, 0, 1]]) ]
19 Ixx = Function(varDom = ([x,y],[row,col]),Float)
20 Ixx.defn = [ Case(c, Ix(x,y) * Ix(x,y)) ]
21

22 Iyy = Function(varDom = ([x,y],[row,col]),Float)
23 Iyy.defn = [ Case(c, Iy(x,y) * Iy(x,y)) ]
24

25 Ixy = Function(varDom = ([x,y],[row,col]),Float)
26 Ixy.defn = [ Case(c, Ix(x,y) * Iy(x,y)) ]
27

28 Sxx = Function(varDom = ([x,y],[row,col]),Float)
29 Syy = Function(varDom = ([x,y],[row,col]),Float)
30 Sxy = Function(varDom = ([x,y],[row,col]),Float)
31 for pair in [(Sxx, Ixx), (Syy, Iyy), (Sxy, Ixy)]:
32 pair[0].defn = [ Case(cb, Stencil(pair[1], 1, [[1, 1, 1],
33 [1, 1, 1],
34 [1, 1, 1]]) ]
35

36 det = Function(varDom = ([x,y],[row,col]),Float)
37 d = Sxx(x,y) * Syy(x,y) - Sxy(x,y) * Sxy(x,y)
38 det.defn = [ Case(cb, d) ]
39

40 trace = Function(varDom = ([x,y],[row,col]),Float)
41 trace.defn = [ Case(cb, Sxx(x,y) + Syy(x,y)) ]
42

43 harris = Function(varDom = ([x,y],[row,col]),Float)
44 coarsity = det(x,y) - .04 * trace(x,y) * trace(x,y)
45 harris.defn = [ Case(cb, coarsity) ]

Figure 2.2: PolyMage specification for Harris corner detection
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void pipe_harris(int C, int R, float* I, float*& harris)
{

/* Allocate storage for output and intermediate stages */
for (int x = 1; x <= R; x+=1)

for (int y = 1; y <= C; y+=1){
Ix[x][y] = 1.0/12*(-I[x-1][y-1] - 2*I[x-1][y] - I[x-1][y+1] +

I[x+1][y-1] + 2*I[x+1][y] + I[x+1][y+1])
Iy[x][y] = 1.0/12*(-I[x-1][y-1] - 2*I[x][y-1] - I[x+1][y-1] +

I[x-1][y+1] + 2*I[x][y+1] + I[x+1][y+1])
}

for (int x = 1; x <= R; x+=1)
for (int y = 1; y <= C; y+=1){

Ixx[x][y] = Ix[x][y] * Ix[x][y]
Iyy[x][y] = Iy[x][y] * Iy[x][y]
Ixy[x][y] = Ix[x][y] * Iy[x][y]

}
for (int x = 2; x <= R-1; x+=1)

for (xnt y = 2; y <= C-1; y+=1){
Sxx[x][y] = Ixx[x-1][y-1] + Ixx[x-1][y] + Ixx[x-1][y+1] +

Ixx[x][y-1] + Ixx[x][y] + Ixx[x][y+1] +
Ixx[x+1][y-1] + Ixx[x+1][y] + Ixx[x+1][y+1]

Syy[x][y] = Iyy[x-1][y-1] + Iyy[x-1][y] + Iyy[x-1][y+1] +
Iyy[x][y-1] + Iyy[x][y] + Iyy[x][y+1] +
Iyy[x+1][y-1] + Iyy[x+1][y] + Iyy[x+1][y+1]

Sxy[x][y] = Ixy[x-1][y-1] + Ixy[x-1][y] + Ixy[x-1][y+1] +
Ixy[x][y-1] + Ixy[x][y] + Ixy[x][y+1] +
Ixy[x+1][y-1] + Ixy[x+1][y] + Ixy[x+1][y+1]

}
for (int x = 2; x <= R-1; x+=1)

for (int y = 2; y <= C-1; y+=1){
trace[x][y] = Sxx[x][y] + Syy[x][y]
det[x][y] = Sxx[x][y] * Syy[x][y] - Sxy[x][y] * Sxy[x][y]

}
for (int x = 2; x <= R-1; x+=1)

for (int y = 2; y <= C-1; y+=1)
harris[x][y] = det[x][y] - 0.04 * trace[x][y] * trace[x][y]

/* De-allocate storage for intermediate stages */
}

Figure 2.2: C pseudo code for the Harris Corner Detection pipeline
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1 R, C = Parameter(Int), Parameter(Int)
2 I = Image(UChar, [R, C])
3 x, y = Variable(), Variable()
4

5 row, col = Interval(0, R, 1), Interval(0, C, 1)
6 bins = Interval(0, 255, 1)
7 hist = Reduction(redDom = ([x,y], [row,col]),
8 varDom = ([x], [bins]), Int)
9 hist.defn = Reduce(hist(I(x,y)), 1, Sum)

Figure 2.3: Grayscale histogram
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Chapter 3

Optimizing Pipeline Compiler

This chapter describes how our compiler translates pipelines specified in the PolyMage DSL

into high-performance implementations. The sequence of compiler phases is shown in Fig-

ure 3.1. We first describe the front-end, which constructs a polyhedral representation of

pipelines, performs static bounds checking and inlining. We then discuss the rationale be-

hind our choice of tiling technique, which forms the core of our optimization, and describe

a new approach for constructing overlapped tiles for a group of heterogeneous pipeline

stages. Next, we detail the model-driven heuristic to decompose the pipeline into groups.

Finally, we discuss the code generation and autotuning approach.

DSL Spec
Build stage graph
Static bounds check
Inlining

Polyhedral representation
(default schedule)

Alignment
Scaling
Grouping

Schedule transformation
Storage optimization

Code generation

Figure 3.1: Phases of the PolyMage compiler

The PolyMage compiler takes the pipeline specification and the names of live-out func-

tions as input. Pipelines are represented as a directed acyclic graph (DAG), where each

17
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stage (a function or an accumulator) in the user specification is mapped to a node, and the

producer-consumer relations among the stages are captured by the edges between nodes.

In the rest of the discussion, we use the terms function and stage interchangeably to refer

to a stage in the pipeline. The pipeline graph is automatically extracted from the input

specification; Figure 1.4 shows the pipeline graph for Harris corner detection discussed

earlier. Cycles in the pipeline graph result in an invalid specification. After extracting the

pipeline graph, the compiler statically checks if the values of a function used in defining

other functions are within its domain. Function accesses which are affine combinations of

variables and parameters are the only accesses analyzed. References to values outside the

domain of a function are considered invalid and reported to the user.

Inlining substitutes producer function definitions into consumer functions. In the Har-

ris corner detection example, the function Ix can be substituted into both the consumers

Ixx and Ixy, resulting in Ix being evaluated twice. Inlining functions trades-off redun-

dant computation for improved locality. For point-wise functions, Ixx, Ixy, Iyy, det, and

trace in Figure 2.2, inlining is an obvious choice since it introduces minimal or no re-

dundant computation. However, for stencil or sampling operations as consumer functions,

the redundant computation introduced by inlining can be quite significant. Therefore, we

restrict our inlining to cases where the consumer functions are point-wise functions, and

rely on our schedule transformations to enhance locality for the other operations.

3.1 Polyhedral Representation of Pipelines

The polyhedral model is a mathematical framework well-suited to represent and transform

loop nests. Image processing computations have regular dependence patterns which are

amenable to polyhedral analysis. The strengths of the polyhedral model are in enabling

complex transformations, precise dependence analysis, and code generation to realize the

complex transformations. The PolyMage language allows a user to express pipelines natu-

rally while capturing the essential details required to extract a polyhedral representation.

A function domain in the language directly maps to a parametric integer set. The domain
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of harris function in Figure 2.2 is represented by the following integer set:

harrisdom = { (x , y) | x ≥ 2 ∧ x ≤ R− 1 ∧ y ≥ 2 ∧ y ≤ C − 1 }.

A geometric view of pipeline functions is shown in Figure 3.3. The functions f1, f2, and fout

are represented on the vertical axis, and the individual points in each function’s domain

are shown along the horizontal axis. We omit the bounds on the domain of a function

when they are evident from the context, or not relevant to the discussion.

Schedules in the polyhedral framework can be represented as parametric relations from

one integer set to another. The domain of the relation corresponds to a function domain,

and the range to a multi-dimensional time stamp, whose lexicographic ordering gives a

schedule for evaluating the function. The following shows a scheduling relation and the

corresponding evaluation order for the harris function in the corner detection example:

harrissched = {(x , y)→ (y, x) | x ≥ 2 ∧ x ≤ R− 1 ∧ y ≥ 2 ∧ y ≤ C − 1 }

for y in [2 ... C-1]:
for x in [2 ... R-1]:

harris(x, y)

A schedule can alternatively be described using hyperplanes, which provide better geomet-

ric intuition when dealing with tiling transformations. A hyperplane is an n−1 dimensional

affine subspace of an n-dimensional space. It maps an n-dimensional vector, which corre-

sponds to a point in a pipeline function’s domain, to a scalar value. When viewed as a

scheduling hyperplane, the scalar value is the time stamp at which the function value will

be evaluated. A k-dimensional schedule is defined by k scalars, each given by the hyper-

plane corresponding to the dimension. Equation 3.1 describes a scheduling hyperplane

for a function f . If ~i f = (x , y) is a point in the function’s domain, ~h is the normal to the

hyperplane, and h0 is the translation or the constant shift component, then

φ(~i f ) = ~h·~i f + h0. (3.1)

The scheduling hyperplanes corresponding to the relation harrissched , representing a 2-

dimensional schedule, are ~h1 = [0 1] and ~h2 = [1 0] with no translation (h0 = 0).
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After extracting the domain for a function, the compiler builds an initial schedule by

using both the pipeline graph and the domain order in the function definition. The leading

dimension of the initial schedule for a function is given by its level in a topological sort of

the pipeline graph, and the remaining ones are given by its domain variables. The initial

schedules for the functions Ix, Ixx, and Sxx in Figure 2.2 are as follows:

Ixsched = {(x , y)→ (0, x , y) | x ≥ 1 ∧ x ≤ R ∧ y ≥ 1 ∧ y ≤ C }
Ixxsched = {(x , y)→ (1, x , y) | x ≥ 1 ∧ x ≤ R ∧ y ≥ 1 ∧ y ≤ C }
Sxxsched = {(x , y)→ (2, x , y) | x ≥ 2 ∧ x ≤ R− 1 ∧ y ≥ 2 ∧ y ≤ C − 1 }.

The compiler uses the initial schedule, which is implicit from the pipeline specification,

and derives dependence information from it.

Dependences between consumer and producer functions, which are determined by an-

alyzing the function definitions, are captured using dependence vectors. Initial function

schedules give the time stamps at which function values are produced and consumed.

The dependence vectors are computed by subtracting the time stamp at which a value

is produced from the time stamp at which it is consumed. For example, the function Sxx

at (2, x , y) consumes the values of Ixx produced at (1, x − 1, y − 1), (1, x + 1, y − 1),

(1, x − 1, y + 1) and (1, x + 1, y + 1): this is captured by the dependence vectors (1,1, 1),

(1,−1, 1), (1, 1,−1) and (1,−1,−1). Figures 3.4, 3.3 and 3.6 show functions, schedules,

and corresponding dependence vectors.

3.2 Transformation Criteria

While optimizing schedules for functions in a pipeline, one needs to account for the key

factors of parallelism and locality. If the function values are computed in the order given

by the default schedule as shown in Figure 3.2, i.e., each function is fully computed before

moving to the next. Such schedules have abundant parallelism while evaluating each func-

tion. However, they suffer from poor locality since the intermediate values might move out

of faster levels of the memory hierarchy before they are used. The default naive schedule

also requires storage for all the intermediate values which are used in computing the next

stage of the pipeline. In the Figure 3.2 all the values of intermediate stages f1 and f2 need
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x

f1

f2

fout

Function Schedule Dependence Vectors

fout(x) = f2(x − 1)· f2(x + 1) (x)→ (2, x) (1,1), (1,−1)

f2(x) = f1(x − 1) + f1(x + 1) (x)→ (1, x) (1,1), (1,−1)

f1(x) = fin(x) (x)→ (0, x)

Figure 3.2: The table on the bottom shows the function definitions, dependence vectors
and default schedules. The diagram on the top shows functions along the y-axis and func-
tion values along the x-axis. The dependences between the values are shown as arrows.
Function values are computed in the default schedule order which required storing all the
function values encircled in red.

to be stored to compute fout . Reducing the storage used to implement a pipeline gives sig-

nificant performance benefits which again is due to reduced working set sizes and in turn

improved locality.

Parallelism and locality have been studied well in the context of time-iterated sten-

cils, which are closely related to stencil functions in image processing pipelines. Several

tiling techniques have been developed for time-iterated stencils to allow for a high de-

gree of concurrent execution while preserving locality. Among these techniques, parallel-

ogram [54, 10], split [31], overlapped [32, 35], diamond [5], and hexagonal [25] tiling

use the polyhedral model. Figure 3.3 shows overlapped, split, and parallelogram tiling for

a group of pipeline functions. Each of the tiling strategies provide different trade-offs with

respect to parallelism, locality, redundant computation and ease of storage optimization.

Parallelogram tiling improves locality but only allows for wavefront parallelism, which

effectively reduces to sequential execution of the tiles due to the small number of functions

relative to the spatial tile size. This can be seen in Figure 3.3 where the second parallelo-

gram tile is dependent on the first. Split tiling evaluates functions in two phases. The tiles

with a larger base (upward pointing) are scheduled in the first phase, and the remaining
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x

f1

f2

fout

Overlapped Split Parallelogram

Overlapped Split Parallelogram

Parallelism Ø Ø ×

Locality Ø Ø Ø

Redundancy Ø × ×

Figure 3.3: Functions fused using overlapped, split and parallelogram tiling (left to right).
Live-outs at tile boundaries are circled. Characteristics of the tiling techniques are shown
in the table below.

ones (downward pointing) are scheduled next. All tiles in a single phase can be processed

in parallel. Tiles in the second phase consume values produced at the boundaries of tiles

in the first phase (encircled in the figure); hence, these values have to be kept live for con-

sumption in the second phase. Overlapped tiling recomputes function values which are in

the intersecting region of two neighboring tiles. Since the required values are recomputed

within each tile, all the tiles can be executed in parallel without any communication across

tile boundaries. This key difference allows for aggressive storage optimization making

overlapped tiling a more suitable choice for image processing pipelines.

Tiling shown in Figure 3.3 is across several functions rather than multiple time itera-

tions of the same function. Functions that describe complex pipelines are heterogeneous

in nature as they potentially involve stencil, sampling and data dependent references to

function values. Current techniques for overlapped tiling [32, 35] are designed only for

time-iterated stencil dependence patterns and cannot be directly applied in our context.

We now discuss the schedule transformations required to enable overlapped tiling for a

group of heterogeneous functions.
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x

f

f↓1

f↓2

Function Schedule
f↓2(x) = f↓1(2x − 1)· f↓1(2x + 1) (x)→ (2, x)

f↓1(x) = f (2x − 1)· f (2x + 1)· f (2x) (x)→ (1, x)

f (x) = fin(x) (x)→ (0, x)

Figure 3.4: The diagram shows non-stencil heterogeneous dependences across stages. The
table below shows the functions and their default schedules. The dependence vectors be-
tween the stages are non-constant. Hence, the stages are not amenable to traditional tiling.

3.3 Alignment and Scaling of Functions

Constructing overlapped tiles for a group of functions is only possible when the depen-

dences can be captured by constant vectors, as shown in Figures 3.3,3.5 and 3.6. In gen-

eral, a group of heterogeneous functions can have different dimensions and complex access

patterns, as shown in Figure 3.4. The schedules can be aligned and scaled to make the de-

pendence vectors constant. The effect of scaling is illustrated in Figure 3.5. Consider the

following example which shows a color to gray scale conversion.

gray(x,y) = 0.299×I(2,x,y) + 0.587×I(1,x,y) + 0.114×I(0,x,y)

I represents a color image where the first dimension corresponds to the color channel c,

and the others to the spatial coordinates x and y. The initial schedules for gray and I are

(x , y)→(1, x , y, 0) and (c, x , y)→(0, c, x , y) respectively. According to the initial schedule,

the value I(0,x,y) required to compute gray(x,y) at (1, x , y, 0) is produced at (0, 0, x , y),

resulting in the non-constant dependence vector (1, x , y− x ,−y). However, if the schedule

for gray is transformed to (x , y)→(1,0, x , y), the dependence vector becomes (1, 0,0, 0).

For the functions in Figure 3.6, value dependences are not near-neighbor like in sten-

cils; evaluating fout(x) and f↓1(x) requires the values f↑(x/2) and f (2x − 1) respectively.
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Under the initial schedule of these functions, both dependences cannot be captured by

constant dependence vectors. Dependences of this form are characteristic of upsampling

and downsampling operations. These dependences can be made near-neighbor by scaling

the function schedules appropriately, as shown in Figure 3.6. The compiler determines the

schedule alignment and scaling factors for each function by analyzing the accesses to other

function values in the function definitions. It may not always be possible to align and scale

schedules to make the value dependence vectors constant, for instance, for the functions

f (x , y) = g(x , y)+ g(y, x) and f (x) = g(x/2)+ g(x/4). Our grouping heuristic, which is

presented in Section 3.5, takes the scaling and alignment factors into account while parti-

tioning the pipeline into groups. Only functions whose schedules can be scaled and aligned

to make the dependences near-neighbor are grouped together. We now present the method

to construct overlapped tiles for a group of functions.

x

f

f↓1

f↓2

Function Schedule
f↓2(x) = f↓1(2x − 1)· f↓1(2x + 1) (x)→ (2, 4x)

f↓1(x) = f (2x − 1)· f (2x + 1)· f (2x) (x)→ (1, 2x)

f (x) = fin(x) (x)→ (0, x)

Figure 3.5: The diagram shows dependences across stages post scaling the function sched-
ules. The table below shows the functions and their scaled schedules. The dependence
vectors between the stages are constant thus enabling tiling with a fixed tile shape.

3.4 Generating Schedules for Overlapped Tiling

Tiling is only relevant for a group of functions whose dependence vectors are constant in at

least one dimension after scaling and alignment transformations, as shown in Figure 3.6.

The compiler constructs schedules for overlapped tiling of functions, one dimension after
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x

f

f↓1

f↓2

f↑

fout

Function Schedule
fout(x) = f↑(x/2) (x)→ (4, x)

f↑(x) = f↓2(x/2)· f↓2(x/2+ 1) (x)→ (3, 2x)

f↓2(x) = f↓1(2x − 1)· f↓1(2x + 1) (x)→ (2, 4x)

f↓1(x) = f (2x − 1)· f (2x + 1) (x)→ (1, 2x)

f (x) = fin(x) (x)→ (0, x)

Figure 3.6: The diagram shows a group of functions with heterogeneous dependences
patterns across stages. The schedules are scaled to make the dependence vectors constant.
Conservative dependence analysis will result in a larger region to compute the circled live-
out at the top.

another. For each dimension, the shape of an overlapped tile is determined by analyzing the

dependence vectors. A naive approach to determine the tile shape is to assume that every

dependence vector can exist uniformly at every point in the space. The over-approximate

dependence analysis, illustrated in Figure 3.6, shows the region required to compute the

live-out at the top. Such an analysis over-approximates the dependence cone increasing the

redundant computation by a significant amount, as shown in Figure 3.7. The tile shape is

given by the left and right bounding hyperplanes denoted byφl andφr respectively. For the

tile shape to be valid, the cone formed by φl and φr from any of the live-out values should

contain all the values required to compute it. Figure 3.7 shows hyperplanes which define a

valid tile shape. It is desirable to minimize the redundant computation by determining the

tightest slope possible for φl and φr . The red region in the Figure 3.7 shows the additional

region that will be computed if the over-approximate dependence analysis is used.

Our compiler accounts for the heterogeneity of the functions, and determines the tile
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x

φl φr

f

f↓1

f↓2

f↑

fout

h

oτ

Figure 3.7: Anatomy of an overlapped tile for a group of heterogeneous functions. A tight
tile shape is computed by analyzing dependence vectors between the stages. Extended
region shows overlap with over-approximation. O is the amount of overlap, τ is the tile
size and h is the height of the group.

shape by examining the dependence vectors between two levels in isolation from the other

dependence vectors. Level refers to the level in a topological sort of the pipeline DAG

formed by the functions in the group, it is also the first dimension in every function’s ini-

tial schedule. To determine φl for a particular dimension, only the dependence vectors

with non-negative components in that dimension are considered. Similarly, only the vec-

tors with non-positive components are considered for φr . In Figure 3.7, the thick arrows

shown at the left tile boundary are the maximum non-negative dependence vectors at each

level. Similarly, the minimum non-positive vectors at each level are shown at the right tile

boundary.

Algorithm 1 shows the procedure for computing the slopes of the hyperplanes which

define the tile shape. The procedure starts by analyzing between the live-out function at

the top and the previous level, fout and f↑ in Figure 3.7. The initial iteration sets the slopes

for φl and φr to accommodate the maximum non-negative and minimum non-positive

dependence vectors, respectively, between the live-out level and the previous level. In

the next iteration, the procedure moves to the next lower level and checks if the current

hyperplanes contain all the dependence vectors between the current and the next level. In

the case that the current slopes do not accommodate all the dependence vectors, they are

adjusted to do so. This procedure is repeated till it reaches level zero, and the final slopes

for φl and φr are computed.
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Algorithm 1: Procedure to compute φl and φr for a group for a dimension
Input : Height of the group, H; Group dependence vectors in the dimension being

tiled, D
/* Initially, the slopes for φl and φr are set to zero */

1 φl ← 0, φr ← 0
/* Initially, left and right tile width are set to zero */

2 wl ← 0, wr ← 0
/* H is the level corresponding to the last stage in the group and is the live-out of

the group */
3 for h← H to 1 do

/* Get the dependence vectors between the current (h) and the previous (h− 1)
level */

4 cur r_deps← getDependencesAtCurrentLevel(h, D)
5 le f t_ex tent ← 0
6 ri ght_ex tent ← 0
7 for each dep in cur r_deps do

/* Since we consider a single dimension at a time, the dependences vectors
are reduced to positive or negative scalars */

8 le f t_ex tent = max(dep, le f t_ex tent)
9 ri ght_ex tent = min(dep, ri ght_ex tent)

10 wl ← wl + abs(le f t_ex tent)
11 wr ← wr + abs(ri ght_ex tent)

/* Check if the cone formed by the left and right hyperplanes encompasses all
the dependences. If not adjust the hyperplanes to do so */

12 φl ← checkAndAdjustLeftHyperplane(h, φl , wl)
13 φr ← checkAndAdjustRightHyperplane(h, φr , wr)
14 return (φl ,φr)

In each iteration, the slope computation algorithm ensures that all values requires to

compute the live-out at the top are within the cone formed by φl and φr . By maintaining

this invariant the algorithm ensures the correctness of the tiling transformation irrespective

of the tile origin ,i.e, the left corner of the tile shown in Figure 3.7. It might be possible

to find a tighter tile shape by constraining the tile origin. However, the improvements by

doing such a restriction can be marginal over the current method and will complicate the

code generation step. The traditional tiling conditions only allow dependence vectors to go

out from the tiles. For overlapped tiles constructed using our method dependence vectors

can go inwards into a tile. However, these values are not used within a tile for computing

live-outs and do not effect correctness.
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Once φl and φr are determined, the overlapped tile schedule for each function fk in

the group is constructed as follows. Let the scaled and aligned schedule for a function fk in

the group be ( ~ik )→ (~sk ). For a tile, let h be the tile height which is one less than number

of levels in the group, l and r be the slopes corresponding to φl and φr respectively. The

amount of overlap for a dimension, denoted by o, is given by:

o = h· (|l|+ |r|).

With traditional tiling where both the lower and the upper bounding faces are parallel to

each other and given by a single hyperplane, φ, the tiling constraints [2, 55] are given by:

τ· T ≤ φ( ~sk )≤ τ· (T + 1)− 1,

where T is a newly added dimension corresponding to the iterator on the tile space, and

τ is the tile size. For an overlapped tile with φl and φr as its lower and upper bounding

faces respectively, the constraints are now given by the conjunction:

τ· T ≤ φl( ~sk )≤ τ· (T + 1) + o− 1 ∧

τ· T ≤ φr( ~sk )≤ τ· (T + 1) + o− 1. (3.2)

Note that o, h and τ are known at code generation time. The schedule for fk is updated to

( ~ik )→ ( T,~sk ), and the constraints in Equation (3.2) are added to the schedule relation.

Since the overlapped tile is for the entire group of stages, the schedules for all the functions

in the group are modified similarly.

3.5 Grouping

The schedule transformation and tiling techniques discussed earlier are applicable to a

group of functions. However, the input to the PolyMage compiler is a full pipeline which

has to be partitioned into groups of functions that cab be tiled. In doing the partitioning
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Figure 3.8: Trade-off between reuse and redundant computation. The tile on the top shows
a smaller number of functions being fused. Thus, incurring lesser overlap relative to the
tile at the bottom. O is the amount of overlap, τ is the tile size and h is the height of the
group.

we have to account for the following factors:

• the possibility of overlap tiling a group of functions i.e., it should be possible to

make the dependence vectors between functions in a group constant by scaling and

aligning,

• the trade-off between redundant computation and reuse. This trade-off is illustrated

in Figure 3.8 where the top half shows lesser fusion resulting in lesser overlap and

reuse relative to the bottom half, and

• the fact that the number of valid grouping increases exponentially with the number

of stages in the pipeline. This renders a brute force approach of enumerating all

possible groupings ineffective for larger pipelines.
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Algorithm 2: Iterative grouping of stages
Input : DAG of stages, (S, E); parameter estimates, P; tile sizes, T ; overlap

threshold, othresh

/* Initially, each stage is in a separate group */
1 G← ;
2 for s ∈ S do
3 G← G ∪ {s}
4 repeat
5 conver ge← t rue

/* Find all the groups which only have one child */
6 cand_set ← getGroupsWithSingleChild(G, E)

/* Sort the groups by size to give priority larger groups */
7 ord_l ist ← sortGroupsBySize(cand_set, P)
8 for each g in ord_l ist do
9 child = getChildGroup(g, E)

/* Check if the stages group g and the child group can be scaled and aligned
to have constant dependence vectors */

10 if hasConstantDependenceVectors(g, child) then
/* Get the ratio of overlap area to tile area */

11 or ← estimateRelativeOverlap(g, child, T)
12 if or < othresh then
13 mer ge← g ∪ child
14 G← G − g − child
15 G← G ∪ mer ge
16 conver ge← f alse
17 break
18 until conver ge = t rue
19 return G

Our algorithm for grouping stages is shown as Algorithm 2. The algorithm takes the

directed acyclic graph, (S, E), where S is the set of stages or functions and E, the set of

edges, the tile sizes, an overlap threshold and the approximate estimates of all pipeline

parameters as input. Typically, the user has an idea of the range of image dimensions

on which the processing algorithm will be applied. The generated pipeline is optimized

for the parameter values around the estimates. However, the implementation is valid for

all parameter sizes. Generating an optimized implementation for all possible parameter

values is often not feasible. The grouping algorithm uses the estimates to avoid considering

functions of very small size for merging.
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Initially, each function in the pipeline is placed in a separate group. At any point,

the groups in G are disjoint i.e., a stage cannot be in two groups at the same time. The

union of all the groups is the set of all stages, S. The grouping algorithm iteratively merges

groups until no further merging is possible. For every iteration, it finds all groups that have

only a single child or successor group, with respect to the pipeline graph (line 6). These

candidate groups are sorted (line 7) in the decreasing order of their sizes determined from

the parameter estimates. Next, the algorithm iterates over the sorted groups to check for

merging opportunities. An iteration finishes when either a child is merged or there is no

opportunity to merge, in which case the algorithm terminates.

Lines 10, 11, and 12 show the criteria used for a profitable merge. The first criterion is

that it should be possible to make the dependence vector components constant by aligning

and scaling the functions in child and parent groups. Otherwise, overlapped tiling cannot

be performed on the group and merging the groups is not desirable. The second criterion

is the amount of redundant computation that would be introduced. The algorithm merges

groups only when the size of overlapping region, as a fraction of the tile size, is less than

the overlap threshold. The size of the overlapping region along a dimension is independent

of the tile size along that dimension, and is determined only by the slopes of the bounding

hyperplanes and the group size. Recall that the slope itself was determined by dependences

among functions in the group, as shown in Figure 3.7. The tile size in effect restricts group

sizes. This is exploited by our auto-tuner to explore a range of implementations with a

very small parameter space, as described later in Section 3.8.

Algorithm 2 is greedy, but fast and effective. A characteristic of the algorithm is that

it groups maximally in a greedy fashion subject to the constraints on redundant compu-

tation, scaling and alignment. The pipeline graphs we consider have a single sink node

(stage), which is the final output of the pipeline. Therefore, there exists at least one node

with a single child group, i.e., the parent(s) of the sink node. When the sink node and

its parents are grouped together, they form the new sink node. Now, the new sink node

will be the only child of it’s parents. By repeatedly merging the sink node with its par-

ents, the entire DAG can be grouped together if the overlap and alignment criteria permit.
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Hence, the algorithm, (1) tends to maximize reuse as it only groups stages connected by

producer-consumer relationships and (2) prevents merging of groups only when the over-

lap threshold and alignment criteria do not permit such a merge. Once the groups are

formed, overlapped tiling for each group is performed as described in Section 3.4. The

algorithm is not provably optimal in minimizing the number of groups or maximizing any

pre-defined notion of reuse. However, our experiments demonstrate that it is effective in

practice when combined with auto-tuning in a restricted space. As an example, the group-

ing obtained for the Pyramid Blending pipeline is shown in Figure 3.9.

Validity A grouping is valid if there is no cycle between the groups with reference to the

pipeline DAG. Since algorithm 2 merges a group with its single child into itself, it does not

create cycles.

Termination Every iteration of the repeat-until loop that does not lead to termination,

reduces the cardinality of G by one. The algorithm thus terminates in |S| − 1 iterations in

the worst case.

3.6 Storage Mapping

Functions that are outputs of the pipeline need to be stored in memory after they are

computed, and we allocate arrays to store values of both output and intermediate functions.

Array layout for the output functions is dictated by the domain order in their definitions and

cannot be altered. However, the data layout for intermediate functions closely follows the

schedule transformations applied to them, thus considering them in an integrated manner.

For example, a function f (x , y) whose schedule is given by (x , y)→ (y, x) will be stored

in a 2-dimensional array with y and x as the outer and inner dimensions respectively.

For a group of functions that are tiled, the values of the intermediate functions are used

only within the tile. This can be seen in Figure 3.10, in the case of intermediate functions

f , f↓1, f↓2 and f↑. These intermediate values can be discarded after computing the live-out

values at the top of a tile. Therefore, the intermediate functions need not be allocated as
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Figure 3.9: Pyramid Blending pipeline with four pyramid levels. The grouping generated
by our compiler is shown by the enclosing boxes, all the stages in one group are enclosed
by a box. Inputs to the pipeline are the two images on the top right, each with one of the
halves out of focus, and a mask image M. The image on the bottom right is the blended
output where both halves of the image are in focus. (Image courtesy Kyros Kutulakos)

full buffers, instead they can be stored in small scratchpads which are private to each tile.

Horizontal boxes in Figure 3.10 indicate such scratchpad allocations. All the tiles which

are executed sequentially by a single thread can reuse the same set of scratchpads. The

only full allocations required are for the live-out functions in a group.

For tile sizes which are small relative to the size of the functions, the reduction in storage

is quite significant, leading to better locality. For example, consider the storage requirement

of the unoptimized C code for the Harris Corner Detection shown in Chapter 2, Figure 2.2

versus the optimized code generated by PolyMage in Figure 3.11. The naive version after

inlining the Ixx, Iyy, Ixy, det and trace stages takes five (R+ 2) ∗ (C + 2) size floating point

buffers to store the intermediate results for Ix, Iy, Sxx, Syy and Sxy. For an image of size

2048 ∗ 2048, the intermediate buffers require approximately 16MB of storage. On the

other had the optimized code only requires 187KB for scratchpad allocations when run on

a single thread.

In order to perform scratchpad allocation for intermediate functions, their accesses have
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Figure 3.10: The horizontal boxes within the tile show scratchpad allocations used to com-
pute the live-outs in the tile.

to be remapped to the scratchpads. The compiler generates index expressions into scratch-

pads relative to the origin of each tile: in Figure 3.10, the origin is the left bottom corner

of the tile shown. Relative indexing generates simple indexing expressions for scratch-

pads allowing for easier code generation and vectorization. The generated code shown in

Figure 3.11 shows the indexing expressions for scratchpad allocations. Without storage

reduction, the tiling transformations are not very effective due to the streaming nature of

image processing pipelines. The reduction of memory footprint coupled with a schedule

optimized for parallelism and locality results in a dramatic improvement in performance

as we demonstrate in our experimental evaluation.

3.7 Code Generation

After partitioning the pipeline into groups, building overlapped tiled schedules and opti-

mizing storage, the compiler generates a C++ function implementing the pipeline. Fig-

ure 3.11 shows the code generated for Harris corner detection specification (Figure 2.2).

The integer set library (isl) [52] is used to generate loops to scan each group of functions

as per the ordering implied by our schedules. The outermost parallel dimension for each

group is marked parallel using OpenMP pragmas. Scratchpad allocations are placed at

the start of the parallel loop’s body. For the code in Figure 3.11, scratchpads are allo-

cated in the Ti loop. Our alignment and scaling method always ensures that the innermost
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loop iterator has a unit stride. The compiler also avoids branching in the innermost loops

by splitting function domains and unrolling loops. Unit stride loops are annotated using

ivdep pragmas which inform the downstream C++ compiler of the absence of any vector

dependences. From our experiments, we found the Intel C++ compiler’s cost model for

vectorization to be very effective, and we relied on it to decide which loops to vectorize

and in what way.

3.8 Autotuning

Our grouping heuristic (Section 3.5) and overlapped tiling (Section 3.4) use fixed tile sizes

and overlap threshold to generate an implementation of the pipeline. It is tedious for a user

to infer the right choice of parameters that lead to the best performance. Given that the

solution space is narrowed down only to tile size choices, we use an autotuning mechanism

to infer the right ones. The grouping heuristic we proposed takes a tile size configuration,

and determines a grouping structure considering the overlap. This model-driven approach

reduces the search space to one of a very tractable size. The parameter space we explore

comprises seven tile sizes – 8, 16, 32, 64, 128, 256, 512, for each dimension, and three

threshold values, 0.2, 0.4, 0.5, for othresh. Even for a pipeline that has four tilable dimen-

sions, the size of the parameter space is 74× 3 configurations. We however note that even

the complex pipelines in our benchmarks have only 2 dimensions that can be tiled, and the

parameter space we consider for them is thus 72 × 3 = 147. Figure 3.12 shows the single

and 16-thread performance for various configurations explored by the auto-tuner for three

of our benchmarks. For all the benchmarks we considered, the autotuner took under 30

minutes to explore the parameter space.
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void pipe_harris(int C, int R, float* I, float*& harris)
{

/* Live out allocation */
harris = (float*) (malloc(sizeof(float)* (2+R)*(2+C)));

#pragma omp parallel for
for (int Tx = -1; Tx <= R/32; Tx+=1){

/* Scratchpads */
float Ix[36][260], Iy[36][260];
float Syy[36][260], Sxy[36][260], Sxx[36][260];
for (int Ty = -1; Ty <= C/256; Ty+=1) {

int l bx = max(1, 32*Tx);
int ubx = min(R, 32*Tx + 35);
for (int x = l bx; x <= ubx; x+=1) {

int l by = max(1, 256*Ty);
int uby = min(C, 256*Ty + 259);

#pragma ivdep
for (int y = l by; y <= uby; y+=1) {

Iy[-32*Tx+x][-256*Ty+y] = ...;
Ix[-32*Tx+x][-256*Ty+y] = ...;

}
}
l bx = max(2, 32*Tx + 1);
ubx = min(R - 1, 32*Tx + 34);
for (int x = l bx; x <= ubx; x+=1) {

int l by = max(2, 256*Ty + 1);
int uby = min(C-1, 256*Ty + 258);

#pragma ivdep
for (int y = l by; y <= uby; y+=1) {

Syy[-32*Tx+x][-256*Ty+y] = ...;
Sxy[-32*Tx+x][-256*Ty+y] = ...;
Sxx[-32*Tx+x][-256*Ty+y] = ...;

}
}
if (Ty >= 0 && Tx >= 0) {

l bx = 32 * Tx + 2;
ubx = min(R - 1, 32*Tx + 33);
for (int x = l bx; x <= ubx; x+=1) {

int l by = 256*Ty + 2;
int uby = min(C-1, 256*Ty+257);

#pragma ivdep
for (int y = l by; y <= uby; y+=1)

harris[x*(C+2)+y] = ...;
}

}
}

}
}

Figure 3.11: Generated code for Harris corner detection
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(a) Pyramid Blending
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(b) Camera Pipeline
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(c) Multiscale Interpolation

Figure 3.12: Autotuning results (note: origin of the plots is not (0,0); it has been shifted
for better illustration)
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Chapter 4

Experimental Evaluation

This chapter describes the experimental methodology we used to evaluate the effectiveness

of PolyMage relative to hand-tuned, auto-tuned and library implementations of image pro-

cessing pipelines.

4.1 Setup

All experiments were conducted on an Intel Xeon E5-2680 based on the Sandybridge mi-

croarchitecture. The machine is a dual-socket NUMA with an 8-core Xeon E5 2680 pro-

cessor in each socket and 64 GB of non-ECC RAM, running Linux 3.8.0-38 (64-bit). Each

Xeon E5 2680 runs at 2.7 GHz and with a 32 KB L1 cache/core, 512 KB L2 cache/core,

and a shared 20 MB L3 cache. The Sandybridge includes the 256-bit Advanced Vector Ex-

tensions (AVX). The experiments were conducted with hyperthreading disabled. All codes

generated by PolyMage were compiled with Intel C/C++ compiler 14.0.1 with flags “-O3

-xhost”. The Halide version [27] used for benchmarking uses LLVM 3.4 as its backend, and

the OpenCV version used was 2.4.9. The PolyMage performance numbers were taken with

6 runs; the first warm up run was discarded, and the average of the other five is reported.

We use seven image processing application benchmarks which vary widely in structure

and complexity. The number of stages and the lines of PolyMage code for each of these ap-

plications is shown in Table 4.1. We evaluate our results relative to other implementations

39
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Benchmark Stages Lines Image size Computation Patterns

Unsharp Mask 4 16 2048× 2048× 3 P, ST
Bilateral Grid [14] 7 43 2560× 1536 P, ST, R, SM
Harris Corner [29] 11 43 6400× 6400 P, ST
Camera Pipeline 32 86 2528× 1920 P, ST, SM, R
Pyramid Blending [12] 44 71 2048× 2048× 3 P, ST, SM
Multiscale Interpolate 49 41 2560× 1536× 3 P, SM
Local Laplacian [4] 99 107 2560× 1536× 3 P, ST, R, SM

Table 4.1: Benchmark characteristics. Columns from left to right: Application, number of
pipeline stages, number of lines of PolyMage DSL code, input size, computation patterns
(P - point-wise, ST - stencil, SM - sampling, R - reduction).

of the same benchmarks in the following ways.

• We compare with the highly tuned schedules available in the Halide repository for

the applications evaluated by Ragan-Kelley et al. [46]. We tuned those schedules

further for our target machine by varying tile sizes, vector lengths and unroll factors,

and we call these H-tuned.

• We evaluate schedules generated by our compiler in conjunction with Halide. This

is done by specifying a schedule, referred to as H-matched, that closely matches our

best schedule for the benchmark. Coming up with a matching Halide schedule is

not practically feasible for all the applications considered. It is too tedious in cases

where the pipelines have a large number of stages – since schedules generated by

our compiler are complex.

• We used the OpenTuner [3] framework and the associated Halide autotuner to gen-

erate schedules for all the benchmarks, by running the autotuner for 12 hours on

each application.

• We also compare with OpenCV implementations for applications which could be writ-

ten solely using optimized OpenCV library routines available.

An expert hand-tuned version is publicly available for camera pipeline, but other expert

versions evaluated by Ragan-Kelley et al. [46] are either proprietary or not publicly avail-

able. In such cases, our comparison relative to H-tuned can be used to place PolyMage in

relation to hand-tuned versions.
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4.2 Benchmark Performance

Table 4.4 shows absolute execution times for the implementations generated by PolyMage

that are fully optimized for 16 cores, their speedup over H-tuned and schedules generated

by OpenTuner. Speedups on applications not from Halide’s repository are marked with *.

The table also provides the number of stages in each benchmark, number of lines of Poly-

Mage DSL code, and execution times for OpenCV versions with optimized library routines.

Table 4.2 shows some of the characteristics of the auto-tuned pipeline implementations

,i.e., the number of tiled groups, the size of the largest group, storage for intermediate

buffers with and without the grouping and tiling transformations. Figure 4.1 shows per-

formance comparing various configurations of PolyMage and Halide to provide insight into

the benefits of grouping, tiling, and vectorization separately. The baseline is the sequential

version generated by PolyMage without schedule transformations and vectorization: this

is the same as PolyMage (base) for 1 thread.

4.2.1 Multiscale Interpolation

Multiscale Interpolation interpolates pixel values at multiple scales. The H-tuned schedule

does loop reordering, vectorization, tiling, and parallelization but no fusion. The best

schedule determined by the autotuner results in a non-trivial grouping of the pipeline

stages. The grouping consists of 5 fused groups where the largest group is composed of 9

stages. This schedule outperforms the manually tuned schedule, H-tuned, by 2×. Specify-

ing our best schedule using Halide (H-matched) completely bridged the 2× gap in perfor-

mance between H-tuned and PolyMage(opt+vec). Also, the H-matched schedule provided

better vectorization gains when compared to the H-tuned one.

4.2.2 Harris Corner Detection

Harris Corner Detection [29] is a widely used method to detect interest points in an image.

The feature or interest points are used in various computer vision tasks. A full description of

the algorithm in our DSL is shown in Figure 2.2. The best schedule generated by PolyMage
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inlines all point-wise operations, and groups all stencil functions together. The speedup

of the tiled and vectorized implementation is 46.78× over the baseline. An interesting

point to note is that, without the tiling transformation, vectorization improves the single

thread performance only by 1.12×. This shows the importance of locality transformations

to effectively utilize vector parallelism. H-tuned schedule uses a different grouping and

performs reasonably well. H-matched schedule uses the same grouping and inlining as

our schedule, and performs much better than H-tuned. The performance gap between

H-matched (tuned+vec) and PolyMage (opt+vec) is due to icc generating better vectorized

code than Halide. This can be observed from the single thread vectorization speedups.

4.2.3 Pyramid Blending

Pyramid Blending [12] blends two images into one using a mask and constructing a Lapla-

cian pyramid. The complex grouping performed by PolyMage is shown in Figure 3.9. Writ-

ing a similar schedule in Halide (H-matched) for such a complex grouping is a non-trivial

task. The H-tuned schedule is provided by us along the lines of the tuned schedule avail-

able for the Local Laplacian Filter benchmark. The H-matched schedule provides a clear

performance improvement over H-tuned.

4.2.4 Bilateral Grid

Bilateral Grid [14, 41] is a structure used for computing a fast approximation of the bilateral

filter. The benchmark constructs a bilateral grid, and then uses it to perform edge-aware

smoothing on the input image. The pipeline is a histogram operation followed by stencil

and sampling operations. Our compiler fuses all the stencil and sampling stages into two

groups, and the histogram into another. H-tuned schedule is quite different as it fuses the

histogram computation with one of the stencil operations. Our current implementation

does not attempt to fuse reduction operations. However, the schedule we generate is quite

competitive to H-tuned.
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4.2.5 Camera Pipeline

Camera Pipeline processes raw images captured by the camera into a color image. The

camera sensor is overlaid with a color filter and the raw image captured only has a single

channel data at each pixel location. Such raw sensor data is converted into a color image

by interpolating the missing channels at each pixel location. As part of the processing,

the pipeline also performs noise reduction, color translation and tone reproduction. The

pipeline stages have stencil-like, interleaved, and data-dependent access patterns. Our

best schedule fuses all stages except small lookup table computations into a single group.

Performance of the PolyMage optimized code is slightly better than H-tuned, and matches

that of an expert tuned version labeled ‘FCam’ [1] in Figure 4.1e.

4.2.6 Local Laplacian Filters

Local Laplacian Filters [40, 4] can be used in several applicaitons including detail enhance-

ment and tone mapping. The benchmark we use computes a fast approximation [4] of the

Local Laplacian Filters proposed in [40]. It is the most complex of our benchmarks, involv-

ing both sampling and data-dependent operations. The best schedule PolyMage generates

is very complex and is tedious to manually express in Halide. We only compare with the

H-tuned schedule which does not group any of the stages but exploits parallelism and vec-

torization.

4.2.7 Unsharp Mask

Unsharp Mask is a simple pipeline used to sharpen image edges. The pipeline separates

the high frequency components like edges of an image and enhances them. The pipeline

comprises a series of stencil operations. The H-tuned schedule we use is very similar to our

best schedule. All the stages in the the pipeline are added to a single group.
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4.3 Storage reduction

The reduction in the amount of storage by only using scratchpad allocations for inter-

mediate function values can be seen Table 4.2. For example, in the case of the Camera

Pipeline benchmark the storage is reduced from 168MB to a mere 0.67MB while executing

on a single thread. Thus, enabling data to reside in faster levels of the memory hierarchy.

However, the reduction in storage is not always desirable. For instance, the multi-scale

applications like Local Laplacian Filters, Multiscale Interpolation and Pyramid Blending

do not have large groups since the amount of redundant computation grows very quickly

with the group size. Despite the gains due to improved locality and reduced storage, con-

figurations with large group sizes end up performing worse than ones which have smaller

groups. Large tile size configurations despite allowing for larger overlap sometimes do not

generate enough tasks for all the threads resulting in sub-optimal performance. However,

when auto-tuning finds the right balance the performance improvements can be quite dra-

matic as in the case of the Harris Corner Detection. The Table 4.3 gives the amount of

scratchpad memory used by the largest group and the tile sizes for the best autotuned

implementations.

Benchmark
Num of tiled

groups
Group size

(max)
Storage (MB)

(base)
Storage (MB)

(opt)

Unsharp Mask 1 4 150 0.15
Bilateral Grid [14] 2 2 55 44
Harris Corner [29] 1 11 819 0.18
Camera Pipeline 1 25 168 0.67
Pyramid Blending [12] 12 7 436 54
Multiscale Interpolate 5 9 252 85
Local Laplacian [4] 12 5 591 212

Table 4.2: Columns from left to right: Application, number of groups were fused and tiled,
the number of stages in the largest group, amount of storage required to store intermediate
function values in code without and with schedule transformations ,i.e., PolyMage(base)
and PolyMage(opt). The intermediate storage is for input sizes shown in Table 4.1 when
executed on a single thread.
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Figure 4.1: Multiscale Interpolation and Harris Corner Detection
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(c) Pyramid Blending

1 2 4 8 16
0

2

4

6

8

10

12

14

1
.1
5 2
.1
7

3
.7
7

6
.5
5

1
2
.1
6

0
.8
2 1
.6
1 2

.7
3

4
.7
4

8
.9
9

1
.6
5

3
.1
7

3
.4
2

3
.5
6

3
.7
2

1

1
.9
7

2
.1
5

2
.2
8

2
.4
2

1
.6

2
.9
2

5
.4

8
.5
5

1
3
.6
8

1
.1
3 2
.1
1

4
.0
3

6
.7
2

1
0
.3
7

Number of cores

S
p
ee
d
u
p
ov
er

P
ol
y
M
ag

e
b
as
e
(1

co
re
) PolyMage(opt+vec)

PolyMage(opt)

PolyMage(base+vec)

PolyMage(base)

Halide(tuned+vec)

Halide(tuned)

(d) Bilateral Grid

Figure 4.1: Pyramid Blending and Bilateral Grid



4.3. Storage reduction 47

1 2 4 8 16
0

5

10

15

20

25

30

35

2
.7
9

5
.4
9

9
.5

1
8
.1
6

3
2
.3
7

0
.7
9

1
.5
7

2
.7
4 5
.2
6

1
0
.2
8

2
.9
5

5
.6
2

9
.5
8

1
3
.2
2

2
4
.2

1

1
.9
8 3
.6
1

6
.5

1
2
.1
6

4
.8
2 7
.3

1
2
.3
2

2
1
.2
6

3
1
.2
8

1
.4 2
.5
9 4
.7
1

7
.5
6

1
4
.1
5

2
.4
2 4
.8
3

9
.5
5

1
7
.4
9

3
3
.7
5

Number of cores

S
p
ee
d
u
p
ov
er

P
o
ly
M
ag

e
b
as
e
(1

co
re
) PolyMage(opt+vec)

PolyMage(opt)

PolyMage(base+vec)

PolyMage(base)

Halide(tuned+vec)

Halide(tuned)

FCam

(e) Camera Pipeline
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Figure 4.1: Speedups relative to PolyMage (base) on a single thread. For PolyMage, ‘opt’ in-
cludes all optimizations other than enabling icc auto-vectorization. ‘base’ implies all scalar
optimizations including stage inlining, but not grouping, tiling, and storage optimizations.
Absolute execution times can be determined in conjunction with Table 4.1.
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Benchmark
Group size

(max)
Scratch pad allocation (KB)

(for largest group)
Tuned tile sizes

Unsharp Mask 4 150 8 × 512
Bilateral Grid [14] 2 135 8 × 128
Harris Corner [29] 11 180 32 × 256
Camera Pipeline 25 610 64 × 256
Pyramid Blending [12] 7 332 16 × 256
Multiscale Interpolate 9 286 32 × 128
Local Laplacian [4] 5 113 8 × 256

Table 4.3: Columns from left to right: Application, size of the largest group in the best
implementation found after autotuning, the amount of scratch pad allocated for each tile
in the largest group, and the best tile sizes (2-d tiling) determined by autotuning.

Execution times (ms) PolyMage speedup

Benchmark PolyMage (opt + vec) OpenCV (16 cores) over

1 core 4 cores 16 cores (1 core) OpenTuner H-tuned

Unsharp Mask 42.21 11.43 3.95 84.44 1.39× *1.63×
Bilateral Grid 89.76 27.30 8.47 - 1.09× 0.89×
Harris Corner 233.79 68.03 18.69 810.24 2.61× *2.59×
Camera Pipeline 67.87 19.95 5.86 - 10.05× 1.04×
Pyramid Blending 196.99 57.84 21.91 197.28 27.61× *4.61×
Multiscale Interpolate 101.70 34.73 18.18 - 12.72× 1.81×
Local Laplacian 274.50 76.60 32.35 - 9.41× 1.54×

Table 4.4: Columns from left to right: Application, execution times (16 threads and vec-
torization enabled) in milliseconds of PolyMage (opt+vec) and OpenCV, speedup of Poly-
Mage (opt+vec) over auto-tuned (OpenTuner) and hand-tuned Halide schedules. Execu-
tion times for Halide can be derived from Figure 4.1 and this table.
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4.4 Summary

For applications from the Halide repository, PolyMage obtains a mean (geometric) speedup

of 1.27× over H-tuned while running on 16 cores. The corresponding speedup over man-

ually tuned Halide schedules for all the seven applications is 1.75×. When compared with

Halide schedules automatically tuned with OpenTuner, PolyMage is 5.39× faster on av-

erage. We believe that automatically obtaining this level of parallel performance while

requiring the programmer to only provide a high-level specification of the computation is

a significant result. Determining and applying a similar sequence of transformations man-

ually is often either very tedious or infeasible (cf. Figure 3.9). For camera pipeline, our 86

line input code was transformed to 732 lines of C++ code, and performs only 10% slower

than an expert-tuned version (FCam). The generated code for both PolyMage(base) and

PolyMage(opt) is publicly available [43] for all the benchmarks.
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Chapter 5

Related Work

In this chapter, we discuss related work from image processing pipeline compilation, stencil

computation optimization and past polyhedral optimization efforts.

5.1 Domain Specific Languages for Image Processing

In this section, we discuss past work on image processing DSL’s that aim to improve both

performance and productivity.

5.1.1 Halide

Halide is a recent domain-specific language for image processing pipelines [45] that de-

couples the algorithm and schedule specification. The Halide DSL allows the user to ex-

periment with a wide variety of schedules without changing the algorithm specification,

facilitating rapid experimentation. However, providing a good schedule often requires a

lot of effort, prior knowledge, and expertise in manual optimization. Autotuning based on

genetic search [46]was used in conjunction with Halide to explore the vast space of sched-

ules. However, this method converges on good schedules very slowly, taking hours to days,

and requires seed schedules for fast convergence. This approach is no longer maintained

or available with Halide ([3], section 4.2).
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5.1.2 OpenTuner

A more recent approach for autotuning Halide programs is based on the OpenTuner [3]

framework. Although more robust, the underlying approach still relies on combining sev-

eral search techniques to stochastically explore the schedule space. This is only effective for

small pipelines due to the exponential increase in the schedule space with pipeline size.

Though the schedule space is vast, only a small subset of the space matters in practice.

Our model-driven approach allows us to target such a subset and find schedules that out-

perform highly tuned schedules specified using Halide. Additionally, we employ a flexible

transformation and code generation machinery that allows us to model a richer variety of

transformations. For example, expressing parallelogram or split tiling [26] is currently not

feasible with the Halide scheduling language.

5.1.3 Darkroom

Darkroom [30] is an image processing DSL which focuses on generating hardware descrip-

tions of pipelines for FPGA or ASIC. The primary optimization strategy is line buffering

which maps well to hardware implementations. The Darkroom compiler formulates an

integer linear program to determine and minimize the line buffer sizes. To enable this, the

Darkroom language only allows stencil and point-wise operations in a pipeline. Similar

to scratch pad allocation, line buffering also results is reduced storage since it only stores

the intermediate results in small local line buffers. However, it does not effectively extract

task parallelism. For mapping to multicore architectures the image is tiled into chunks and

each chunk is processed on a separate core using a line buffered implementation.

5.1.4 Forma

Forma [47] is another image processing DSL which maps high-level description of pipelines

to multiple backends primarily focusing on GPU architectures. The compiler automatically

handles memory management and effectively uses GPU hardware resources. However,

the pipeline schedule optimizations are restricted to simple fusion. We believe our tiling,
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grouping and auto-tuning techniques can be leveraged by the Forma compiler.

5.2 Stencil Optimizers

Stencil optimization efforts have extensively focused on improving locality and parallelism

for time-iterated stencil computations, resulting in parallelogram [53, 54, 10], diamond [5],

split [26], and hybrid hexagonal [25] tiling techniques. The latter three techniques allow

for concurrent start of tiles along a boundary, and are particularly effective in maximizing

parallelism. These techniques exploit temporal locality across time steps without intro-

ducing any redundant computation. However, storage reduction and reuse using private

scratchpads, a crucial optimization for image processing pipelines, is very difficult with

these approaches due to the complex scratchpad indexing and management (and thus

code generation) required. Overlapped tiling [35, 32, 56] is attractive in this context due

to the dismissal of dependence between neighboring tiles – this greatly simplifies scratch-

pad allocation, indexing, and management.

In addition, dependences between stages of an image processing pipeline are of a het-

erogeneous nature, and more complex than those in time-iterated stencils. Our technique

to construct overlapped tiles takes this heterogeneity into account, and minimizes overlap

further in comparison to prior polyhedral approaches [35, 32]. As we have seen in Fig-

ures 3.6 and 3.7 prior approaches account for all dependences instead of analyzing the

dependences between functions. This approach works well for time-iterated stencils since

the dependence patterns across the time steps remain the same. However, when deal-

ing with image processing pipelines our approach becomes necessary to avoid prohibitive

amounts of redundant computation.
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5.3 Polyhedral Compilers and Optimization

Polyhedral compilation frameworks, since the works of Bastoul [7], Cohen et al [16, 21],

and Hall et al. [28, 51] have taken a decoupled view of computation (as a set of iter-

ation domains) and schedules (as multi-dimensional affine functions). Schedules could

be transformed and complex ones composed without worrying about domains. However,

most subsequent works remained general-purpose, both in the techniques to determine

schedules, and in the extraction of initial representation from input. Among existing fu-

sion heuristics in the polyhedral framework [9, 36, 38], there is none suitable for image

processing pipelines. The heuristics do not consider overlapped tiling of the fused groups

as a possibility. In our context, we observe that the interactions between fusion, tile sizes

and the overlap threshold are very important to capture for optimization. Using a domain-

specific approach here is thus clearly the pragmatic one.

Other prior work on image processing languages [20, 42, 48] has focused more on the

language, programmability and expressiveness aspects while proposing simple and limited

optimization. There is a large body of work on compilation of stream languages [11, 23,

24, 50]. However, these works do not consider the space of optimizations that we do, in

particular, the tradeoff between redundant computation and locality. Most work on stream

programs dealt with one-dimensional streams while image processing pipelines involve

two or higher dimensional data entities. The polyhedral framework makes it convenient

to deal with such higher dimensional spaces.



Chapter 6

Conclusions

We presented the design and implementation of a domain-specific language along with its

optimizing code generator, for a class of image processing pipelines. Our system, Poly-

Mage, takes a high-level specification as input, and automatically transforms it into a high-

performance parallel implementation. Such an automation was possible due to the ef-

fectiveness of our model-driven approach to fuse image processing stages, and our tiling

strategy and memory optimizations for the fused stages. Experimental results on a mod-

ern multicore system with complex image processing pipelines show that the performance

achieved by our automatic approach is up to 1.81× better than that achieved through

tuned schedules with Halide, another state-of-the-art DSL and compiler for image pro-

cessing pipelines. For a camera raw image processing pipeline, the performance of code

generated by PolyMage is comparable to that of an expert-tuned version. We believe that

our work is a significant advance in improving programmability while delivering high per-

formance automatically for an important class of image processing computations.

The PolyMage [44] system can be extended in two orthogonal aspects, one in terms

of the computation patterns that are supported and the other is targeting a wider range

of architectures. For example, including support for dense linear algebra which will allow

larger portions of computer vision pipelines to be expressed in the DSL. Thus, enabling

more opportunities for optimization. Although the DSL’s current focus is on image process-

ing, applications in scientific computing domain like Geometric Multi Grid (GMG) methods
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can be readily expressed using the DSL. However, the grouping and tiling techniques may

need to be further tailored for such applications. Supporting architectures like GPU and

Xeon Phi will enable efficient usage of heterogeneous hardware. The tiling and grouping

techniques developed in this thesis are architecture agnostic. However, developing effec-

tive code generation for different architectures requires further investigation. Overall, we

believe that domain-specific approaches can deliver productivity and performance gains in

the face of today’s complex hardware.



Appendix A

Benchmark Pipeline Graphs

The pipeline diagrams for all the benchmarks are listed here. These diagrams also show the

grouping determined by the autotuner for the target multicore architecture. Each stage in

the pipeline is show in an oval and the rectangles enclosing the stages show the grouping.
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(a) Harris Corner Detection (all stages in
a single group)

(b) Bilateral Grid

Figure A.1: Harris Corner Detection and Bilateral Grid
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(c) Camera Pipeline

(d) Pyramid Blending

Figure A.1: Camera Pipeline and Pyramid Belnding
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(e) Multiscale Interpolation

Figure A.1: Multiscale Interpolate
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(f) Local Laplacian Filter

Figure A.1: The diagram shows grouping for each of the benchmark pipelines after auto-
tuning for the target multicore architecture. Each stage in the pipeline is shown in an oval.
All the stages in a group are enclosed by a rectangular box.
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