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Abstract

In recent years, polyhedral auto-transformation frameworks have gained significant interest

in general-purpose compilation, because of their ability to find and compose complex loop

transformations that extract high performance from modern architectures. These frame-

works automatically find loop transformations that either enhance locality, parallelism or

minimize latency or a combination of these. Recently, focus has also shifted on develop-

ing intermediate representations, like MLIR, where complex loop transformations and data-

layout optimizations can be incorporated efficiently in a single common infrastructure.

Polyhedral auto-transformation frameworks typically rely on complex Integer Linear

Programming (ILP) formulations to find affine loop transformations. However, construc-

tion and solving these ILP problems is time consuming, which increases the compilation

time significantly. Secondly, loop fusion heuristics in these auto-transformation frameworks

are ad hoc, and modeling loop fusion efficiently would further degrade compilation time.

In this thesis, we provide a relaxation of the ILP formulation in the Pluto algorithm. We

identify certain interesting correlations between the solution of this ILP formulation and its

relaxation. We observe that sub-optimalities that arise due to relaxation manifest as spu-

rious loop skewing transformations that lead to significant loss of performance. In spite of

these sub-optimalities, we observe that the relaxed formulation can be used as a light-weight

check for tileability and existence of communication free loop nests.

Using some results of the relaxed formulation, in this thesis, we propose a framework
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called Pluto-lp-dfp, that decomposes the problem of finding an affine transformation into

three phases, namely, (1) loop permutation and fusion (2) loop scaling and shifting and (3)

loop skewing. At each phase, the framework solves Linear Programming (LP) formulations

instead of ILPs. The decoupled structure of the framework also simplifies the construction of

constraints, thereby leading to significant compile time improvements. The first two phases

interact with each other via valid permutations, which allows loop fusion to be modeled in

presence of loop scaling and shifting transformations. We provide a new data structure

called the Fusion Conflict Graph (FCG) that encodes valid permutations and allows loop fu-

sion to be modeled in presence of loop permutations. A vertex in the FCG corresponds

to a dimension of a statement in the program. An edge is added between two vertices if

the corresponding two dimensions can not be fused and permuted to the outermost level.

We provide a graph coloring heuristic to find valid permutations for every statement in the

program. With a clustering heuristic that groups the vertices of the FCG, we present three

different greedy fusion models, namely, (1) max-fuse, which aims at maximal fusion (2) typed-

fuse, which is parallelism-preserving fusion heuristic (3) hybrid-fuse, which is a combination

of typed-fuse and max-fuse variants. We also provide a characterization of time-iterated

stencil dependence patterns that have tile-wise concurrent start, and employ a different

fusion scheme in such program segments. We compare the performance of Pluto-lp-dfp

framework with the state-of-the-art polyhedral auto-parallelizers namely Pluto, PoCC and

PPCG on benchmarks from PolyBench and NAS parallel benchmark suites. The Pluto-lp-

dfp framework provides improvements of 461×, 1.4×, 2.2× over PoCC, PPCG, and Pluto

respectively in compilation time. The transformed codes were faster than the codes gener-

ated by PoCC, PPCG and an improved version of Pluto by geomean factors of 1.8×, 5.8×

and 7% respectively.



Publications based on this Thesis

• Aravind Acharya, Uday Bondhugula and Albert Cohen, Effective Loop Fusion in Polyhe-

dral Compilation using Fusion Conflict Graphs, in ACM Transactions on Architecture and

Code Optimization (TACO), accepted.

• Aravind Acharya, Uday Bondhugula and Albert Cohen, Polyhedral Auto-transformation

with No Integer Linear Programming. In Proceedings of ACM SIGPLAN Symposium on

Programming Language Design and Implementation (PLDI), Philadelphia, PA USA,

pages 529-542, June 2018.

Other related publications

• Uday Bondhugula, Aravind Acharya and Albert Cohen, The Pluto+ Algorithm: A Prac-

tical Approach for Parallelization and Locality Optimization of Affine Loop Nests. In ACM

Transactions on Programming Languages and Systems (TOPLAS), volume 38, issue 3,

pages 12:1-12:32, April 2016.

• Irshad Pananilath, Aravind Acharya, Vinay Vasista and Uday Bondhugula, An Opti-

mizing Code generator for a Class of Lattice Boltzmann Computations. In ACM Transactions

on Architecture and Code Optimization (TACO), volume 12, issue 2, pages 14:1-14:23,

July 2015.

• Aravind Acharya and Uday Bondhugula, Pluto+: Near-complete Modeling of Affine trans-



Publications based on this Thesis viii

forms for Parallelism and Locality. In proceedings of ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming (PPoPP), San Francisco, CA, USA,

pages 54-64, Jan 2015.

Software based on this thesis

The auto-transformation framework based on this thesis has been integerated with latest

upstream version of Pluto, and is available for download in the following repository:

https://github.com/bondhugula/pluto

https://github.com/bondhugula/pluto




Contents

Acknowledgements i

Abstract v

Publications based on this Thesis vii

Contents x

List of Figures xiv

List of Tables xvi

List of Symbols xvii

1 Introduction 1

1.1 Affine Transformation Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Polyhedral Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Shortcomings of Polyhedral Frameworks . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Large Compilation Times . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Modeling Loop Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 The Pluto-lp-dfp Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12



CONTENTS xi

2 Background 15

2.1 Notation and Background on Polyhedral Compilation . . . . . . . . . . . . . . 15

2.2 The Pluto Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Avoiding the Zero Solution . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Enforcing Linear Independence . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.3 Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.4 Loop Fusion Heuristic in Pluto . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Scalability of the Pluto Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Relaxing Integrality Constraints in the Pluto Algorithm 31

3.1 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Practical Issues in Using Pluto-lp . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Complexity of Pluto-lp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Scaling Rational Solutions to Integral Solutions . . . . . . . . . . . . . . . . . . 42

3.5 Preliminary Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.1 Impact of ILP Solvers and Relaxation on Constraint Solving Times . . 46

4 Pluto-lp-dfp Framework 50

4.1 Overview of the Pluto-lp-dfp Framework . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Valid Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Loop Scaling and Shifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Illustration: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.2 Correctness of Algorithm 2 . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.3 Need for the Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.4 Complexity of Algorithm 2 . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Skewing Post Pass for Permutability . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.1 Illustration of Loop Skewing in Pluto-lp-dfp . . . . . . . . . . . . . . . 65



CONTENTS xii

4.4.2 Soundness and Completeness of the Skewing Phase . . . . . . . . . . . 67

4.4.3 Complexity of the Skewing Phase . . . . . . . . . . . . . . . . . . . . . 68

4.5 Comparison of Transformations Found by Pluto and Pluto-lp-dfp . . . . . . . 69

4.6 Correctness and Complexity of the Pluto-lp-dfp Framework . . . . . . . . . . 70

5 Valid Permutations 72

5.1 Finding Valid Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1.1 Fusion Conflict Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1.2 Construction of the Fusion Conflict Graph . . . . . . . . . . . . . . . . 75

5.1.3 Coloring the Fusion Conflict Graph . . . . . . . . . . . . . . . . . . . . 80

5.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.1 Construction of the FCG with Clustering . . . . . . . . . . . . . . . . . 84

5.2.2 Coloring SCC Clustered FCG . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.3 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Typed Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.1 FCG Construction and Coloring . . . . . . . . . . . . . . . . . . . . . . 92

5.3.2 Stencil Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Hybrid Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.5 Time complexity of Finding Valid Permutations . . . . . . . . . . . . . . . . . 102

6 Pluto-lp-dfp Toolchain 104

6.1 Intra-tile Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Unroll and Jam Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7 Experimental Evaluation 111

7.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2 Benchmark Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.3 Impact on Auto-transformation Times . . . . . . . . . . . . . . . . . . . . . . . 114



CONTENTS xiii

7.3.1 Breakdown of Auto-transformation Times in Pluto-lp-dfp . . . . . . . 117

7.3.2 Impact of Clustering on Auto-transformation times of Pluto-lp-dfp . . 118

7.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.5 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8 Related Work 128

8.1 Scalability of Polyhedral Frameworks . . . . . . . . . . . . . . . . . . . . . . . 128

8.2 Related Work on Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

9 Conclusions and Future Work 137

9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Bibliography 142



List of Figures

2.1 Heat-1d example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Loop skewing in heat-1d representing the transformation (t, i)→ (t, t + i). . . 18

2.3 Valid loop fusion transformations for a code snippet from the gemver kernel

of PolyBench benchmark suite. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Pluto’s ILP formulation for the outermost hyperplane of heat-1d kernel. . . . 27

3.1 Constraints from the heat-1d stencil benchmark . . . . . . . . . . . . . . . . . 38

4.1 Pluto-lp-dfp stages/components. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Example permutations for a code snippet from gemver benchmark of the

PolyBench benchmark suite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Finding loop scaling and shifting factors from a valid permutation. . . . . . . 56

4.4 Tiling validity constraints and dependence distance bounding constraints for

code shown in Figure 4.3a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Need for cost function in the scaling and shifting phase. . . . . . . . . . . . . . 61

4.6 Skewing in heat-2d benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Our approach to find a valid permutation. . . . . . . . . . . . . . . . . . . . . . 74

5.2 FCG construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Coloring the FCG of the program shown in Figure 5.2 using Algorithm 5. . . 82

5.4 Transformed code for the input program shown in Figure 5.2a. . . . . . . . . . 83



LIST OF FIGURES xv

5.5 Greedy clustering heuristic in fdtd-2d. . . . . . . . . . . . . . . . . . . . . . . . 88

5.6 Fusion resulting in loss of parallelism with Algorithm 6 and Pluto. . . . . . . 92

5.7 Typed fusion in cases where parallelism is inhibited by loop shifting. . . . . . 95

5.8 Typed fusion in multi-statement stencils. . . . . . . . . . . . . . . . . . . . . . 96

5.9 Typed fusion in gemver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.10 Transformation of code snippet from gemver kernel with hybrid fusion. . . . 102

6.1 Pluto-lp-dfp toolchain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Intra-tile optimizations in 2mm benchmark from PolyBench. . . . . . . . . . . 108

7.1 Breakdown of auto-transformation times in Pluto-lp-dfp framework with hybrid-

fuse model for selected benchmarks from NAS benchmarks suite. . . . . . . . 118

7.2 Normalized FCG construction and coloring times. . . . . . . . . . . . . . . . . 119

7.3 Speedup of different auto-transformation frameworks on stencil benchmarks

from PolyBench benchmark suite. . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.4 Speedup of different auto-transformation frameworks on selected linear alge-

bra benchmarks from PolyBench benchmark suite. . . . . . . . . . . . . . . . . 124

7.5 Benchmarks from PolyBench on which we observe performance degradation. 125



List of Tables

3.1 Constraint solving times for pluto-ilp with different solvers. . . . . . . . . . . . 47

7.1 Experimental setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2 Compilation (automatic transformation) times in seconds. Cases in which

auto-transformation framework did not terminate in 10 hours or ran out of

memory are marked with a ’-’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.3 Execution times on 16 cores (in seconds). Cases in which auto-transformation

frameworks did not find a transformation in 10 hours or ran out of memory

are marked with a ’-’. For benchmarks marked with a ’*’, PPCG generated

codes were compiled with gcc-8. . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.1 Summary of various fusion heuristics available in polyhedral auto-transformation

frameworks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134



List of Symbols

IS Iteration space of a statement S

IS Dimensionality of a statement S

� Lexicographically greater than

G〈GV , GE〉 Data Dependence graph

De Dependence polyhedron for the dependence e

Z Set of Integers

N Set of Natural numbers

φi
S Hyperplane at a level i for a statement S

cS
ij Transformation coefficient corresponding to dimension

j at a level i for a statement S

TS Affine transformation for a statement S

zi Optimal solution of Pluto ILP

zr Optimal solution of Pluto LP

P Set of program parameters

C Set of connected components in the DDG

I Convex-Independent set

F〈FV , FE〉 Fusion Conflict Graph

Si Vertex of the FCG corresponding to a dimension i of a

statement S



List of Symbols xviii

P A permutation matrix

ψ Set of constraints

S Set of statements or set of SCCs in the DDG, depending

on the context



Chapter 1

Introduction

Computer architectures have evolved significantly in the past two decades. They have mul-

tiple processing cores on chip, and deeper memory hierarchies to meet the increasing de-

mands of complex applications. These cores also exploit parallelism available due to a sin-

gle instruction being executed on multiple data elements (SIMD) using vector / SIMD units.

Multiple cores on chip and SIMD units cater to the increasing compute demand of programs.

The deeper memory hierarchies have large caches to exploit the spatial and temporal behav-

ior of programs with high bandwidth requirements. Programs from various domains like

scientific computing, image processing, machine learning among many others try to exploit

maximum performance from these cores.

In the recent times, the clock frequency of processors is not increasing significantly and

the number of transistors on chip are not doubling every two years. In other words, free

performance improvements that were ensured due to enhancements in processor technol-

ogy, have diminished. Hence, programs have to be optimized to efficiently use to on chip

resources. However, manually optimizing programs is hard and error prone. Secondly,

evolving architectures and algorithms place a significant burden on programmers to effi-

ciently optimize their programs for every new architecture. Optimized libraries like Intel
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MKL [MKL], Intel DNN MKL [Int], cuBLAS [cuB], cuDNN [cuD] reduce this burden, a bit,

by providing optimized implementations of commonly used operations for vendor specific

architecture. However, in these cases, the providers of these optimized libraries bear the

burden of writing optimized implementations for new architectures. Moreover, optimized

library routines may not be available for new algorithms, in which case, the programmer has

manually write an optimized implementation to achieve high performance. Hence, there is

a need for optimized compilers, both in the areas of domain-specific and general-purpose

compilation. These compilers should be able to parallelize programs and optimize them to

exploit the available on chip resources. In this thesis, we focus on general-purpose compil-

ers.

1.1 Affine Transformation Frameworks

It is well known that most of time is spent in executing a small fragment of code. These small

fragments typically appear in loop nests of programs. Hence, optimizing these loop nests is

critical in achieving high performance. A common practice is to write a sequential program

and then manually parallelize the loop nests in the program. Programming models like

OpenMP, which are supported by most modern day general-purpose compilers like GCC,

ICC, LLVM, provide pragmas that can be used to annotate the parallel loops (or parallel sec-

tions of code) and parallelization is actually done by the compiler. However, this approach

may not be feasible in many cases, where detection of parallel loops may not be manually

possible in the first place. Secondly, there many be opportunities for efficiently parallelizing

the loop nests after performing certain loop transformations. Manually performing these

optimizations is hard and error prone, and hence, compilers that find loop transformations

to efficiently parallelize and optimize programs are essential.

Automatic parallelization frameworks have gained significant interests in recent times as

they require no programmer effort in the context of parallelization. These frameworks find
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loop transformations that result in parallel loops whenever possible and generate parallel

code automatically. These frameworks ensure that the semantics of the transformed pro-

gram is identical to the semantics of the original program, thereby providing a correctness

guarantee. Such complex program transformations are easier to be applied at a high level

the information about loop structure is available. Hence intermediate representations like

MLIR [MLI19], nGraph [CBB+18], have been been proposed where loop and data-layout

transformations can be applied seamlessly on a single common infrastructure. In this thesis,

we consider a class of optimization frameworks that focus on optimization of affine loop nests

for performance on multicore CPUs.

Affine transformation frameworks target optimization of affine loop nests aka. Static Con-

trol Parts (SCoPs) in the program. A loop nest is called affine, if the loop bounds and ar-

ray access functions are affine functions of loop iterator variables and program parameters.

These transformation frameworks can model a rich class of loop reorderings like loop per-

mutation, loop skewing, loop shifting, loop scaling, loop tiling (blocking) and combinations

of these. Auto-transformation frameworks that were proposed initially focused on finding

legal unimodular affine loop transformations [ST92, Ban94, WL91], however they still lacked

the ability to model the complete space of affine loop transformations. For example diamond

tiling transformation for stencils [BPB12], loop scaling transformations that improve locality

of image processing pipelines that contain up-sampling and down-sampling operations, can

not be modeled by these unimodular transformation frameworks.

1.1.1 Polyhedral Model

The polyhedral model allows modeling of complex affine transformations using an elegant

mathematical abstraction of affine loop nests. It reasons about ordering of dynamic state-

ment instances in a well defined integer space. Dependences between two iterations are

captured using a dependence polyhedra, which can be viewed as a conjunction of constraints.

This mathematical representation of dependences in the polyhedral model, allows both intra
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and inter-statement dependences to be modeled precisely. Polyhedral auto-transformation

frameworks that find loop transformations ensure that the dependence relations (a.k.a con-

straints representing the dependence polyhedra) are not violated. A loop transformation in

the polyhedral model can be viewed as an affine transformation of the iteration space of a

statement, which is the space of dynamic instances of a statement. It also allows to define

properties of loops in the transformed space, that enables to efficiently find parallel loops,

perform loop tiling etc., among many other loop optimizations. Moreover, affine loop trans-

formations preserve collinearity of points in space. This allows automatic code generators

like CLooG [Clo04], ISL [Ver13], OMEGA [KMP+96], to generate code from the abstract rep-

resentation after transformation using techniques that traverse the transformed space in a

specific order. Thus the ability polyhedral model to visualize loop transformations at a very

abstract level, efficiently model the space of affine transformations and generate code from

the abstract representation makes it a very powerful tool for finding efficient loop transfor-

mations.

In the polyhedral model, dependences in an affine loop nest are represented using inte-

ger polyhedra, which can also be viewed as a conjunction of constraints. These constraints

are Presburger relations between source and target iterations. A legal transformation must

satisfy the dependences in the transformed space, which are also represented using a set

of linear constraints. Note that, there may exist many possible legal transformations and a

polyhedral compiler must choose one of these. A large number of polyhedral loop optimiz-

ers with different cost models have been proposed in the literature [Fea92a, Fea92b, LL98,

LCL99, BBK+08, VMBL12, KVS+13]. These algorithms find affine transformations that ei-

ther maximize parallelism, maximize parallelism and locality while considering other crite-

ria, or minimize latency and have been widely used in various research compilers and tools.

These algorithms typically model their optimization criteria as the objective function of an

Integer Linear Programming (ILP) formulation. The constraints in these ILP formulations
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ensure that any dependence in the program is not violated in the transformed space. Thus,

the transformations found by polyhedral auto-transformation frameworks are guaranteed

to be correct by construction.

The auto-transformation algorithms of Pluto [BHRS08], Pluto+ [BAC16], ISL [Ver10], and

R-Stream [VMBL12, MVW+11] are among the state-of-the-art algorithms to find affine trans-

formations. These algorithms use an ILP-based framework driven by an objective that en-

codes dependence distance minimization among other criteria. This objective intuitively trans-

lates to maximizing locality by placing dependent iterations as close to each other as pos-

sible. Pluto finds transformation hyperplanes level by level from outermost to innermost

while looking for tileable bands. This process ensures that communication-free loop nests

are obtained whenever they exist, without any changes to the cost model. Once the transfor-

mation is found by the Pluto algorithm, the transformed loop nest is tiled with rectangular

tiles, there by, improving the cache behavior. Alternate cost models for finding affine trans-

formations have been used by Kong et al. [KVS+13], Vasilache et al. [VMBL12], and in the

ISL’s scheduler. Efforts have been made to incorporate these auto-transformation algorithms

in general-purpose compilers like Graphite in GCC [PCB+06] and Polly in LLVM [GGL12].

However, Graphite lacks a complete end-to-end complex auto-transformation algorithm like

Pluto, where as, Polly in LLVM remains as an optional pass during compilation. This is be-

cause these auto-transformation algorithms have high compilation times, which we describe

in the next section.

1.2 Shortcomings of Polyhedral Frameworks

In this section we describe the shortcomings of the state-of-the-art polyhedral automatic

transformation frameworks.
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1.2.1 Large Compilation Times

Polyhedral auto-transformation frameworks rely on ILP formulations to find efficient loop

transformations. The complexity of finding a loop transformation is exponential in the num-

ber of variables seen by the ILP solver. These frameworks have typically relied on Integer

Linear Programming (ILP) formulations instead of Linear Programming (LP) formulations

for one or more of the following reasons:

• for the program sizes that were of interest for initial exploration, ILP-based models

were reasonably fast (for a few statements to at most a few tens of statements),

• code generators have supported integer coefficients in the schedules (although it was

an implementation issue to support rationals), and

• constraints and objectives used to model and obtain transformations were only mean-

ingful for integer coefficients.

Hence, using linear programming with exact real or floating-point arithmetic has been largely

unexplored. In recent years, the issue of scalability with ILP-based models has become quite

evident.

The ILP formulation in Pluto does not scale to affine loop nests with hundreds of loops,

resulting in significant time to find transformations. For example, optimizing a hotspot of

the LU benchmark which has 108 statements, Pluto takes over 8 hours to find a transforma-

tion automatically. Mehta et al. [MY15] concluded that, the bottlenecks in the Pluto algo-

rithm were primarily due to the ILP itself and the complex construction of constraints in the

ILP formulation. The number of variables in the ILP formulation in Pluto is approximately

equal to the sum of the number of loops surrounding a statement. This makes the Pluto

algorithm exponential in the number of statements in the program. Secondly, the Pluto algo-

rithm enforces the transformation hyperplanes of a statement to be linearly independent of
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each other, in order to provide certain correctness guarantees of the transformed space. The

construction of linear independence constraints is the most time consuming step in the Pluto

algorithm. There have been recent works that involve statement clustering [Bag15, MY15] to

reduce the number statements seen by auto-transformation framework. These approaches

not only reduce the number of variables in the ILP solver, but also, reduce the number of

linear independence constraints to be constructed. However, these approaches tend to post-

pone the problem of scalability rather than completely avoiding the ILP formulation. To the

best of our knowledge, no effort has yet been made to directly address this scalability issue,

without using other techniques that may reduce the number of statements or loops.

1.2.2 Modeling Loop Fusion

Polyhedral affine transformation frameworks model a rich class of complex affine loop re-

orderings. These frameworks incorporate various cost models to optimize programs for

various architectures using the objective function in the ILP formulation. Although complex

loop transformations can be modeled seamlessly in these frameworks, they lack the infras-

tructure to efficiently model loop fusion without significant compile-time overheads. For

example, the nature of the ILP formulation in Pluto along with its objective which is to im-

prove locality, naturally favors fusion even at the expense of loss of parallelism. Heuristics

used by the Pluto algorithm for loop distribution are adhoc and loop nests are distributed

only when the ILP formulation in the Pluto algorithm fails to find a solution. Efforts have

been made to systematically incorporate parallelism preserving fusion heuristics in the Pluto

algorithm, but they are achieved at the expense of solving more number of ILP formulation,

which directly translates to increase in compilation time. On the other hand, older and tradi-

tional loop transformation approaches that do not rely on the polyhedral model, incorporate

efficient loop fusion heuristics [KM93, SG91, Ken00, MS97, KM92]. The primary objective of

these loop fusion models is to maximize maximize locality and parallelism. However, these

approaches are primarily restricted to perfect loop nests and rely on direction or distance
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vectors. Modeling dependences via polyhedral dependences are more precise than direc-

tion vectors, and hence, these frameworks lack the ability to precisely model loop trans-

formations as well, and often make conservative approximations. Therefore, a polyhedral

auto-transformation framework to efficiently model fusion of imperfectly nested loops in

conjunction with transformations such as loop permutation, scaling, and shifting, without

significant compile time overhead has been missing.

The focus of this thesis to provide a polyhedral auto-transformation framework that ad-

dresses the scalability issues stemming from the ILP formulation itself and also incorpo-

rate loop fusion efficiently alongside other affine loop transformations. The transformation

framework is expected to find affine loop transformations quickly, with significant improve-

ments in auto-transformation time over the state-of-the-art polyhedral auto-transformation

frameworks like Pluto, PPCG and PoCC. Moreover, the improvements in compilation time

will only be meaningful if the performance of the generated code is on at least on par with

(and preferably better than) the performance of codes generated by these compilers. Hence,

the polyhedral auto-transformation framework that we present in this thesis aims at finding

efficient loop transformations, while scaling to loop nests with tens to hundereds of state-

ments.

1.3 The Pluto-lp-dfp Framework

In this thesis, we first explore an approach that does not rely on ILP to find loop transfor-

mations automatically. We first study the relaxation of integer constraints on transformation

coefficients of polyhedral statements in the Pluto algorithm, as it is used in some form or the

other in state-of-the-art polyhedral auto-transformation frameworks. This relaxation results

in a Linear Program (LP) that is polynomial in the sum of the number of loops surrounding

each statement in the program. In the rest of this chapter, a routine or a framework is said to

a polynomial time complexity when the time complexity of the routine or the framework is
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polynomial in the sum of the number of loops surrounding each statement in the program.

Code generators and analytical models assume the affine schedules to map to an in-

teger space, we need a systematic solution to derive a feasible (and good) transformation

with integer coefficients from the result of the relaxed LP formulation. We first observe

that the solutions of the relaxed ILP formulation in Pluto are rational and these rational

solutions obtained by the LP formulation can be scaled to integers without violating any

dependences, and without interfering with the objective function, albeit with some imple-

mentation caveats. We identify connections between the relaxed LP formulation and the

original ILP in the Pluto algorithm. In some cases, the relaxed formulation may yield sub-

optimal solutions, which we observe are associated with unnecessary skewing. However,

in spite of this sub-optimality, we show that the relaxation will always succeed in finding

communication-free parallel loops whenever they exist. We also note that the relaxed ap-

proach can be used for detection of tileable loop nests. We use these properties extensively

in designing the new auto-transformation framework.

While the Pluto-algorithm uses an ILP to model the entire space of affine loop transfor-

mations, the Pluto-lp-dfp framework breaks the auto-transformation phase in the Pluto-lp-

dfp framework into three components namely,

• loop permutation and fusion,

• loop scaling and shifting,

• loop skewing.

The first component looks for valid permutations of the loop nest. Using valid permutations,

we model loop fusion in presence of loop scaling and loop shifting transformations. The

loop scaling and shifting factors for the valid permutation found in the first phase are found

in the second phase of the Pluto-lp-dfp framework. The last phase introduces loop skewing

if and only if loop skewing enables loop tiling. Each stage in this decoupled formulation uses
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an LP formulation instead of an ILP. Thus, the time complexity of the auto-transformation

phase in the Pluto-lp-dfp framework is polynomial in the number of statements, provided

valid permutations in the first phase are found in polynomial time. Apart from relying on

LP formulations for auto-transformation, the decoupling in Pluto-lp-dfp framework also has

the following advantages:

• it overcomes the sub-optimalities that arise due to relaxation of the ILP formulation in

the Pluto algorithm that manifested as spurious loop skewing transformations.

• it simplifies the construction of constraints in the Pluto algorithm. More precisely,

it avoids the construction of linear independence constraints because linear indepen-

dence of loop transformations is encoded by the decoupling itself — the nature of the

transformations found at each stage ensure linear independence of affine loop trans-

formations.

The first phase of the Pluto-lp-dfp framework makes decisions on loop fusion in ad-

dition to finding loop permutations. As identified by Pouchet et al. [PBB+10], loop fu-

sion has to performed efficiently in the initial stages, which in turn enables efficient loop

transformations to be found in the later for each fused loop nest. Because of this, the

auto-transformation framework should ideally model all possible valid fusion opportuni-

ties. Then, cost models can be incorporated to find a good loop fusion strategy among

various valid fusion combinations. With this objective, we design a data structure called

the Fusion Conflict Graph (FCG) to find valid loop permutations while modeling loop fusion.

The vertices in the FCG correspond to dimensions of statements, which intuitively repre-

sents the loops surrounding a statement in the program. There exists an edge between two

vertices Si
1 and Sj

2 if fusing the i loop of S1 with the j loop of S2 violates some dependence

whose source and target statements are either S1 or S2. We identify that a set of vertices that

form a convex independent set in the fusion conflict graph represents valid permutations of
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the program. For the construction of the FCG, we rely on LP formulations. We then propose

a statement clustering heuristic to cluster the vertices of the FCG. For the clustered FCG, we

describe a greedy convex coloring routine that colors the vertices of the FCG is a specific order

to find convex independent sets. Thus, using the FCG, we model loop fusion in presence of

loop permutations, loop scaling and loop shifting transformations.

Incorporating parallelism preserving loop fusion heuristics in polyhedral automatic trans-

formation frameworks, without increase in compilation time, has been a challenge. We

incorporate two parallelism preserving loop fusion heuristics called typed-fuse and hybrid-

fuse. These parallelism preserving heuristics are incorporated by adding parallelism prevent-

ing edges in the FCG. The typed fuse variant that we describe is similar to the loop fusion

model described by Kennedy and McKinley [KM93]. This fusion model does not fuse loops

whenever there is loss of parallelism. The hybrid fuse model is the default fusion model in

Pluto-lp-dfp that performs typed fusion at outer levels. At an inner level, in cases where

parallel loops have been found at some outer level, the fusion heuristic ignores parallelism

preserving edges in the FCG and greedily fuses as many statements as possible in order

to improve locality. However, these fusion heuristics do not perform well in the case pro-

grams with time-iterated stencil dependence patterns. Hence, we provide a characterization

of stencil dependence patterns based on existence of tile-wise concurrent start, absence of

communication free parallel loop nests and presence of near-neighbor dependences. We

use a different heuristic in such program segments, so that the transformations that allow

tile-wise concurrent start can be obtained.

We evaluated the performance of the proposed Pluto-lp-dfp framework on benchmarks

for PolyBench [Pol10] and NAS parallel benchmark [NPB11] suites. Benchmarks from Poly-

Bench have been widely used for evaluating the performance of Polyhedral auto-transformation

frameworks and hence, the goal would be to perform at least on par with the state-of-the-

art polyhedral auto-parallelizers. Selected benchmarks from NAS parallel benchmark suite
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have been previously studied by Mehta et al. [MY15] to evaluate the scalability of polyhedral

auto-transformation frameworks. In these benchmarks, our goal was to achieve significant

improvements in compilation time. From our experiments on benchmarks from NAS bench-

mark suite, we observe that Pluto-lp-dfp is faster than Pluto by a factor of 234×. On these

benchmarks, PoCC+ [PoC19], which is the implementation of Kong et al. [KP19], failed to

find a transformation in a reasonable amount of time. Even on smaller benchmarks from

PolyBench suite, Pluto-lp-dfp was faster PoCC+ by a factor of 461×. We also observe that

incorporating parallelism-preserving loop fusion heuristics incur an additional overhead of

≈ 5.2%, demonstrating the effectiveness of the FCG in modeling loop fusion. In addition to

these improvements in compilation time, we also observe that the codes generated by Pluto-

lp-dfp were faster an improved version of Pluto by 7%, with a maximum performance im-

provement of 2.6×, on benchmarks from PolyBench suite. Pluto-lp-dfp also outperformed

PoCC+ by 1.8× in terms performance of generated codes.

1.4 Contributions of the Thesis

The contributions of the thesis are as follows:

1. To the best of our knowledge, we are the first to provide an LP-based approach for

polyhedral compilation of loop nests, capable of determining schedules competitive

with the state-of-the-art optimizers.

2. We identify correlations between the solutions of the ILP and the relaxed LP formu-

lations of Pluto and demonstrate that the relaxed formulation can be used as a light-

weight check for tileability and communication free parallel loops.

3. We propose a new, polynomial time (in the number of statements), auto-transformation

framework, called Pluto-lp-dfp, that decomposes the affine scheduling problem into

loop fusion and permutation, loop scaling and shifting, and loop skewing components.
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4. We present the fusion conflict graph and its application to the embedding of traditional

loop fusion models into the Pluto algorithm for automatically finding profitable affine

loop transformations.

5. We introduce a clustering heuristic to group the vertices of the FCG. Using the clus-

tered FCG, we implement a simple greedy polynomial time loop fusion heuristic called

max-fuse. This clustering also enables to find loop permutations in polynomial time.

6. We also incorporate parallelism-preserving loop fusion heuristics to work in tandem

with loop permutation, loop scaling and loop shifting transformations in a polyhedral

auto-transformation framework.

7. We provide a characterization for time-iterated stencils that have tile-wise concurrent

start and apply a different fusion heuristic for program segments that contain these

stencil patterns as a part of a single auto-transformation algorithm.

8. Our fusion model, when implemented in the Pluto-lp-dfp framework, outperforms the

current state-of-the-art polyhedral transformation frameworks both in terms of com-

pilation time and performance of transformed codes.

The rest of this thesis is organized as follows: Chapter 2 provides the necessary back-

ground on polyhedral compilation and the ILP formulation in Pluto. Chapter 3 provides

both theoretical and experimental results surrounding the relaxation of the ILP formula-

tion in the Pluto algorithm. In Chapter 4, the details of the Pluto-lp-dfp framework is de-

scribed by treating the first phase of the Pluto-lp-dfp framework as a blackbox that pro-

vides a permutation. Our approach to find loop permutations using the fusion conflict

graph is provided in Chapter 5. This chapter also describes the clustering heuristic and

details the realization of parallelism-preserving loop fusion heuristics in the Pluto-lp-dfp

framework. Chapter 6 provides the end-to-end workflow of the Pluto-lp-dfp framework.



1.4. Contributions of the Thesis 14

Our experiments results that demonstrate Pluto-lp-dfp outperforms state-of-the-art poly-

hedral auto-parallelizers with respect to both compilation time and performance of trans-

formed programs, are provided Chapter 7. In Chapter 8, we provide details on previous

approaches that have addressed the scalability issue in polyhedral compilation. Along with

these, approaches that have tried to model loop fusion in polyhedral auto-transformation

frameworks are also described. Finally, Chapter 9 presents the conclusions of the thesis and

provides insight into some future directions.



Chapter 2

Background

In this chapter, we introduce notation and terminology used in the thesis. We provide back-

ground on affine transformations, polyhedral compilation and the current ILP formulation

used in Pluto.

2.1 Notation and Background on Polyhedral Compilation

A polyhedral compiler framework has a statement-centric view of the program. Each state-

ment in an iteration space is modeled with integer sets called index sets or the domain of

the statement. Let IS denote the index set of a statement S. Consider the example program

shown in Figure 2.1a. The index set IS of the only statement in the loop nest is given by,

IS = {[t, i] : 0 ≤ t ≤ T, 0 ≤ i ≤ N}, (2.1)

where i and j are the original loop iterator variables of the statement S, and N and T are

program parameters. These index sets represent the set of statement instances that are exe-

cuted by the program. A dynamic instance of the statement S is given by the iteration vector

of S. An iteration vector~is of S has mS components, each corresponding to a loop surround-

ing the statement S, from outermost to innermost. The number of components in ~iS is also
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for(t = 0; t < T+1; t++) {
for(i = 1; i < N + 1; i++) {

A[(t+1)%2][i]=0.25*(A[t%2][i+1]-
2.0*A[t%2][i]+A[t%2][i-1]);

}
}

(a) Heat-1d kernel.

j1 2 3 4 . . . N

t

0

1

2

3

...
T

(b) Iteration space.

Figure 2.1: Heat-1d example.

called the dimensionality of the statement S. Iteration vectors for the heat-1d kernel are rep-

resented as filled circles in Figure 2.1b. Given two iteration vectors~i and ~j we say that~i is

lexicographically greater than~j, denoted by~i �~j, if the following condition holds:

(i0, i1, . . . , in) � j0, j1, . . . , jn ⇐⇒ (i0 > j0) ∨ (i0 = j0 ∧ (i1, . . . , in) � (j1, . . . , jn)).

Statement instances given by these iteration vectors are executed according to their lexi-

cographic ordering. For the heat 1-d example, the lexicographic ordering of the iteration

vectors corresponds to traversing the iteration space shown in Figure 2.1b from left to right

and bottom to top, which corresponds to iterations defined by t and i loops shown in Fig-

ure 2.1a. Programs that we consider have affine loop nests, a.k.a, static control paths (SCoPs),

i.e, loop bounds and array access functions are affine combinations of the outer loop iterator

variables and program parameters. A loop around a statement S corresponds to hyperplane

in the iteration space of S.

Two statements S and T are said to be data dependent if there are instances ~iS and ~iT such

that, ~iS and ~iT access the same location and one of the accesses is a write. A Data Dependence
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Graph (DDG), G〈GV , GE〉, is a graph whose vertices are the set of statements in the pro-

gram. A data dependence between two statements in the program corresponds to an edge in

the DDG. Data dependences are precisely represented in a polyhedral auto-transformation

framework using dependence polyhedra which are a conjunction of constraints. These con-

straints can also be viewed as a relation between source and target iterations. These relations

are affine combinations of loop iterator variables of the source and target iterations, program

parameters which are symbols and do not change in the polyhedral part of the program be-

ing analyzed and existentially quantified variables. If De is the dependence polyhedron

associated with an edge e of the data dependence graph, then an iteration~t of a statement

T is dependent on an iteration~s of a statement S if and only if 〈~s,~t〉 ∈ De. The union of all

dependence polyhedra represents the set of all dependences in the program. The set of all

dependences for the heat-1d program shown in Figure 2.1a is given by three dependence

vectors (1, 0), (1, 1) and (1,−1), which are represented using arrows in Figure 2.1b.

An affine transformation in the polyhedral model is an affine combination of the loop

iterators and program parameters. A one-dimensional affine transformation φS for the state-

ment S can expressed as:

φS(~iS) = (c1, c2, . . . , cmS).(~iS) + (d1, . . . dp).(~p) + c0,

c0, c1, . . . cmS , d1, . . . dp ∈ Z.

Each statement has its own set of ci’s and di’s and are called transformation coefficients

corresponding to the loop iterator variables and the program parameters respectively. A

sequence of φ’s for each statement represents a multi-dimensional affine transformation.
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Figure 2.2: Loop skewing in heat-1d representing the transformation (t, i)→ (t, t + i).

Formally, a multi-dimensional affine transformation for a statement S can be defined as:

TS(~i) =



φ1
S(
~i)

φ2
S(
~i)

...

φd
S(
~i)


=



cS
11 cS

12 . . . cS
1mS

cS
21 cS

22 . . . cS
2mS

...
... . . .

...

cS
d1 cS

d2 . . . cS
dmS


~iS +



cS
10

cS
20
...

cS
d0


(2.2)

where each row of TS represents a one dimensional affine transformation and d ≥ mS. The

matrix of transformation coefficients is called the transformation matrix. Each row i of the

transformation matrix is referred to as the transformation at a level i. A transformation at a

level i for a statement S can also be viewed as a hyperplane at the level i which is represented

using the notation φi
S or ~hi

S. For simplicity, we drop the subscript S or the superscript i in

places where the meaning is clear from the context. Note that, the total number of rows in

the transformation matrix can be larger than the dimensionality of the statement. However,

the rank of the transformation matrix must have a full column rank in order to provide

correctness guarantees of the transformed space.

Consider the iteration space of heat-1d stencil shown in Figure 2.1b. The iteration space

has poor cache locality because when the value of N is very large, the values written at t will
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be evicted from the cache and will not be available in cache for reads during the iteration

t+ 1 resulting in significant loss. Loop tiling (blocking) is a technique which is used to improve

locality in loop nests. Rectangular tiling can not be done on the above loop nest because

dependence vectors have both positive and negative components. However, if we skew the

loop nest with the transformation:

T(i, j) =

1 0

1 1

 ·
i

j

+

0

0

 , (2.3)

every dependence will have non-negative components as shown in Figure 2.2, and hence,

the loop nest can be tiled. The above transformation, at the outermost level, corresponds

to the affine transformation, in which, the transformation coefficient c11 = 1, c12 = 0 and

c10 = 0. At the second level, the transformation coefficient c21 = 1, c22 = 1, and c20 = 0,

representing a loop skewing transformation. While referring the transformation at a given

level we omit the first number in the subscript. We use the notation TS(t, i) → (t, t + i),

as a shorthand, to represent the transformation shown in Equation 2.3. The transformed

iteration space is shown in Figure 2.2.

Modeling loop distribution: Loop distribution in polyhedral frameworks is modeled us-

ing scalar hyperplanes. A hyperplane at a level i for a statement S is said to be scalar, if every

transformation coefficient for the statement S, cS
i is zero, for all 1 ≤ i ≤ mS. This corresponds

to trivial hyperplane for the statement S at a level i or a constant function. Therefore, the

dimensionality of the transformation matrix TS given by d in Equation 2.2, can be greater

than mS, and is used to model loop distributions at various levels. Note that, the value of cS
0

can be different for different statements. The statements that are distributed have different

values of cS
0 when compared with each other and the ordering of statements after distribu-

tion is given by the increasing order of corresponding c0s. Any transformation with any

possible nesting structure of the loop nest can be represented with 2× mS + 1 rows in the
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for(i=0; i<N; i++)
for(j=0; j<N; j++)

A[i][j] = A[i][j] + u1[i]*v1[j] + u2[i]*v2[j];

for(i=0; i<N; i++)
for(j=0; j<N; j++)

x[i] = x[i] + beta* A[j][i]*y[j];

(a) Gemver Code snippet from PolyBench kernel.

TS1(i, j)→ (0, i, j)
TS2(i, j)→ (0, i, j)

(b) Transformation repre-
senting full distribution.

for(i=0; i<N; i++) {
for(j=0; j<N; j++)

A[j][i] = A[j][i] + u1[i]*v1[j] + u2[i]*v2[j];

for(j=0; j<N; j++)
x[i] = x[i] + beta* A[j][i]*y[j];

}

(c) Distribution at level 1.

TS1(i, j)→ (j, 0, i)
TS2(i, j)→ (i, 1, j)

(d) Transformation for loop
distribution at level 1.

for(i=0; i<N; i++)
for(j=0; j<N; j++) {

A[j][i] = A[j][i] + u1[i]*v1[j] + u2[i]*v2[j];
x[i] = x[i] + beta* A[j][i]*y[j];

}

(e) Perfect loop nest.

TS1(i, j)→ (j, i, 0)
TS2(i, j)→ (i, j, 1)

(f) Transformation for full
fusion.

Figure 2.3: Valid loop fusion transformations for a code snippet from the gemver kernel of
PolyBench benchmark suite.

transformation matrix. Figure 2.3 provides an example program and few valid transforma-

tions illustrating fusion at different levels.

Iterations in the transformed space are executed in the lexicographic order. Hence, loop

distribution using scalar hyperplanes naturally models this ordering. For example, the

transformation shown in Figure 2.3b, indicates that all iteration of S1 should be executed

before the first instance of S2, which precisely models distribution of loops surrounding

statements S1 and S2 at the outermost level.

Definition 2.1 (Dependence satisfaction) A dependence from a statement Si to a statement Sj rep-

resented by an edge e in the data dependence graph, is satisfied at a level ` if and only if ` meets the
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condition

∀k.1 ≤ k ≤ `− 1, φk
Sj
(~t)− φk

Si
(~s) = 0∧ φ`

Sj
(~t)− φ`

Si
(~s) ≥ 1, 〈~s,~t〉 ∈ De,

where De represents the dependence polyhedron associated with the edge e.

Intuitively, a dependence d is satisfied at a level `, if ` is the first level in the transformation

that distinguishes the source and the target iterations of the dependence d.

Definition 2.2 (Legal transformation) A multi-dimensional affine loop transformation is said to be

legal or correct, if and only if

TSs(~t)− TSj(~s) �~0, 〈~s,~t〉 ∈ De∀e ∈ GE

Informally, a transformation is legal if all the dependences in the transformed space are

lexicographically positive. In other words, if a dependence is lexicographically negative in

the transformed space, then the transformation is said to violate a dependence.

Definition 2.3 (Outer Parallel loop) A transformation at a level ` is said to be parallel if and only if

φ`
Sj
(~t)− φ`

Si
(~s) = 0, 〈~s,~t〉 ∈ De, ∀e ∈ GE.

An outer parallel loop is such that, if it is placed at the outermost level and parallelized, all

the dependences are satisfied at the inner levels and the resulting loop nest is communication

free. Hence, a loop nest with outer parallel loop is called as a communication free loop nest.

A loop at a level l is said to be inner parallel if and only if

φ`
Sj
(~t)− φ`

Si
(~s) = 0, 〈~s,~t〉 ∈ De,
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were De represents the dependence polyhedron of an edge e corresponding to any depen-

dence that is not satisfied till level `− 1.

Definition 2.4 (Permutable Band) Transformation hyperplanes at levels l, l + 1, . . . , l + n form a

permutable band if they satisfy the condition:

∀k.l ≤ k ≤ l + n, φk
Sj
(~t)− φk

Si
(~s) ≥ 0, 〈~s,~t〉 ∈ De,

where De represents the dependence polyhedron of a dependence that is unsatisfied till level l − 1.

It is easy to see that loops that form a permutable band can be permuted among themselves.

If all the levels in the transformation form a permutable band, then the loop nest is said to

be fully permutable. A fully permutable loop nest can be rectangluarly tiled. In the rest of

this thesis, we refer to rectangular tiling as tiling of the loop nest. For the example shown

in Figure 2.1, the transformation (t, i) → (t, t + i) satisfies all dependences at the outermost

level and the inner loop is parallel. The above transformation yields a fully permutable loop

nest, and hence, the loop nest can be tiled. The tiled iteration space is shown in Figure 2.2.

The goal of polyhedral auto-transformation frameworks is to find the transformation ma-

trix, in particular, the transformation coefficients for each level, for every statement in the

program. Many affine loop transformation frameworks have been proposed in literature

with various objectives. These objectives include maximizing parallelism, locality, minimiz-

ing latency along with other factors. In the next section, we will discuss the details of the

Pluto algorithm [BHRS08] which has been used in some form or the other in many state-of-

the-art affine transformation frameworks like LLVM-Polly, ISL and PPCG.

2.2 The Pluto Algorithm

Pluto [BHRS08, BBK+08] is a source-to-source, polyhedral auto-transformation tool that op-

timizes affine loop nests in the input program, by finding affine loop transformations that
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maximize locality and parallelism. Given the index sets of statements in the program, and

dependences in the form of dependence polyhedra, the Pluto algorithm iteratively finds lin-

early independent hyperplanes. The hyperplanes found, try to minimize the dependence

distance. This objective is formulated as an Integer Linear Programming (ILP) problem,

which we provide in the rest of this section.

The Pluto algorithm iteratively finds hyperplanes from outermost to innermost looking

for tileable bands. That is, every hyperplane satisfies the tiling validity constraint shown in

(2.4), for every dependence 〈~s,~t〉 ∈ DSi→Sj :

φSj(~t)− φSi(~s) ≥ 0. (2.4)

The objective function used by the Pluto algorithm tries to minimize the dependence

distances using a bounding function shown in (2.5):

φSj(~t)− φSi(~s) ≤ ~u · ~p + w. (2.5)

The intuition behind this upper bound on dependence distances is as follows: dependence

distances are bounded by loop iterator variables, that are, in turn, bounded by program pa-

rameters. Therefore, one can choose large enough values for ~u to obtain an upper bound.

Note that, constraints shown in Equations 2.4 and 2.5 can be non-linear in certain cases and

are linearized by the application of Farkas Lemma [Sch86]. In order to minimize depen-

dence distances, the Pluto algorithm tries to minimize this upper bound. This is achieved

by finding the lexicographically smallest ~u and w as shown in (2.6):

minimize≺(~u, w, . . . , cS
i , . . . ), (2.6)

where cS
i represents transformation coefficients of the statement S. The lexicographically
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smallest solution can be found using PIP [Fea88]. We refer to the lexicographically smallest

solution (~u, w) as lexmin of (~u, w). Note that, well-known ILP solvers like GLPK [GNU],

Gurobi [GO16] and CPLEX [IBM] do not provide a lexmin function. However, in practice,

lexmin can be implemented as a weighted sum objective as shown in (2.7):

minimize b1.~u + b2.w + b3.c1 + · · ·+ cms + c0, (2.7)

where each bi is orders of magnitude smaller than bi−1.

2.2.1 Avoiding the Zero Solution

The tiling validity constraints and the dependence bounding constraints from (2.4) and (2.5)

have a trivial zero vector solution. Construction of trivial solution avoidance constraints in

the full space of integral solutions is complex and has to be modeled as in Pluto+ [BAC16] by

the introduction of binary decision variables. Therefore, as a trade off, the Pluto algorithm

restricts all transformation coefficients (of φ′Ss) to non-negative integers. This restriction al-

lows the trivial zero vector solution for the coefficients of φS to be avoided with the constraint

shown in (2.8):
mS

∑
i=0

ci ≥ 1. (2.8)

2.2.2 Enforcing Linear Independence

Affine transformations have to be one-to-one mappings in order for them to specify a com-

plete schedule. This property also guarantees the satisfaction of all dependences in the

transformed space, in the case of Pluto algorithm. The Pluto algorithm thus enforces lin-

ear independence of hyperplanes statement-wise. This is modeled by finding a basis for

the null space of hyperplanes already found. The next hyperplane to be found must have a

component in this null space. The exact modeling of this constraint is described in [BAC16].
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It will be a constraint of the form:
ms

∑
i=0

ai × ci ≥ 1, (2.9)

where ai ∈ Z. These ai’s are from the subspace that is orthogonal to the subspace of currently

found hyperplanes. We will describe the construction of these constraints with an example

in Section 2.2.3. We refer to the constraints that enforce linear independence of hyperplanes

as linear independence constraints.

For the rest of this thesis, we refer to the above ILP formulation as Pluto-ilp.

2.2.3 Illustration

Consider the head-1d example shown in Figure 2.1. It has dependences given by the follow-

ing three dependence vectors (1, 0), (1, 1) and (1,−1). The Pluto algorithm first finds tiling

validity constraints for these dependences. These tiling validity constraints are given by:

• Tiling validity constraints for dependence (1, 0)

((c1, c2) · (t + 1, i) + c0)− ((c1, c2) · (t, i) + c0) ≥ 0

=⇒ c1 ≥ 0.

• Tiling validity constraints for dependence (1, 1)

((c1, c2) · (t + 1, i + 1) + c0)− ((c1, c2) · (t, i) + c0) ≥ 0

=⇒ c1 + c2 ≥ 0.

• Tiling validity constraints for dependence (1,−1)

((c1, c2) · (t + 1, i− 1) + c0)− ((c1, c2) · (t, i) + c0) ≥ 0

=⇒ c1 − c2 ≥ 0.
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Since the dependences are constant, the dependence distances are not parametric. Hence,

~u in Equation 2.5 is zero. Note that, this can be inferred by the application of Farkas lemma as

well. The coefficients corresponding to the loop iterator variables cancel out and hence the

Farkas multipliers that contain the variables representing the loop parameters, that come

from loop bounds, will be inferred to be zero. Thus, the dependence distance bounding

constraints are given by:

• Dependence distance bounding constraints for dependence (1, 0)

((c1, c2).(t + 1, i) + c0)− ((c1, c2).(t, i) + c0) ≤ w

=⇒ w− c1 ≥ 0.

• Dependence distance bounding constraints for dependence (1, 1)

((c1, c2).(t + 1, i + 1) + c0)− ((c1, c2).(t, i) + c0) ≤ w

=⇒ w− c1 − c2 ≥ 0.

• Dependence distance bounding constraints for dependence (1,−1)

((c1, c2).(t + 1, i− 1) + c0)− ((c1, c2).(t, i) + c0) ≤ w

=⇒ w− c1 + c2 ≥ 0.

The trivial solution avoiding constraint is given by

c1 + c2 ≥ 1.

For the first hyperplane, there are no hyperplanes found before. Hence the linear indepen-
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lexmin(u1, u2, w, c1, c2)
subject to :

c1 ≥ 0
c1 + c2 ≥ 0
c1 − c2 ≥ 0
w− c1 ≥ 0

w− c1 − c2 ≥ 0
w− c1 + c2 ≥ 0

c1 + c2 ≥ 1
c1 + c2 ≥ 1

u1 ≥ 0
u2 ≥ 0
w ≥ 0
c0 ≥ 0
c1 ≥ 0
c2 ≥ 0

First hyperplane : (c0, c1) = (1, 0)
Second hyperplane : (c0, c1) = (1, 1)

Figure 2.4: Pluto’s ILP formulation for the outermost hyperplane of heat-1d kernel.

dence of the hyperplane to be found is enforced using the constraint,

c1 + c2 ≥ 1.

Since the Pluto algorithm restricts the transformation coefficients to be in the non-negative

half space, it also enforces a lower bound of zero on the transformation coefficients. The ILP

formulation solved by the Pluto algorithm to find the first hyperplane for the heat-1d kernel

is shown in Figure 2.4. The lexicographically smallest solution to this ILP formulation corre-

sponds to the hyperplane~t at the outermost level. Now, to find the second hyperplane, Pluto

constructs constraints that enforce the newly found hyperplane to have a component in the

null space of the hyperplanes that have already been found. For the above example, the

hyperplane is represented by the vector (1, 0). Since the second component of this vector is

zero, Pluto enforces the second hyperplane to have a non-zero component along dimension

i by adding the constraint

c2 ≥ 1, (2.10)

in the above ILP formulation. Note that, the linear independence constraint used for the

previous hyperplane (shown in blue) is replaced with the one shown in Equation 2.10. This
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finds the hyperplane (1, 1). This corresponds to a loop skewing transformation at the second

level. Thus, the transformation found by the Pluto algorithm for the heat-1d example is

given by

TS(t, i)→ (t, t + i).

The transformed space is then tiled with rectangular tiles.

2.2.4 Loop Fusion Heuristic in Pluto

The cost model of Pluto naturally favors loop fusion because, loop fusion improves local-

ity. However, in order to prevent maximal fusion, Pluto employs adhoc loop distribution

heuristics. At the outermost level, distribution is based on dimensionalities of SCCs in the

DDG. The dimensionality of an SCC is the maximum of dimensionalities of statements in

the SCC. Two SCCs that have different dimensionalities and are connected in the DDG, are

distributed at the outermost level. At the inner levels, loops are distributed only when the

ILP formulation fails to find a solution. In these levels, loop distribution is guided by the

following factors in the same order:

1. dimensionalities of SCCs,

2. relative positioning of SCCs in the topological ordering of SCCs in the DDG,

3. distribution of all SCCs.

If any of the above steps satisfies a dependence, then the subsequent steps are not performed.

Note that, in all the above cases, loop distributions are performed by cutting edges between

SCCs in the DDG, thereby ensuring correctness. Whenever an edge between SCCs Si and

Sj in the DDG is cut, a scalar hyperplane is added in the transformation matrix for all state-

ments in the program. The coefficient cS
0 , for every statement S that precedes SCC Sj in the

topological ordering of SCCs, is set to 0. For the remaining statements cS
0 is set to 1. This
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loop fusion heuristic in Pluto does not consider other factors like parallelism into account.

In the rest of the thesis, whenever we say that a loop nest is distributed, the same procedure

of adding scalar hyperplanes is followed.

2.3 Scalability of the Pluto Algorithm

The complexity of solving the ILP formulation in Pluto is exponential in the number of

variables seen by the ILP solver. The ILP formulation in Pluto has

|P|+ 1 + ∑
S∈P

(mS + 1)

variables, where P is the set of parameters in the program. Thus, solving this ILP formula-

tion is exponential in the sum of dimensionalities of polyhedral statements in the program.

In the rest of this thesis, whenever we say that an algorithm is polynomial or exponential,

we mean that the algorithm is polynomial or exponential in the sum total of dimensionali-

ties of polyhedral statements seen by the auto-transformation framework. Though solving

this ILP formulation is exponential in general, for the scheduling algorithms that are often

used in the polyhedral compilation, the observed time complexity has been shown to be

O(V5) [Fea06, UC13, MY15], where V is the number of variables in the ILP formulation.

Mehta et al. [MY15] identified this ILP formulation and the construction of linear indepen-

dence constraints as major bottlenecks in Pluto’s algorithm. Efforts to address this scala-

bility have been primarily directed towards reducing the number of variables seen by the

Pluto’s ILP formulation via statement clustering [MY15, Bag15] or by projecting out vari-

ables [PMB+16]. However, this tends to postpone the problem of scalability. For example,

there exist programs where the clustering heuristics proposed by Mehta et al. [MY15] re-

sults in clusters with a small number of statements, and hence, the impact of clustering on

auto-transformation times is diminished.

In the rest of this thesis, we propose a framework that overcomes both the bottlenecks
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by (1) relaxing integer constraints in Pluto-ILP and (2) decoupling the problem of finding

permutations and fusion, from other loop transformations. This decomposition, which uses

an LP formulation at each stage, does not require the construction of linear independence

constraints, there by providing a scalable auto-transformation framework that uses the poly-

hedral model. The decoupling also allows the modeling of loop fusion alongside other loop

transformations like loop permutation and loop shifting. We also demonstrate that various

loop fusion models can be incorporated seamlessly in our auto-transformation framework.

The rest of the thesis provides the details on the proposed auto-transformation framework

Pluto-lp-dfp and evaluates it on previously studied benchmarks.



Chapter 3

Relaxing Integrality Constraints in the

Pluto Algorithm

The Pluto algorithm described in Chapter 2 finds affine transformation hyperplanes from the

outermost level to the innermost. At each level, the algorithm finds hyperplanes that min-

imize dependence distances, by formulating an ILP problem. The number of variables and

constraints in the ILP increases with the number of statements in the program. The problem

is NP-hard in the number of variables seen by the ILP solver. This ILP formulation results in

an auto-transformation framework which is exponential in the number of statements in the

program resulting in large compilation (auto-transformation) times in the case of loop nests

with hundreds of statements. In order to reduce this complexity, in this chapter, we study

the effect of relaxing the integer constraint on the variables of this ILP formulation.

When the variables in Pluto’s ILP formulation are modeled as reals instead of integers,

the trivial solution avoidance constraints and the linear independence constraints shown in

Equations (2.8) and (2.9), do not model the full space of non-negative real numbers. The

complete space of non-negative reals is modeled by changing constraints in (2.8) and (2.9)
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to strict inequalities:
mS

∑
i=0

ci > 0,
mS

∑
i=0

ai × ci > 0, (3.1)

where ai ∈ Z is a constant. We refer to this relaxed formulation as pluto-lp, while pluto-ilp

will be used to refer to the original ILP formulation of Pluto (cf. Chapter 2). Note that it is

not directly possible to encode the above constraints, and we do not do this. Instead, we

will use the original constraints in the LP formulation. However, before we propose that,

we discuss a few results surrounding the relaxed version of the formulation when the linear

independence and the trivial solution avoidance constraints precisely model the complete

space of real solutions as shown in Equation 3.1.

In this chapter, we first present key results that can be obtained by relaxing the ILP for-

mulation in Pluto while solving for a hyperplane. We provide a routine to infer solutions to

the ILP formulation in Pluto using the solutions of the relaxed formulation, thus avoiding

the ILP based approach. We identify certain interesting properties that are preserved in the

relaxed formulation even in presence of certain sub-optimalities.

3.1 Theoretical Results

We now present various theorems relating the solutions of pluto-lp to those of pluto-ilp. We

first assume that the trivial solution avoidance constraints and the linear independence en-

forcing constraints model the complete space of real transformation coefficients as shown

in Equation 3.1. The tiling validity constraints and the dependence distance bounding con-

straints are same as the ones used in pluto-ilp as shown in Equations 2.4 and 2.5 respectively.

The objective of pluto-lp is same as that of of the objective of pluto-ilp, which is to find the

minimize the dependence distances as shown in Equation 2.6.

We first note through Lemma 3.1 that, if the constraints in pluto-lp are satisfiable, then its

optimal solution is rational.

Lemma 3.1 The optimal solution to pluto-lp, when it exists, is rational.
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The above lemma follows from the fact that coefficients of all variables in the LP formulation

of Pluto are integers; thus the solutions of pluto-lp are rational. For the rest of this thesis,

we refer to the optimal rational solution of pluto-lp as the solution of pluto-lp. Note that,

even when a few more constraints are added to the constraints of Pluto-lp, as long as the

coefficients of variables in the newly added constraints are integers, Lemma 3.1 continues to

hold.

Theorem 3.1 If ~z is a solution to the relaxed Pluto formulation (pluto-lp), then for any constant

k ≥ 1, k×~z is also a valid solution to the constraints in pluto-lp.

The intuition behind the proof of this theorem is as follows: ~z is a solution to pluto-lp and

hence will satisfy the tiling validity constraints (Equation 2.4). Therefore, for every depen-

dence 〈~s,~t〉 ∈ De,

φSj(~t)− φSi(~s) ≥ 0

=⇒ (k× φSj)(~t)− (k× φSi)(~s) ≥ 0,

where Si, Sj are the source and the target statements of the dependence and k ≥ 1. Infor-

mally, scaling the rational hyperplane will also scale up the dependence distance between

the source and the target iterations by the same scaling factor and will not violate any de-

pendence. It is easy to see that scaling the rational solution with k ≥ 1 will not violate any

linear independence constraints shown in (3.1). The formal proof of Theorem 3.1 is given

below.

Proof: From Lemma 3.1, we know that, if a solution exists, then the optimal value of the ob-

jective corresponds to a rational solution of pluto-lp. Now, we need to prove that, scaling the

solutions of pluto-lp will not violate the constraints. Consider the tiling validity constraints
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in (2.4). φSi and φSj are one dimensional affine transformations. Therefore,

φSj(~t)− φSi(~s) ≥ 0 =⇒ k× φSj(~t)− k× φSi(~s) ≥ 0

where k ≥ 1. Therefore, the scaled solution of pluto-lp will represent a hyperplane that will

not violate the tiling validity constraints. The dependence distance bounding constraints in

Equation (2.5) are bounded above by ~u and w, which are variables in the pluto-lp formula-

tion. The values of ~u and w are can also be scaled up, and these scaled up values still remain

to be an affine combination of program program parameters as shown:

k× φSj(~t)− k× φSi(~s) ≥ k× ~u + k× w.

The trivial solution avoidance constraints and the linear independence enforcing constraints

given in (3.1) can not be violated by scaling the solutions. That is, if ci’s are the solutions to

pluto-lp and k ≥ 1, then from (3.1) it follows that for each statement S,

mS

∑
i=0

ci > 0 ⇐⇒
mS

∑
i=0

k× ci > 0

and,
mS

∑
i=0

ai × ci > 0 ⇐⇒
mS

∑
i=0

ai × k× ci > 0.

Therefore scaling the solutions of pluto-lp with a factor k ≥ 1, will not violate the constraints.

�

Note that the theorem holds for all k > 0 when the linear independence constraints

and the trivial solution avoidance constraints are modeled precisely as in (3.1). However,

we are interested in scaling rational solutions to integers. The integer solution, if it exists,

must be lexicographically greater than the rational solution. Therefore, we prove it for k ≥

1. Moreover, the constraints in (3.1) cannot be modeled in a solver as discussed later in

Section 3.2. In those cases, one can only scale the solutions with a value of k ≥ 1 and not
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with any value k > 0.

Corollary 3.1 proves that a solution of pluto-lp can be used to infer the solutions of pluto-

ilp. This result is used extensively in Algorithms 2, 3 that form the core components of the

new transformation approach presented in this thesis.

Corollary 3.1 There exists a solution to pluto-lp if and only if there exists a solution to pluto-ilp.

Proof: The necessary condition is trivially true since every integral solution in the space of

pluto-ilp is in the space of pluto-lp as well. For the sufficient condition, by Theorem 3.1, the

rational solutions of pluto-lp can be scaled to integers by choosing the LCM of the denomi-

nators of the solutions as the scaling factors without violating any dependences. The integer

hyperplane found through scaling will continue to be linearly independent of previously

found hyperplanes. Therefore, this scaled solution will be in the space of pluto-ilp. � Con-

straints corresponding to dependences of a connected component in a DDG impose bounds

on one another. Hence coefficients corresponding to different connected components, that

are obtained by pluto-lp, can be scaled by different factors. This naturally calls us to look

for scaling factors for each connected component in the DDG independently. In the rest of

this section, we prove results only for a single connected component. However, they can be

easily extended to multiple connected components, as each connected component results in

a disjoint set of constraints in LP and ILP formulations of the Pluto algorithm.

We identify relations between the objective value and solutions of pluto-lp and the objec-

tive of pluto-ilp under the assumption that the linear independence constraints and the trivial

solution avoidance constraints are modeled precisely. This is an interesting theoretical result

to have, though the practical issues in realizing it are discussed in Section 3.2. Assuming that

the full space of rational solutions is modeled precisely, we observe that the optimal solution

to the relaxed Pluto algorithm (pluto-lp) can be scaled to an integral solution to pluto-ilp such

that (1) the objective of the scaled (integral) solution will be equal to the objective of optimal

solution of pluto-ilp. (2) For each statement S, the hyperplane found by pluto-ilp will be a
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scaled up version of the hyperplane found by pluto-lp. Though, we do not use these results

in our implementation, these are applicable in a futuristic setting where constraint solvers

allow to specify a small rational number which is greater than zero.

Theorem 3.2 The optimal solution to the relaxed Pluto algorithm (pluto-lp) can be scaled to an

integral solution to pluto-lp such that the objective of the scaled (integral) solution will be equal to

the objective of optimal solution of pluto-ilp.

Proof: By Theorem 3.1, we know that scaling the rational solutions of pluto-lp, will result in

a solution does not violate any constraints. Let zi and zr be the value of the optimal objective

values for solutions to pluto-ilp and pluto-lp respectively. Let cs be the smallest scaling factor

that scales solutions of pluto-lp to integers. Let z′i = cs × zr be the value obtained from by

scaling the optimal real solution of pluto-lp to an integral one. Note that cs ≥ 1; otherwise,

the real solution would not be optimal. Now we prove that z′i ≤ zi. Consider z′r given by

z′r = zi/cs

=⇒ zr ≤ z′r(∵ zr is the optimal solution to pluto-lp)

=⇒ cs × zr ≤ cs × z′r (∵ cs ≥ 1 and zr, z′r ≥ 0)

=⇒ z′i ≤ zi.

This proves that the optimal (minimum) objective of pluto-lp after scaling to integer coeffi-

cients will be less than or equal to that of of pluto-ilp. However, the objective of the relaxed

formulation after scaling cannot be strictly less than that of pluto-ilp (otherwise, pluto-ilp’s

solution, zi would not be an optimal one). Therefore, the optimal objective of pluto-lp after

scaling up, is equal to the optimal objective of pluto-ilp. �

Theorem 3.2 states that the objective function of pluto-lp will evaluate to a scaled down

value of the objective function of pluto-ilp. In Theorem 3.3, we prove that the hyperplane

found by pluto-lp will be a scaled down version of the hyperplane found by pluto-ilp.
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Theorem 3.3 Let ~hi = (c1, . . . , cn) be the optimal solution for pluto-ilp. Then, the optimal solution

to pluto-lp, ~hr, is such that ~hr = ~hi/cs where cs ≥ 1.

Proof: Let zi and zr be the optimal values of the objective found by pluto-ilp and pluto-lp

respectively. Let cs be the smallest scaling factor that scales every component of ~hr to an

integer. Note that cs ≥ 1 (otherwise, ~hr would not have been optimal solution). Let zi be

the solution obtained by the hyperplane ~hi. Let z′r = zi/cs. Note that z′r can be obtained by

dividing all the components of ~hi by cs. Now we have the following cases:

• Case 1: If zr = z′r then we have nothing to prove.

• Case 2: Consider the case zr < z′r. Let ~h′i = ~hr × cs, and let z′i be the objective value

with h′i. z′i = zr × cs (due to the nature of (2.5)). Since the optimal objective value for

pluto-ilp was found to be zi, z′i ≥ zi. Now if we scale down each component of ~hi by cs,

we get a solution that has an objective value lower than zr. This is a contradiction.

Therefore, zr = z′r in all cases, and z′i = zi. Since both ~hi and ~h′i have the same optimal

objective value and given that the lexmin provides a unique optimal solution, ~h′i = ~hi, and

~hr = ~hi/cs. � Theorems 3.2 and 3.3 assume that trivial solution avoidance constraints and

linear independence constraints precisely model the space of rational solutions. However,

this is not possible with the current LP solvers. Therefore, in the next section, we discuss the

issues in realizing pluto-lp in practice.

3.2 Practical Issues in Using Pluto-lp

As per the theorems presented in the previous section, it would appear that pluto-lp could

be readily used by scaling its rational solutions — to replace pluto-ilp and thus overcome the

need to use ILP altogether. However, in this section, we discuss issues encountered in that

process.
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The rational solutions of pluto-lp after scaling with give the solutions of pluto-ilp if and

only if linear independence constraints and trivial solution avoidance constraints model the

complete space rational solutions as shown in (3.1). However, these constraints cannot be

represented as “≥” constraints. Doing so in (2.8) and (2.9) will exclude some rational solu-

tions. More precisely, these constraints, when modeled imprecisely, will exclude infinites-

imally small positive values that are closer to zero. This is because the rational space is

“dense”, which makes it hard to model rational numbers that are strictly greater than zero.

Therefore, the relaxed LP formulation after scaling up to integers will end up giving sub-

optimal solutions in the integral space. These sub-optimal solutions usually manifest as

unnecessary loop skewing transformations, which may result in significant loss of perfor-

mance.

−c2 + c1 ≥ 0
c1 ≥ 0
c2 + c1 ≥ 0
u ≥ 0
u + w− c1 ≥ 0
u + w− c2 − c1 ≥ 0
u + w− c1 ≥ 0
u + w + c2 − c1 ≥ 0

u ≥ 0
w ≥ 0
c1 ≥ 0
c2 ≥ 0
c0 ≥ 0
c2 + c1 ≥ 1
c2 + c1 ≥ 1

Dependences:
(1, 0), (1, 1), (1,−1)
pluto-ilp solution:
u = 0, w = 1, c2 = 0,
c1 = 1, c0 = 0
pluto-lp solution:
u = 0, w = 1, c2 = 0.5,
c1 = 0.5, c0 = 0

Figure 3.1: Constraints from the heat-1d stencil benchmark

For example, consider the constraints given in Figure 3.1. These are pluto-ilp constraints

for the first (outermost) hyperplane of the heat-1d non-periodic stencil shown in Figure 2.1.

Here ~u is one dimensional; therefore is represented as a scalar variable u in Figure 3.1. The

code has a single statement in the two dimensional loop nest. c1 and c2 are the coefficients

corresponding to the time dimension t and the space dimension i respectively. The last

two constraints are trivial solution avoidance constraint and linear independence constraint

respectively. Rest of them establish tiling validity and enforce a upper bound on the depen-

dence distances. The hyperplane (c1, c2) = (1, 0) is found by pluto-ilp with the values of

u = 0 and w = 1 (without diamond tiling support).
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When the integer constraints on the coefficients are relaxed, pluto-lp finds the solution

(c1, c2) = (0.5, 0.5) with the value of w = 1 and u = 0. However, when we scale the solutions

to integers, we get a value of u = 0 and w = 2 which is higher than the objective of pluto-ilp.

However the solution (u = 0, w = 0.5, c1 = 0.5, c2) would have been ideal because (1) it

is lexicographically smaller than the one found by pluto-ilp. (2) after scaling with a scaling

factor of 2, we would have got the same solution as that of pluto-ilp. Unfortunately, the

solution is not in the space of all valid transformations because the trivial solution avoidance

constraint and the linear independence constraints (2.8 and 2.9) do not model the space of

all rational solutions.

Note that scaling down the RHS of the trivial solution avoidance constraints and linear

independence constraints to say 0.1 (which now includes (c1, c2) = (0.5, 0) in the space) will

not solve the issue. This is because one can scale down the solution to (c1, c2) = (0.05, 0.05)

and still end up with the hyperplane (c1, c2) = (1, 1). The solution (c1, c2) = (0.05, 0) will

still not be present in the space. The hyperplane (1, 1) found by pluto-lp does not satisfy the

dependence (1,−1), and hence, must be satisfied at the innermost level, resulting in a fully

sequential loop nest. However, the hyperplane (1, 0) found by pluto-ilp in the first level,

satisfies all the dependences and the innermost loop is parallel. Therefore, it is absolutely

essential to get rid of these sub-optimalities in pluto-lp. For example, for the heat-2d bench-

mark, we observe that pluto-lp finds a schedule that is 10× slower (on 16 cores) than the

schedule found by pluto-ilp. Our approach to overcome these sub-optimalities is described

in Chapter 4.

As mentioned above, sub-optimal loop skewing transformations can be found as a conse-

quence of using the relaxed LP formulation that imprecisely models the real space of trans-

formation coefficients. In spite of this imprecise modeling, there are certain interesting prop-

erties that are retained in the relaxation of pluto-ilp.

Theorem 3.4 The relaxed formulation, pluto-lp (in each permutable band), finds a outer parallel
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hyperplane if and only if pluto-ilp finds a outer parallel hyperplane.

Proof: There exists a parallel hyperplane if and only if ~u = ~0 and w = 0 in the ILP for-

mulation of Pluto. Note that ~u.̇~p + w gives an upper bound on the dependence distance for

every dependence. Each component of ~u, and w, are lower bounded by zero. Therefore, the

smallest value of ~u.~p + w is 0. The objective of the relaxed LP formulation is to minimize the

values of ~u and w. At the outermost level, any solution that exists in the space of pluto-ilp

is also present in the space of pluto-lp. Therefore the solution found by pluto-lp will fall into

one of the two following cases.

1. The solution found by pluto-lp is same as the solution found by pluto-ilp. In this case,

there is nothing to prove.

2. pluto-lp finds a fractional solution with ~u =~0 and w = 0. In this case, by Theorem 3.1,

one can scale the real (rational) solution to an integral one, without violating any con-

straints. This scaling will neither change the value of ~u nor w because they were found

to be equal to zero.

The “only if” part of the proof follows from Case 2 in the above argument. �

As a consequence of Theorem 3.4, existence of communication free parallel hyperplanes

can be inferred using an LP formulation instead of an ILP formulation. Secondly, the the-

orem can also be used to check if fusion statements from two strongly connected compo-

nents with outermost parallel loops results in a sequential loop nest. ILP based approaches

have been adapted in auto-transformation frameworks like ISL and PPCG for incorporating

parallelism-preserving fusion heuristics. However, Theorem 3.4 shows that equivalent re-

sults can be obtained by an LP based approach as well. Later in Chapter 5, we also use this

result to find dimensions of loops nests that are parallel, and to come up with parallelism

preserving heuristics for loop fusion.

While Theorem 3.4 proved the property of a single hyperplane at the outermost level,
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Theorem 3.5 proves that both pluto-lp and pluto-ilp find tileable bands of the same width, i.e,

the outermost permutable band found by both pluto-lp and pluto-ilp will contain the same

number of hyperplanes.

Theorem 3.5 Given a loop nest of dimensionality m, if pluto-ilp finds d ≤ m permutable hyper-

planes, then pluto-lp also finds d permutable hyperplanes.

Proof: Let us assume that pluto-lp finds k hyperplanes and let k 6= d. We prove Theorem 3.5

by contradiction. Let us assume that k > d. The k linearly independent hyperplanes found

by pluto-lp can be scaled to integers. These scaled solutions will continue to be linearly

independent as scaling transformations will not affect linear independence. Therefore these

correspond to k linearly independent in the integer space. This means that there existed k

linearly independent solutions in the integer space. Since the validity constraints remain the

same at each level, there exits only d linearly independent solutions as found by pluto-ilp.

This is a contradiction to the assumption that k > d.

Suppose k < d, then we know that there are d linearly independent solutions to the tiling

validity constraints in the integer space. These are valid linearly independent solutions in

the rational space. Therefore, it is a contradiction to our assumption k < d. Therefore, pluto-

lp will find d linearly independent solutions to the tiling validity constraints. �

A sufficient condition for tileability is that the loop nest is fully permutable. Is such cases,

both pluto-ilp and pluto-lp find m linearly independent hyperplanes. Therefore, pluto-lp can

also be used as a fast and robust tileability check for a given loop nest.

3.3 Complexity of Pluto-lp

In this section, we will discuss the complexity of finding a rational solution to the LP fromu-

lation in Pluto-lp, i.e the effect of relaxing the integrality constraints in the Pluto algorithm

on its time complexity. Let S be the set of all statements in the program. The Pluto algorithm

has an observed time complexity of O(|S|5) [Fea06, UC13]. This quintic complexity is still
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high for an auto-transformation algorithm to efficiently scale to programs with large num-

ber of statements. By relaxing the integrality constraints in the ILP formulation of the Pluto

algorithm, the time complexity of the Pluto-lp scheduling algorithm reduces to O(|S|3).

Even though the simplex algorithm, which is used by most LP solvers in practice, has an

exponential worst-case time complexity, it is considered to be highly scalable. Moreover,

interior-point methods for solving LP formulations with V variables in O(V3) time, has

been proposed in literature [Vai89]. Hence for the purposes of complexity analysis, in the

rest of the thesis, we assume that the time complexity of solving an LP formulation isO(V3).

Therefore, the scheduling algorithm in Pluto-lp has a time complexity of O(|S|3).

Note that, the transformation hyperplanes obtained using pluto-lp formulation are ratio-

nals. However, polyhedral code generators like ClooG [Clo04] require integral transforma-

tion coefficients for code generation. In the next section, we describe a routine to scale the

rational solutions obtained by pluto-lp to integers.

3.4 Scaling Rational Solutions to Integral Solutions

The solutions of pluto-lp are rational. Polyhedral code generators require integer coefficients

for schedules. Once solutions to pluto-lp are found, we thus need to find scaling factors that

when multiplied with the solutions of pluto-lp will yield integers. It is possible to design

simple algorithms that scale the rational numbers to integers using dynamic programming.

However, for programming convenience, we solve the scaling problem robustly by formu-

lating a small mixed integer programming (MIP) problem. This scaled solution will not

violate any dependences as proved in Theorem 3.1. We will show that time spent here is

negligible. Since the MIP approach here is chosen for convenience (instead of another poly-

nomial time heuristic), we still claim that our entire approach is free of ILP.

The MIP formulation to infer integer solutions from rational solutions of pluto-lp is simple

and straightforward as shown in Algorithm 1.
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Algorithm 1: SCALE (SOL, G, P)
Input : A solution sol to pluto-lp and the DDG G for the program P.
Output: Integer solutions that are scaled versions of the rational solutions from

pluto-lp

1 obj←
|C|
∑

k=1
ck where ck is scaling factor for kth connected component in G, ck ∈ Q.

2 ψ← true
3 foreach S ∈ S do
4 k← connected component to which S belongs in G.
5 foreach i = 0 to ms do
6 ψ← ψ ∧ {cS

i = ck × sol(i, S)}, where cS
i ∈ Z

7 foreach i = 1 to |C| do
8 ψ← ψ ∧ {ck ≥ 1}
9 isol← MIP-SOLVE(ψ, obj)

10 Update the hyperplanes of all statements with isol.

Let k be the connected component to which the statement S belongs and ck be the scaling

factor. For each dimension i of a statement S, let sol(i, S) be the solution obtained by pluto-lp.

A scaling constraint (line 6) is added per dimension of every statement that scales sol(i, S) to

cS
i . By further constraining cS

i to integer and the scaling variable ck to be greater than or equal

to 1, we ensure that integer transformation coefficients are obtained. Note that the shifting

coefficient cS
0 for each statement is also being scaled. There can be multiple valid scaling

factors that scale the solution of pluto-lp to an integral one. However, the minimum scaling

factor for each connected component is naturally desired. Therefore, the sum of the scaling

factors corresponding to each connected component is minimized (line 1). These constraints

are solved using an MIP solver (line 9) like GLPK or Gurobi.

For example, consider the constraints from heat-1d example shown in Figure 2.4 for the

first hyperplane. The pluto-lp algorithm finds the solution u = 0, w = 1, c1 = 0.5, c2 =

0.5, c0 = 0. Since there is a single statement in the program there is a single vertex in the DDG

G of P with a single connected component. Let cs be the scaling factor for this connected

component. In case of multiple connected components, we will have multiple scaling factors
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- one per component. We construct a new MIP; with integer variables corresponding to

the scaled rational solutions and a rational variable corresponding to the scaling factors as

shown in Line 6. Therefore, the scaling MIP is as shown in Equation 3.2:

minimize cs (3.2)

subject to

w = cs × 1

c1 = 0.5× cs

c2 = 0.5× cs

cs ≥ 1

where w, c1, c2 ∈ Z and cs ∈ R. The scaling MIP thus returns the solutions cs = 2, w =

2, c1 = 1, c2 = 1. This corresponds to the the transformation t + i at the outermost level.

Algorithm 1 has
|S|
∑

i=1
(mSi + 1) + |C| variables, where mSi is the dimensionality of state-

ment Si. Out of these, |C| variables are rationals and the rest are constrained to be integers.

In general, we observe that the scaling MIP takes negligible time as part of the overall auto

transformation framework. Results presented in Section 3.5 show that Algorithm 1 (for the

benchmarks evaluated) takes less than 10% of the time taken to solve pluto-lp. In case this

becomes a bottleneck, it is feasible to devise a polynomial time algorithm to scale rational

solutions to integers. Therefore, for the purposes of complexity analysis, we assume that the

scaling routine is polynomial in the number of rational solutions to be scaled.

In general, we observe that the scaling MIP takes very little time when compared to the

overall time spent in automatic transformation. Results presented in the next section show

that the time taken to scale the rational solutions of pluto-lp to integers (for the benchmarks

evaluated) is less than 10% of the time taken to solve pluto-lp, which indicates that the scaling

MIP given in Algorithm 1 is not the bottleneck in pluto-lp. In case this becomes a bottleneck,
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it appears feasible to devise alternate heuristics, that may be ad-hoc in nature, but work

well in practice. One approach would be to infer rational numbers (with small numerators

and denominators) from the real solutions. Another would be to approximate ratios of the

coefficients with rational numbers with small integer numerators and denominators. The

validity of the obtained solution can later be anyway verified quickly.

3.5 Preliminary Experimental Results

In this section, we first provide details on the time taken by four different ILP solvers to solve

the ILP formulation in Pluto-ilp. We then provide the impact of relaxation on constraint

solving times of both Pluto-lp and Pluto-ilp. Though our detailed experimental setup is

described in Chapter 7, we provide some necessary details here to describe the observations

from our preliminary experiments. All our experments were conducted on a 16 core dual

socket Intel Xeon 4110 CPU running at 2.10 GHz. The machine had a total memory of 256

GB DDR4 with a memory transfor rate of 2666 MT per second. We measured the time taken

by the following four solvers to find a solution to the ILP in Pluto’s formulation.

1. Parametric Integer Programming (PIP) [Fea88] is an ILP solver that has been widely

used in polyhedral compilation.

2. Integer Set Library (ISL) [Ver13] is the ILP solver that has been gained lot of interest in

recent times with its ability to find polyhedral schedules, and the lexmin function.

3. GNU Linear Programming Kit (GLPK) [GNU] is an open-source ILP solver that sup-

ports Mixed Integer Programming (MIP) along with ILP and LP formulations. We

used GLPK version 4.65 to solve ILP formulations in pluto-ilp and LP formulations in

pluto-lp. The lexmin objective function was encoded as a weighted sum objective, as

described in Chapter 2.

4. Gurobi [GO16] is a commercial ILP solver which also supports ILP and LP formula-
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tions. We used the version 9.0 with an academic license in our experiments. Even in

this case, the lexmin function was encoded as a weight sum objective in case of both

Pluto-ilp and Pluto-lp.

We evaluate the impact of relaxation on benchmarks from PolyBench [Pol10] and hotspots

of BT LU and SP benchmarks from NAS Parallel Benchmark suites. The hotspots from NAS

benchmakarks were previously used by Mehta et al [MY15] for studying the scalability of

the Pluto algorithm.

3.5.1 Impact of ILP Solvers and Relaxation on Constraint Solving Times

In this section, we present the impact of various ILP solvers on the auto-transformation

times of the Pluto algorithm. Note that both PIP and ISL have a lexmin function and hence

the objective function used by Pluto-ilp when using these solvers is the lexmin function

shown in Equation 2.6. However, GLPK and Gurobi do not have a lexmin function and

hence, the objective function used in these solvers is a weighted sum objective shown in

Equation 2.7. Hence the comparison of different solvers is not on the same ILP formulation,

which is unfair. However, our goal was to measure the impact ILP solvers on the auto-

transformation time of the Pluto algorithm. Moreover, for all the benchmarks, both GLPK

and Gurobi found the same transformation as PIP and ISL, while using the weighted sum

objective instead of the lexmin. In the rest of the thesis, though for theoretical reasoning the

lexmin objective is used, for all practical purposes, we assume that the results obtained via

the weighted sum objective in the ILP or LP formulation is same as the solution obtained

using the by using the lexmin objective function. The secondary reason to compare with

GLPK and Gurobi is that, these solvers provide support for LP formulations along with

ILPs, whereas ISL and PIP do not support LPs. Hence, for a fair comparison between Pluto-

lp and Pluto-ilp we want to use a solver that supports both ILP and LP formulations.

In Table 3.1 we detail the time taken to solve the ILP formulation in Pluto by various
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Table 3.1: Constraint solving times for pluto-ilp with different solvers.

Benchmark
Number of

pip isl glpk gurobi
Total

stmts loops deps time

2mm 4 10 13 1.6× 10−4 2.9× 10−3 4.1× 10−4 0.017 0.019
3mm 6 15 19 2.8× 10−4 5.0× 10−3 5.2× 10−4 0.035 0.043
atax 4 6 11 4.3× 10−5 8.3× 10−4 1.9× 10−4 0.024 0.005
bicg 4 6 10 4.1× 10−5 7.6× 10−4 2.3× 10−4 0.026 0.005
cholesky 4 8 17 3.8× 10−4 6.5× 10−3 6.7× 10−4 0.015 0.029
correlation 15 22 46 5.1× 10−4 0.015 6.3× 10−4 0.029 0.161
covariance 8 15 27 1.9× 10−4 4.6× 10−3 4.1× 10−4 0.032 0.033
doitgen 3 10 13 3.3× 10−4 3.9× 10−3 6.2× 10−4 0.041 0.023
durbin 10 10 50 5.8× 10−4 6.8× 10−3 7.4× 10−4 0.033 0.049
fdtd-2d 4 11 29 6.0× 10−4 7.1× 10−3 1.2× 10−3 0.017 0.045
floyd-warshall 1 3 61 6.0× 10−5 6.4× 10−3 2.9× 10−4 0.011 0.017
gemm 2 5 6 4.3× 10−5 8.5× 10−4 2.7× 10−4 0.009 0.005
gemver 4 7 12 6.3× 10−5 1.7× 10−3 2.8× 10−4 0.034 0.007
gesummv 5 7 14 5.4× 10−5 1.1× 10−3 2.3× 10−4 0.007 0.006
gramschmidt 7 14 28 6.6× 10−4 8.1× 10−3 7.7× 10−4 0.023 0.065
heat-3d 2 8 52 1.9× 10−3 0.011 5.1× 10−3 0.045 0.083
jacobi-1d 2 4 20 1.5× 10−4 1.5× 10−3 5.0× 10−4 0.028 0.009
jacobi-2d 2 6 38 6.0× 10−4 4.5× 10−3 1.5× 10−3 0.015 0.033
lu 3 8 14 3.0× 10−4 8.8× 10−3 7.7× 10−4 0.018 0.025
mvt 2 4 6 2.3× 10−5 5.9× 10−4 1.7× 10−4 0.007 0.002
seidel-2d 1 3 29 7.5× 10−5 1.2× 10−3 4.5× 10−4 0.028 0.012
symm 4 10 23 3.4× 10−4 4.2× 10−3 6.4× 10−4 0.020 0.028
syr2k 2 5 6 4.3× 10−5 8.0× 10−4 2.2× 10−4 0.009 0.004
syrk 2 5 6 4.1× 10−5 7.8× 10−4 2.3× 10−4 0.009 0.004
trisolv 3 4 11 4.8× 10−5 8.3× 10−4 3.9× 10−4 0.028 0.004
trmm 2 5 8 5.0× 10−5 9.0× 10−4 2.5× 10−4 0.008 0.006

bt 48 149 824 0.472 6.164 0.061 0.108 297.4
lu 106 325 2896 8.996 53.576 0.498 0.379 3.1× 105

sp 50 155 836 0.534 7.353 0.065 0.108 402.6

solvers. For the benchmarks listed in the first column, columns two, three and four give

the number of statements, the number of loops and the number of dependences in the loop

nest. The next four columns provide the time taken (in seconds) by PIP, ISL, GLPK and

Gurobi solvers respectively to solve the ILP formulation in Pluto. These columns do not

include the time taken for the construction of constraints. The last column gives the total

auto-transformation time with GLPK as the ILP solver. The last three rows in the table
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correspond to benchmarks from NAS parallel benchmark suite and the rest correspond to

benchmarks from PolyBench. We observe that for smaller benchmarks from PolyBench,

both PIP and GLPK are faster than ISL and Gurobi. Gurobi, being a commercial solver,

involves additional overhead during start-up. This overhead involves checking of licenses

along with some I/O operations which mask the constraint solving time in case of small

ILPs. However, in case of rhs routine from the LU benchamark of the NAS benchmark suite,

which has 108 of statement in the loop nest, Gurobi is faster than other solvers. In other

benchmarks from the NAS benchmark suite, both GLPK and Gurobi are orders of magnitude

faster than PIP and ISL. Note that, irrespective of the solver used, the auto-transformation

times are significantly higher when compared to ILP solving times. This is primarily due to

the construction of linear independence constraints. Thus the constraint solving time alone,

does not appear to be the bottleneck in the ILP formulation of Pluto. The relaxation of the ILP

formulation will reduce constraint solving times, which are only a small fraction of the total

auto-transformation time. Therefore, we hypothesize that, integer relaxation and usage of a

commercial solver like Gurobi, will have significant impacts on auto-transformation times

in any of the following scenarios:

• the number of variables in the ILP are higher,

• the ILP formulation does not restrict transformation coefficients to be non-negative,

• the ILP formulation is different and relatively more complex than Pluto. An example

of such an ILP formulation is the one used by Kong et al. [KP19] in PoCC+. However,

the legality of relaxation on their ILP formulation remains unexplored.

For the experiments mentioned in rest of the thesis, GLPK is used as the default solver

for solving both ILP and LP formulations. From the experiments described in this section,

we can conclude that relaxing the ILP alone will not improve the scalability of the Pluto

algorithm and an auto-transformation framework that completely avoids the construction
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of linear independence constraints is absolutely essential.



Chapter 4

Pluto-lp-dfp Framework

In this chapter, we propose a new auto-transformation framework called Pluto-lp-dfp to ad-

dress the limitations of the Pluto-lp formulation. The Pluto-lp formulation, described in

Chapter 3, suffers from the following drawbacks:

• it involves the construction of linear independence constraints, which is the most time

consuming step in Pluto’s auto-transformation framework, and

• sub-optimality issues arising in pluto-lp manifest as spurious loop skewing transforma-

tions. These spurious loop skewing transformations, as observed, inhibit parallelism

at inner levels, thereby significantly reducing performance (over 10× on 16 cores).

However, penalizing loop skewing transformations in the relaxed formulation is not possi-

ble. Even in the integer space, penalizing loop skewing transformations while incorporating

loop scaling is a hard problem.

The Pluto-lp-dfp framework that we propose in this section, addresses both issues by de-

coupling the affine transformation phase into a sequence of simpler transformations. More

specifically, the new auto-transformation approach, decouples the problem of finding an

affine transformation into three steps: (a) loop fusion and permutation, (b) loop scaling and

shifting transformations, and (c) post processing skewing transformation. This decoupling
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Dependence
analysis
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loop shifting
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Code
generation

pluto-lp

Figure 4.1: Pluto-lp-dfp stages/components.

allows us to avoid the construction of linear independence constraints because each phase

looks for specific kind of transformations. The first step, which finds loop permutations en-

sure that linear independence of hyperplanes is guaranteed by construction. The second and

the third stages perform elementary row operations on the transformation matrix, which do

not affect linear independence of hyperplanes. In each stage, it solves an LP and scales the

rational solutions to integers, thus not relying on a ILP-based approach at all. In the rest of

this chapter, we give the details about each stage of the pluto-lp-dfp framework.

4.1 Overview of the Pluto-lp-dfp Framework

The tool chain of the Pluto-lp-dfp framework is shown in Figure 4.1. The first step in the

Pluto-lp-dfp framework is to find dependences in the program and construct dependence

constraints which involve both tiling validity constraints and dependence distance bound-

ing constraints. These constraints are used in each stage of the Pluto-lp-dfp framework. In

the first phase, the framework looks for loop permutations that enable fusion and tiling.

Since loop fusion decisions are made at this phase, the framework must be able to efficiently

model loop fusion in presence on other loop transformations. We observe that loop skew-

ing is rarely used in practice to enable loop fusion. Hence we need a model to efficiently

incorporate loop fusion to work in tandem with other loop transformations like loop per-

mutations, loop scaling and loop shifting. Once a loop permutation for a level is found, the

second phase of the Pluto-lp-dfp framework finds loop scaling and shifting factors for the
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permutation found in the first stage. Intuitively the first two stages of the framework can

be assumed to work as follows: the scaling and shifting phase requests for a valid permuta-

tion (described formally in Section 4.2) for a given level, from the first stage. While finding

the valid permutation, loop fusion / distribution decisions are also made. Then, the first

stage returns a permutation for which loop scaling and shifting factors are guaranteed to

exist and these factors are found by the second stage of the Pluto-lp-dfp framework using

an LP-formulation, which are then scaled to integers. Once permutations for all the levels,

and the associated loop scaling and shifting factors are found, the Pluto-lp-dfp framework

introduces loop skewing if and only if loop skewing enables loop tiling. This is important in

cases like stencils, where loop skewing enables loop tiling and further enables tile-wise con-

current start via diamond tiling [BPB12]. If the third phase finds outer-parallel hyperplanes,

these hyperplanes are moved to outer levels of the transformed loop nest. In the rest of this

chapter, we describe in detail, each of these steps in the Pluto-lp-dfp framework.

4.2 Valid Permutations

For the rest of this chapter, the reader can treat the first phase as a black box that provides a

valid permutation to the scaling and shifting phase. However, in this section, we provide the

semantics of this blackbox. We formally define the semantics of valid permutations and also

illustrate that choosing a good permutation is a critical step in the Pluto-lp-dfp framework.

Later in Chapter 5 we describe the details on how this black box can be efficiently realized

in practice.

The first stage of the Pluto-lp-dfp framework provides a valid permutation at each level.

Intuitively, a permutation at a level ` is said to be valid if there exist loop scaling and shifting

factors for the permutation such that the resulting transformation after scaling and shifting

will not violate any dependence. Note that, valid permutation for a statement S is rep-

resented by a permutation matrix P, which has only one non-zero entry per row and per
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column of P. Every non-zero entry of P is 1. Thus, a valid permutation represents linearly

independent transformation hyperplanes along the canonical axes of the iteration space.

Definition 4.1 (Valid Permutation). A permutation P for a statement S is valid, if and only

if for each level `, the hyperplane φ at level `, which corresponds to the `th row of P, satisfies the

condition:

∃k1, k2, k3, k4 ∈N.((k1 × φSt)(~t) + k2)− ((k3 × φSs)(~s) + k4) ≥ 0,

for every dependence 〈~s,~t〉 ∈ DSs→St .

In Definition 4.1, k1 and k3 are called the loop scaling factors while k2 and k4 are called the

loop shifting factors. The values of these scaling and shifting factors for each level in the

permutation are found in the second second phase of the Pluto-lp-dfp framework and is

described in Section 4.3

Illustration: Consider the code snippet from the gemver kernel show in Figure 4.2a. The

code has two statements S1 and S2, each in a two dimensional iteration space. Dependence

constraints for the code snippet are shown in Figure 4.2d. Here c1 corresponds to the trans-

formation coefficient of dimension i and c2 corresponds to the transformation coefficient of

dimension j. The first permutation is valid and corresponds to the hyperplanes (1,0) for

statement S1 and (0, 1) for the statement S2 at the outermost level. This is easy to verify by

substituting, cS1
1 = 1 , cS2

2 = 1 and the other coefficients to zero. This assignment will have

a value of u and w that will satisfy the constraints. Similarly, one can verify that constraints

in Figure 4.2d are unsatisfiable with cS1
1 = 1 , cS2

1 = 1, which corresponds to the invalid

permutation shown in Figure 4.2b. In general, it is sufficient to check for the satisfiability

of tiling validity constraints alone, which do not involve ~u and w. However, we use depen-

dence distance bounding constraints as well, and the benefits of this are in mentioned in

Chapter 5. Note that, the second permutation is invalid because there does exist any loop
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for(i=0; i<N; i++)
for(j=0; j<N; j++)

A[i][j] = A[i][j] + u1[i]*v1[j]
+ u2[i]*v2[j]; //S1

for(i=0; i<N; i++)
for(j=0; j<N; j++)

x[i] = x[i] +
beta* A[j][i]*y[j]; //S2

(a) Gemver code.

Valid permutation:
TS1 : (i, j)→ (i, j)
TS2 : (i, j)→ (j, i)

Invalid permutation:
TS1 : (i, j)→ (i, j)
TS2 : (i, j)→ (i, j)

Permutation with outer parallelism:
TS1 : (i, j)→ (j, i)
TS2 : (i, j)→ (i, j)

(b) Permutations of the loop nest.

S1

S2

(c) DDG of code snippet in Figure 4.2a.

−cS1
1 − cS1

2 + cS2
1 + cS2

2 ≥ 0

−cS1
1 + cS2

2 ≥ 0

−cS1
2 + cS2

1 ≥ 0

−cS1
0 + cS2

0 ≥ 0

+cS2
2 ≥ 0

+u− cS2
2 ≥ 0

+u ≥ 0

+u + cS1
2 − cS2

1 ≥ 0

+u + cS1
1 − cS2

2 ≥ 0

+u + cS1
1 + cS1

2 − cS2
1 − cS2

2 ≥ 0

+u + w + cS1
0 − cS2

0 ≥ 0

+2u + w− cS2
2 ≥ 0

(d) Dependence Constraints.

Figure 4.2: Example permutations for a code snippet from gemver benchmark of the Poly-
Bench benchmark suite.
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scaling and shifting factors which will result in a transformation that satisfies the depen-

dence constraints. The last permutation involves loop interchange for the first statement

and fuses with the second statement. This transformation results in a fused loop nest with

an outer parallel loop. Hence, from the example, it is clear there exist many possible valid

permutations and a cost model to determine a profitable one is essential.

Valid permutations also have an added advantage; they allow complex loop fusion heuris-

tics to be modeled in conjunction with loop permutation, loop scaling and loop shifting

transformations. We leverage this advantage to model loop fusion efficiently in our affine

transformation framework. However, for the rest of this chapter, we will assume that the

permutation black box will provide a valid permutation. The details on the approach fol-

lowed in Pluto-lp-dfp to find profitable permutations will be provided in Chapter 5 along

with the details of the permutation black box.

Given the polyhedral representation of a program, the permutation black box provides

a valid loop permutation. The theoretical results presented at the end of this chapter hold

for any black box that provides a valid permutation for all the statements in the loop nest. For

example, the approach followed by Shirako et al. [SPS14] can also be used as an alternative

with minor modifications.

4.3 Loop Scaling and Shifting

The first phase of the Pluto-lp-dfp framework yields a valid permutation. In this section,

we describe our approach to find loop scaling and shifting factors for each level in the in-

put permutation. Since loop fusion/distribution decisions are also made by the black box,

correct loop scaling and shifting coefficients have to be found. Consider the example pro-

gram shown in Figure 4.3a. Let us assume that the black box gives a valid permutation

(i, j)→ (i, j) for both the statements. Note that, the i loop (or dimension i) of both the state-

ments can be fused without violating any dependences. However, fusing dimension j of
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for(i = 0; i < N; i++)
for(j = 0; j < 2*N; j++)

A[i][j]=i+j; // S1

for(i = 0; i < N; i++)
for(j = 0; j < N-1; j++)

B[i][j]=A[i][2*j+1]; // S2

(a) Example code.

Valid Permutation:
TS1 : (i, j)→ (i, j)
TS2 : (i, j)→ (i, j)

Transformation after scaling and shifting:
TS1(i, j) = (i, j)

TS2(i, j) = (i, 2 ∗ j + 1).

(b) Final transformation.

Figure 4.3: Finding loop scaling and shifting factors from a valid permutation.

both the statements will violate the dependence between S1 and S2. The read of the array

A in S2 will happen before it is written in statement S1 violating the read after write depen-

dence from S1 to S2. For the fusion to be valid, the j loop in the second statement must be

scaled up by 2 and then delayed by a factor of 1 along the j dimension, using a combination

of loop scaling and loop shifting transformations.

Algorithm 2: SCALEANDSHIFTPERMUTATIONS(φ, P)
Input : A set of hyperplanes φ = φS1 , . . . φSn for every statement in the program P

such that φSi is a valid permutation at level ` for the statement Si.
Output: Updates the transformation matrix with the transformation found at level `

for each statement S.
1 ψ← Tiling validity + bounding constraints
2 foreach Statement S in P do
3 foreach i ∈ {1, . . . , mS} do
4 if φS(i) = 1 then
5 ψ← ψ ∪ {cS

i ≥ 1}
6 else
7 ψ← ψ ∪ {cS

i = 0}

8 ψ← ψ ∪ {cS
0 ≥ 0}

9 sol← PLUTO-LP-SOLVE(ψ)
10 G ← DDG(P)
11 iSol←SCALE(SOL, G, P)
12 foreach Statement S in P do
13 foreach i ∈ {0, . . . , mS} do
14 TS[`, i] = iSol(cS

i )

15 return

Algorithm 2 takes as input a valid permutation at a level ` as an input and finds loop

scaling and shifting factors for the valid permutation. By the definition of valid permutation

(cf. Definition 4.1, Section 4.2), these loop scaling and shifting factors are guaranteed to

exist. The scaling and shifting factors for the valid permutation at level ` is computed for
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each statement of the program P. The output of Algorithm 2 is a transformation for every

statement in the program. This new transformation may be a combination of loop scaling

and loop shifting transformations for the permutation found in the first phase, as shown

in Figure 4.3. Let φS represent the hyperplane along the canonical axes that represents the

valid permutation for the statement S at the level `. The algorithm collects tiling validity and

dependence distance bounding constraints for every dependence in P, i.e, for every edge in

the DDG of P (line 1). Then, for each statement S, if some component i of φS has a non-zero

value, the lower bound of cS
i is set to 1 (line 5) otherwise, the coefficient is set to zero (line 7).

The algorithm then sets the lower bound of the shifting coefficient cS
0 to be zero (line 8). The

routine PLUTO-LP-SOLVE in line 9, solves the set of constraints that are given as input an LP

formulation with same the objective function as pluto-lp with is to find the lexmin of ~u and

w. The reason for using the above objective function is described in Section 4.3.3. This LP is

guaranteed to have a solution because the input permutation is valid. The rational solutions

are scaled to integral solutions using Algorithm 1 (line 11). The resulting integral solution

will not violate any dependences according to Theorem 3.1. Using these integral solutions

represent the transformation at level ` and transformation matrices for each statement S is

populated in Line 14.

4.3.1 Illustration:

Consider the code snippet shown in Figure 4.3a. Let us assume that the permutation black-

box gave the permutation (i) → (i) The permutation at the first level corresponds to the

hyperplane (1, 0) for both S1 and S2. The tiling validity constraints and dependence dis-

tance bounding constraints are shown in Figure 4.4. At the outermost level, the permutation

black-box returns the hyperplane (1,0) for both the statements. Algorithm 2 adds the con-

straints

cS1
1 ≥ 1, cS2

1 ≥ 0, cS1
0 ≥ 0, cS2

0 ≥ 0, cS1
2 = 0, cS2

2 = 0
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−cS1
1 − 2cS1

2 + cS2
1 + cS2

2 ≥ 0
− cS1

1 − cS1
2 − cS1

0 + cS2
1 + cS2

0 ≥ 0
− cS1

1 + cS2
1 ≥ 0

− 2cS1
2 + cS2

2 ≥ 0
− cS1

2 − cS1
0 + cS2

0 ≥ 0

+u ≥ 0
+ u + 2cS1

2 − cS2
2 ≥ 0

+ u + cS1
1 − cS2

1 ≥ 0
+ u + cS1

1 + 2cS1
2 − cS2

1 − cS2
2 ≥ 0

+ 2u + w + cS1
2 + cS1

0 − cS2
0 ≥ 0

+ 2u + w + cS1
1 + cS1

2 + cS1
0 − cS2

1 − cS2
0 ≥ 0

Figure 4.4: Tiling validity constraints and dependence distance bounding constraints for
code shown in Figure 4.3a
.

to the tiling validity and dependence distance bounding constraints and solves them as an

LP. This gives the solution cS1
1 = 1, cS2

2 = 1 and all other variables in the LP formulation are

assigned the value 0. This corresponds to the transformation (1, 0) for both the statements at

the outermost level. For the second level, the permutation blackbox gives the transformation

(0, 1) for both S1 and S2. Now the algorithm adds the constraints

cS1
2 ≥ 1, cS2

2 ≥ 0, cS1
0 ≥ 0, cS2

0 ≥ 0, cS1
1 = 0, cS2

1 = 0

to the tiling validity and dependence distance bounding constraints show in Figure 4.4.

These constraints are then solved as an LP which gives, and after scaling give the solution

cS1
2 = 1, cS2

2 = 2 and cS2
0 = 1. This corresponds a loop scaling and shifting transformation

for the second statement. The final transformation after scaling and shifting phase of the

Pluto-lp-dfp framework for both the statements is given by

TS1 =

1 0

0 1

 ·
i

j

+

0

0

 =

i

j

 and

TS2 =

1 0

0 2

 ·
i

j

+

0

1

 =

 i

2 ∗ j + 1

 .

The scaling and shifting phase in the Pluto-lp-dfp framework finds loop scaling and shift-
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ing factors level by level. Another design choice would be to find valid permutations for all

levels and then find the scaling and shifting factors for each level individually. This leads

to complete decoupling of the fusion and permutation phase from the scaling and shifting

phase of the Pluto-lp-dfp framework. However, we do not implement it this way because,

the permutation phase would have to maintain additional meta-data on the loop fusion (or

distribution) decisions made at each level and communicate it to the scaling and shifting

phase. This overhead does not exist if both permutation black box and the scaling and shift-

ing phase operate on a per level in a coupled fashion. This is merely an implementation

choice but for the purposes of understanding and analysis of the framework, these phases

can be studied in a decoupled manner.

4.3.2 Correctness of Algorithm 2

Algorithm 2 finds the scaling and shifting factors for the valid permutation provided by

the permutation black box level by level. In this section, we prove that the transformation

obtained by the scaling and shifting phase will not violate any dependence in input program.

Theorem 4.1 Given a program P and a valid permutation φ for a level `, the transformation found

by Algorithm 2 does not violate any dependence.

Proof: The input to Algorithm 2 is a valid permutation φ. By definition of valid permu-

tations (refer Definition 4.1), loop scaling and shifting factors that do not violate any de-

pendences are guaranteed to exist. The variables ~u and w have the same semantics as in

Pluto’s ILP formulation and they do not restrict the space of valid solutions. Hence the LP

formulation is guaranteed to have a solution such that the tiling validity constraints are sat-

isfied. Then, by Corollary 3.1 there exists an integral solution as well. This integral solution

is found by Algorithm 1. Scaling the rational solutions of Pluto-lp to integral solutions will

not violate any dependences according to Theorem 3.1. Therefore, the transformation found

by Algorithm 2 at the level ` will not violate any dependences. �
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The result of Theorem 4.1 can be extended to every level of the program P and hence, the

output of the scaling and shifting phase for the Pluto-lp-dfp framework is a valid transfor-

mation for every statement in the program. In Theorem 4.2 we prove that the transformation

found for every statement in the program by Algorithm 2 consists of linearly independent

hyperplanes at every level.

Theorem 4.2 The transformation hyperplanes of each statement that are obtained by Algorithm 2

are linearly independent with respect to each other.

Proof: The input to Algorithm 2 is a valid permutation for a given level. As mentioned in

Section 4.2, valid permutations for a statement S at each level, provided by the permutation

black-box, are linearly independent with respect to the permutations at the previous levels.

In other words, valid permutations at each level forms a row of a permutation matrix. Thus

by definition, these hyperplanes obtained by the permutation black box for each statement

are linearly independent. Algorithm 2 scales the permutation and shifts it by a constant

offset. These operations do not affect linear independence of hyperplanes. Therefore, the

hyperplanes found by Algorithm 2 for every statement are linearly independent. �

As a consequence of Theorem 4.2, the output of the the scaling and shifting phase is a

transformation of the program which does not violate any dependences. Moreover, these

transformation hyperplanes satisfy every loop carried dependence in the transformed pro-

gram. Thus, with the help of some domain knowledge, if it is known that loop skewing is

not necessary, the first two stages of the Pluto-lp-dfp framework can be used to find affine

loop transformations.

4.3.3 Need for the Cost Function

Algorithm 2 finds valid transformations for the input program. It might appear that the

objective function used in the LP formulation, which is to minimize dependence distances,

is not essential. In this section, we illustrate the need for this cost function with an example.
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Consider the code shown in Figure 4.5a. Let us assume that the permutation black box

for(i=0;i<N;i++)
A[i] = i; // S1

for(i=1;i<=N;i++)
B[i] = A[i-1]; // S2

(a) Example code.

Possible transformation:
TS1(i) = TS2(i) = (i)

Transformation for a parallel loop nest:
TS1(i) = (i + 1)
TS2(i) = (i)

(b) Possible transformations.

Figure 4.5: Need for cost function in the scaling and shifting phase.

gave the permutation TS1(i) = TS2 = (i). This permutation fused both the statements. The

dependence between S1 and S2 will then be carried by the loop i, thus making it sequential.

Now, the scaling and shifting phase has at least two possible solutions:

1. shifting factor of both S1 and S2 is 0 and the loop nest can be fused

2. the shifting factor of S1 is 1 and the shifting factor of S2 is 0. This introduces a delay of

1 for S1 with respect to S2 along dimension i.

The first solution results in a loop carried dependence, making the i loop sequential. Using

Pluto’s cost function will find the second solution and the dependence between S1 and S2

will now be a loop independent dependence in the fused loop nest, thus resulting in a par-

allel loop. Similarly, there are applications (involving up-sampling and down sampling) in

the image processing domain where loop scaling results in a tileable, parallel, loop nest.

4.3.4 Complexity of Algorithm 2

Algorithm 2 solves an LP with the same as the number of variables as pluto-lp which is given

by

v = np + 1 + ∑
S∈P

(mS + 1),
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where np is the number of parameters in the program (which is also the number of compo-

nents in ~u), a single variable for w, and for each statement, there are mS + 1 transformation

coefficients one per dimension of the statement and the shifting coefficient. This LP formu-

lation has tiling validity constraints, dependence distance bounding constraints, and one

additional constraint per variable. Note that, an LP formulation has a time complexity of

O(n3), where n is the number of variables in the LP formulation. Hence, the time complex-

ity of Algorithm 2 is O(v3). This scaling routine is called m times, where m is the maximum

of dimensionalities of all statements in the program. Thus the complexity of the scaling

and shifting phase of the Pluto-lp-dfp framework is O(m × v3). This is polynomial in the

number of statements of the program.

4.4 Skewing Post Pass for Permutability

The output of Algorithm 2 is a transformation that does not include loop skewing. However,

there are classes of programs, like time-iterated stencils, for which loop skewing transforma-

tions enable loop tiling, yielding significant performance gains due to improved cache reuse.

Further, tile-wise concurrent start in stencils can also be achieved in stencil computations via

diamond tiling [BPB12]. In order to incorporate loop skewing transformations, in this sec-

tion, we describe a post processing step that introduces skewing at each level, provided it

enables loop tiling.

The intuition behind the approach is as follows: a dimension j inhibits rectangular tiling

of a loop nest if it has positive and negative components for some set of dependences in

the program. We try to make all the dependences have non-negative components along j, if

possible, by skewing it with outer dimensions that satisfy those dependences that have neg-

ative components along j. Algorithm 3 describes the loop skewing step to enable rectangular

tiling. The algorithm introduces skews in the DDG on a per-SCC basis (line 3). For each SCC

S, the algorithm introduces loop skews level by level from outermost to innermost. Note,
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Algorithm 3: INTRODUCESKEW(T,P)
Input : A valid transformation T for all statements a program P that does not

involve skews.
Output: Introduce skewing transformations in T for permutability at outermost

level.
1 ψ← Tiling validity + bounding constraints for all dependences
2 G ← Data dependence Graph of P
3 foreach s = 1 to |SCCs(G)| do
4 while ∃~hS

i which has a negative component of some dependence do
5 j← outermost level in T that has a negative component for one of the the

dependences
6 D ← the set of dependences that have negative components in the dimension

j of T.
7 I ← ∅
8 foreach d ∈ D do
9 I ← I ∪ {i|~hi · ~d > 0∧ ( 6 ∃k.1 < k < i ∧ ~hk · ~d > 0)}

10 foreach S ∈ S do
11 foreach i = 1 to mS do
12 if i ∈ I ∧ SCC(S) = s then
13 foreach k = 1 to mS do
14 if TS[i, k] ≥ 1 then
15 ψ← ψ ∧ {cS

k ≥ 1}
16 else
17 ψ← ψ ∧ {cS

k = 0}

18 else
19 ψ← ψ ∧ {cS

i = TS[j, i]}

20 ψ← ψ ∧ {cS
0 ≥ 0}

21 sol ← PLUTO-LP-SOLVE(ψ)
22 if ψ is satisfiable then
23 iSol← Scale(sol, G, P)
24 Update transformation at level i with iSol
25 if IsSolParallel(sol) then
26 i← Outermost level in I
27 INTERCHANGEHYPERPLANES(I,J)

28 else
29 break
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that the outermost level will not have a negative component for any dependence. Let j be

the first level that has a negative component for at least one dependence given by:

(∃~d.~d · ~hj < 0) ∧ (@~d.@k.1 ≤ k < j ∧ hk · ~d < 0),

where ~d represents a dependence whose source and target statements belong to the same

SCC S, and ~hj is the hyperplane at level j. Let D be the set of dependences that have neg-

ative components at level j. Every dependence in D must be satisfied at some outer level i

according to the equation:

I = {i|∃~d ∈ D,~hi · ~d ≥ 1∧ ∀k.0 ≤ k < i ∧ ~hk · ~d = 0},

that is, every hyperplane at some level in the set I will satisfy some dependence in the set

D. This set of levels I is collected in lines (lines 8-9). To enable rectangular tiling, algorithm

tries to make dependences in D have positive component at level j by skewing it with the

hyperplane that satisfied the dependence at an outer level i ∈ I using an LP formulation. In

this LP formulation, the lower bound of a transformation coefficient cS
k is set to 1 provided

• statement S belongs to the current SCC, and

• the hyperplane at level i has a non-zero component in dimension k, i.e, the ith row of

the transformation matrix of statement S has a non-zero entry in column k (line 15).

The lower bound of the shifting factor cS
0 of the statement S is reset to 0 (line 20). For state-

ments that do not belong to the current SCC, the algorithm does not change the input trans-

formation (line 19). These constraints are solved along with tiling validity constraints and

dependence distance bounding constraints for all the dependences. This LP formulation

has the same objective function as Pluto, which is to minimize the dependence distance for

every dependence. The resulting rational solution will be scaled to integers using Algo-
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Dep 1 : (1, 1, 0)
Dep 2 : (1,−1, 0)
Dep 3 : (1, 0, 1)
Dep 4 : (1, 0,−1)
Dep 5 : (1, 0, 0)

(a) Distance vectors.

+c1 − c2 ≥ 0 −2c1 + w ≥ 0
+c1 − c3 ≥ 0 −c1 − c2 + w ≥ 0
+c1 ≥ 0 −c1 − c3 + w ≥ 0

+c1 + c3 ≥ 0 −c1 + c3 + w ≥ 0
+c1 + c2 ≥ 0 −c1 + c2 + w ≥ 0

(b) Tiling validity constraints.
Input Permutation: TS(t, i, j)→ (t, i, j)

Skewing at level 2: TS(t, i, j)→ T(t, t + i, j)
Skewing at level 3: TS(t, i, j)→ (t, t + i, t + j)

(c) Skewing at each level.

Figure 4.6: Skewing in heat-2d benchmark.

rithm 1. Thus the newly found hyperplane at level j would be such that every dependence d

would have non-negative components along hj, i.e, ~hj.~d ≥ 0. The algorithm stops introduc-

ing skews at an SCC when either all dimensions become fully permutable to the outermost

level, or when the LP is unsatisfiable (i.e., the skewing sought for does not exist).

At any given level, whenever a loop skewing transformation is found, the algorithm

checks if the newly found hyperplane is a outer parallel hyperplane (Line 25). The routine

ISSOLPARALLEL checks whether ~u = ~0 and w = 0 in the rational solution of the LP formu-

lation (before scaling). If the hyperplane was outer parallel, then in the hyperplane at level

j is swapped with the hyperplane at level i for all the statements, where i is the outermost

level in I (line 27).

4.4.1 Illustration of Loop Skewing in Pluto-lp-dfp

Consider the heat-2d non-periodic stencil benchmark with a single statement. Figure 4.6

shows the constraints and the dependence vectors for the loop nest (t, i, j). The five de-

pendences with the distance vectors and tiling validity constraints are shown Figure 4.6a

and Figure 4.6b. Let c1, c2, c3 correspond to the coefficients of three dimensions of the loop

nest from outermost to innermost. The permutation black box gives the identity transfor-
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mation, and the scaling and shifting phase finds the loop scaling and shifting factors to be

1 and 0 respectively, which does not change the input permutation. With this transforma-

tion, rectangular tiling can not be performed on the loop nest because because dimension i

has a negative component for the second dependence and a positive component for the first

dependence. This is the first level that is considered for skewing. Since, both these depen-

dences are satisfied at the outermost level t, the algorithm tries to skew the hyperplane at

level 2 with the hyperplane at level 1. It adds the constraints

c1 ≥ 1,

c2 ≥ 1,

c3 = 0,

c0 ≥ 0,

to the tiling validity constraints (Figure 4.6b) and solves it as an LP with the with the same

objective as that of Pluto. This gives the solution c1 = 1, c2 = 1 and c3 = 0 which does not

change after scaling. This corresponds to the hyperplane t + i at level 2. This new hyper-

plane is permutable to the outermost level. Similarly, the last component of dependence 4 is

made non-negative by skewing the third dimension with the first dimension. This provides

the t + j at the third level. The final transformation is given by

(t, i, j)→ (t, t + i, t + j),

which is the same as the transformation found by Pluto-ilp. Further, both Pluto and Pluto-lp-

dfp finds diamond tiling hyperplanes using the approach provided by Bandishti et al. [BPB12],

which yields the hyperplane

(t, i, j)→ (t− i, t + i, t + j),
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and enables tile-wise concurrent start after loop tiling.

4.4.2 Soundness and Completeness of the Skewing Phase

In this section, we first prove that Algorithm 3 will not violate any dependence and will not

affect the linear independence of hyperplanes.

Theorem 4.3 Given a program P and a valid transformation TS for every statement S in P, loop

skewing introduced by Algorithm 3 is such that

1. it does not violate any dependence, and

2. the transformation hyperplanes of S, after loop skewing, continue to be linearly independent

provided the hyperplanes in TS are linearly independent.

Proof: The input to Algorithm 3 is a valid transformation consisting of linearly indepen-

dent hyperplanes at each level. If the loop nest is already tileable, then the dependence

vectors of all dependences will have non-negative components in all dimensions and Algo-

rithm 3 will not introduce any skews. In case a skew is introduced at a level j, the resulting

hyperplane for each statement S will satisfy the tiling validity constraints. This ensures that

no dependence is violated. Also, the new hyperplane continues to be linearly independent

to other hyperplanes of S after skewing because, the newly found hyperplane corresponds

to an elementary row operation of the transformation matrix. Hence, the the transforma-

tion found by Algorithm 3 will not violate any dependence and gives a transformation with

linearly independent hyperplanes. �

Algorithm 3 also has certain interesting properties with respect to the transformation

found before and after skewing. If the resulting loop is not parallel, the transformation

found by Algorithm 3 does not change dependence satisfaction, i.e, if a dependence d was

satisfied at a level ` before loop skewing was introduced, then the dependence d continues

to be satisfied at level ` after the transformation. In cases where outer parallel hyperplanes
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are found, the level at which the dependences are satisfied will be pushed to the lower levels

because, the outer parallel loops are permuted to outer levels.

In Theorem 4.4, we prove the completeness of the loop skewing phase in Pluto-lp-dfp.

That is, the loop skewing transformations in Pluto-lp-dfp framework are introducing only if

it enables loop tiling.

Theorem 4.4 Given a valid transformation T for a program P, Algorithm 3 does not introduce any

skewing transformations in cases where T was tileable with rectangular tiles.

Proof: A loop nest can be tiled with rectangular tiles when all the dependences have non-

negative components along all dimensions. Algorithm 3 tries to introduce a skew only when

there is a negative component for at least one dependence d at a level ` of T. This means

that the hyperplane at level ` can not be permuted to the outermost level. This is a contra-

diction to our assumption that the input transformation T is tileable with rectangular tiles.

Therefore, Algorithm 3 would not introduce loop skewing, if the the transformation T was

not tileable. �

4.4.3 Complexity of the Skewing Phase

Algorithm 3 introduces skews on a per-SCC basis, level by level. Let us assume every state-

ment in the program is of dimensionality m. At each level, the algorithm solves an LP with

(m + 1)× |S| variables. For each SCC m LPs are solved and therefore the time complexity

of finding loop skewing transformations for each SCC is given by O(m4|S|3), assuming the

time complexity of solving an LP formulation with n variables is O(n3). The number of

SCCs for a given program is upper bounded by the number of statements. Therefore, the

time complexity of the skewing phase is O(m4|S|4).
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4.5 Comparison of Transformations Found by Pluto and Pluto-

lp-dfp

The Pluto algorithm models the full space of affine loop transformations in the non-negative

orthant, where as, the Pluto-lp-dfp framework models affine transformations in a decou-

pled fashion. Let us assume that both Pluto and Pluto-lp-dfp use the same fusion model

described in Section 2.2.4. It is very easy to see that every solution in the space of Pluto-lp-

dfp is also present in the space of transformations modeled by Pluto. However, Pluto-lp-dfp

does not model the full space of affine transformations. In this section, we provide intuitions

on the the kind of transformations that can not be found by Pluto-lp-dfp with examples.

1. Consider a 3-d loop nest with a single statement S and dependences given by the fol-

lowing dependence vectors (2, 0, 0), (1, 1, 0), and (1, 1,−1). Let (t, i, j) be the valid

permutation obtained by the permutation blackbox. Algorithm 2 finds the loop scal-

ing and shifting factors to be 1 and 0 respectively. In our approach, we skew the third

dimension with the dimension that satisfies the dependences that have negative com-

ponents along j, which is the dimension t, and find the transformation TS(t, i, j) →

(t, i, t + j). However, Pluto finds the transformation TS(t, i, j) → (i + j, t, i), because

it has a dependence distance of 1 at the outer most level. We will not be able to find

the transformation i + j at any level because the third dependence is satisfied at level 1

and not at the second level. One can also construct similar examples where the trans-

formation i + j might result in an outer parallel loop and Pluto-lp-dfp might miss this

transformation completely. Such issues arise because the permutation blackbox is not

aware that the loop skewing step will find a communication free parallel loop. Imple-

mentation of such a blackbox is not discussed in this thesis. Thus, even though both

Pluto and Pluto-lp-dfp perform loop skewing to enable loop tiling, the skewing factors

might differ based on the valid permutation obtained in the first phase.
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2. Pluto-lp-dfp introduces loop skewing only when loop skewing enables loop tiling.

However, in rare cases, loop skewing might also enable loop fusion but not loop tiling.

In cases, Pluto’s cost model might find a fused loop nest with a loop skewing transfor-

mation, where as, Pluto-lp-dfp will distribute the loop nests. We will discuss one such

example in Chapter 7.

3. The permutation black-box, like the one that we describe in Chapter 5, might not have

the capability to choose permutations based on dependence distances. It might end up

favoring permutations that enable outer parallelism and may not distinguish the rest.

Therefore, even when restricted to loop permutations, transformations found by both

Pluto and Pluto-lp-dfp might differ.

4.6 Correctness and Complexity of the Pluto-lp-dfp Frame-

work

In this section, we prove the correctness of the Pluto-lp-dfp framework and provide the

time complexity of the Pluto-lp-dfp framework. The Pluto-lp-dfp framework decouples the

auto-transformation step of the Pluto algorithm into three phases. In the first step, a valid

permutation is found using a permutation blackbox. The second phase finds loop scaling and

shifting transformations for the permutation found by the black-box. By the semantics of the

black-box these scaling and shifting factors are guaranteed to exist. Then, by Theorems 4.1

and 4.2, the transformation obtained will not violate any dependences and the transforma-

tion hyperplanes will be linearly independent. Then, loop skewing is introduced in final

step only if it enables loop tiling. According to Theorem 4.3, the skews introduced will not

violate any dependence and the transformation hyperplanes continue to be linearly inde-

pendent. Thus, the correctness of the transformations found by Pluto-lp-dfp framework

follows directly from Theorems 4.1, 4.2 and 4.3.
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Pluto-lp-dfp framework uses LP formulations to find loop scaling and shifting factors

as well as to introduce loop skewing transformations whenever they enable tiling. As de-

scribed in Sections 4.3.4 and 4.4.3, both scaling and and shifting phase, and loop skewing

phase are polynomial in the number of statements. Thus, the Pluto-lp-dfp framework finds

a transformation in polynomial time provided, valid loop permutations are found in poly-

nomial time. We describe our approach to find valid loop permutations in Chapter 5.

Statement clustering heuristics that have been proposed ([MY15], [Bag15]), are orthog-

onal to the decomposition of the scheduling problem in Pluto-lp-dfp. We hypothesize that

these clustering heuristics tend to postpone the problem of scalability of the Pluto-algorithm

by reducing the number of variables seen by the ILP solver rather than eliminating ILP it-

self. These statement clustering heuristics can be easily incorporated as a pre-processing

step, before fusion and dimension matching, and we provide one such statement clustering

heuristic in Chapter 5.



Chapter 5

Valid Permutations

The Pluto-lp-dfp framework described in Chapter 4 used a black-box to find a valid permu-

tation. In this chapter, we provide our approach to find a valid permutation. Note that, the

first phase of the Pluto-lp-dfp not only finds valid permutations, but also takes decisions on

loop fusion. Hence, the permutation blackbox should be able to model various loop fusion

opportunities. This chapter describes the implementation of our approach to find valid per-

mutations and is organized as follows: in Section 5.1, we describe our approach to find valid

permutations using a data structure called Fusion Conflict graph. We introduce a clustering

technique in Section 5.2 to cluster the vertices of the FCG and provide a polynomial time

approach to find valid permutations. Then, in Sections 5.3 and 5.4, we provide two polyno-

mial time, parallelism-preserving, fusion heuristics and incorporate them seamlessly in the

Pluto-lp-dfp framework.

5.1 Finding Valid Permutations

In this section, we describe our approach to find a valid permutation in the Pluto-lp-dfp

framework. According to Definition 4.1, a permutation P is said to be valid if there are loop

scaling and loop shifting factors for each level in P, such that the resulting transformation

after scaling and shifting, will not violate any dependences. The objective of finding a good
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permutation is to enhance locality by enabling loop tiling, fusion and to improve parallelism.

Since loop fusion/distribution decisions are also made at this stage, a framework which

allows to model various fusion opportunities is desirable. With this objective, we present a

data structure called the fusion conflict graph, which aids in efficiently modeling loop fusion,

while looking for valid permutations.

5.1.1 Fusion Conflict Graph

In this section, we provide the formal definition of the fusion conflict graph and its properties

that enable us to find valid permutations. A fusion conflict graph (FCG) is an undirected

graph F〈V, E〉, where the set of vertices is given by V = {S1
1, S2

1, . . . , S
mS1
1 , S1

2, . . . , SmSn
n }, i.e,

each vertex corresponds to a dimension of a statement in the program. An edge between

Si
s and Sj

t represents that the ith dimension of Ss and jth dimension of St can not be fused

together and permuted to the outermost level. If the loop nest can be fully permuted, then

it can be tiled as well. Hence, an edge in the fusion conflict graph encodes invalidity of loop

fusion and tileability.

Once the FCG is constructed, the objective is to find convex independent sets of the FCG.

Definition 5.1 (Convex independent set) Given a fusion conflict graph, we say that an independent

set I of the fusion conflict graph is convex, if for each Si
t ∈ I , the following condition holds:

∀Ss.(Ss, St) ∈ GE, ∃Sj
s ∈ I , (5.1)

where GE is an edge in the DDG.

Intuitively, if a vertex of the FCG corresponding to a dimension i of a statement St is present

in I , then, for every predecessor Ss of St in the DDG, there must exist some vertex Sj
s in I .

Each convex independent set represents the set of vertices that can be fused and permuted to

the outermost level. Any pair of non-adjacent vertices Si
s, Sj

t ∈ I , indicate that fusing these
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Construct FCG Color FCG with m colors

Rebuild FCG

Update FCG

Valid permutation

Data Dependence Graph

Dependence constraints

Figure 5.1: Our approach to find a valid permutation.

dimensions will not violate any dependence between Ss and St. Convexity of I ensures that

transitivity of dependences is not violated. We obtain a convex independent set by a convex

coloring of the FCG. Given a fusion conflict graph, we say that the coloring of the fusion

conflict graph is convex, if the vertices with the same color form a convex independent set.

In the rest of the thesis, we refer to convex coloring of the FCG as coloring of the FCG.

We later prove formally in Section 5.2.3 that convex independent sets obtained via convex

coloring correspond to valid permutations.

Overview: The overview of our approach is shown in Figure 5.1. The first step is to con-

struct the fusion conflict graph using the dependence graph and dependence constraints

(described in Section 5.1.2). We use the term dependence constraints to represent union

of tiling validity constraints and dependence distance bounding constraints given in Equa-

tions 2.4 and 2.5. After constructing the FCG, it is colored level by level. In order to enforce

convexity on the coloring routine, we use the topological ordering on SCCs in the DDG to

drive the coloring algorithm. The upper bound on the number of colors to be used for col-

oring is given by m, where m is the maximum of dimensionalities of all statements in the

program. This establishes a mapping of colors to dimensions of the loop nest. We assume

that the colors are ordered; ordering of colors gives the permutation for every statement

from the outermost level to the innermost. If the loop nest can be completely fused and

tiled, then FCG can be successfully colored with m colors. The vertices that obtain the same

color represent the dimensions that can be fused and permuted to the outermost level. FCG

may not be colorable with m colors, either due to a permute preventing or a fusion prevent-
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ing dependence. If coloring with a color c failed due to a permute preventing dependence,

dependences that are satisfied at outer levels are removed and the FCG is rebuilt. Now,

the dimension corresponding to vertices that are colored with c can be permuted only with

the loops at lower levels. Intuitively, rebuilding the FCG marks the beginning of a per-

mutable band of loops. If coloring failed due to a fusion preventing dependence, loops are

distributed and the DDG and the FCG are updated. When coloring of FCG fails, it marks

one of the following:

1. if coloring fails due to a intra-SCC permute preventing dependence, then it marks the

beginning of a new permutable band of loops at the current level, or,

2. if coloring fails due to a inter-SCC fusion or permute preventing dependence, then the

loop nests are distributed at this level. The statements in these SCCs remain fused up

to the current level that is being colored and will be distributed at this level.

Details of this coloring step are given in Section 5.1.3. Once all the vertices are colored, the

ordering of colors can be used to obtain the permutation.

5.1.2 Construction of the Fusion Conflict Graph

In this section, we describe the construction of the fusion conflict graph. Recall that, each

dimension of a statement in the program corresponds to a vertex in the FCG. An edge in the

FCG represents the dimensions that can not be fused and permuted to the outermost level.

Algorithm 4 incrementally constructs the fusion conflict graph by adding edges between

vertices of the FCG in the following stages:

• intra-statement permute preventing edges,

• inter-statement fusion and permute preventing edges,

• inter-statement edges between statements that are independent and,
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• intra-statement edges between dimensions of the same statement.

Algorithm 4: CONSTRUCTFUSIONCONFLICTGRAPH

Input : Dependence Graph G〈GV , GE〉
Output: Fusion Conflict Graph F〈FV , FE〉

1 foreach S ∈ GV do
2 ADDPERMUTEPREVENTINGEDGES(S)

3 foreach pair of statements (Ss, St) such that
s > t do

4 ADDINTERSTMTEDGES(Ss, St)

5 G∗〈GV , G∗E〉 ← TRANSITIVECLOSURE(G)
6 foreach pair of statements (Ss, St) do
7 if (Ss, St) /∈ G∗E ∧ (St, Ss) /∈ G∗E then
8 foreach i ∈ 1 . . . mSs do
9 foreach j ∈ 1 . . . mSt do

10 FE ← FE ∪ {(Si
S, Sj

S)}

11 foreach S ∈ GV do
12 foreach i ∈ 1 . . . mS do
13 FE ← FE ∪ {(Si, Sj)|i 6= j ∧ 1 ≤ j ≤

mS}

14 return F
15 function

ADDPERMUTEPREVENTINGEDGES(Stmt S)
16 ψs ← All intra statement dep constraints

for S foreach i ∈ 1 . . . mS do
17 if ((cS

i ≥ 1) ∧ ψs) is infeasible then
18 FE ← FE ∪ {(Si, Si)}

19 function ADDINTERSTMTEDGES(Ss, St)
20 ψst ← Dep constraints for all deps

between Ss and St
21 foreach i ∈ 1 . . . mSs do
22 foreach j ∈ 1 . . . mSt do
23 if ((cSs

i ≥ 1∧ cSt
j ≥ 1) ∧ ψst) is

infeasible then
24 FE ← FE ∪ {(Si

s, Sj
t)}

Adding intra-statement edges: Algorithm 4 adds intra-statement permute preventing edges

in the routine ADDPERMUTEPREVENTINGEDGES, for each dimension of a statement S. These

edges appear as self-edges on the vertices of the FCG. Using the DDG G, the routine collects

all intra-statement dependences for S as shown in Equation 5.2:

DS ≡ {De|e = (S, S) ∈ GE}, (5.2)

where e is a self edge on a statement S in G. For each dependence in DS, dependence con-

straints are constructed, which include both tiling validity constraints and dependence dis-

tance bounding constraints and is denoted by ψs in Algorithm 4 (line 16). If a dimension i is

not permutable to the outermost level, then it must have a negative component along i for at
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least one intra-statement dependence. To find if i is permutable to the outermost level, we set

the lower bound of the coefficient ci
S, to 1. Coefficients corresponding to other dimensions of

S, except c0
S (loop shifting coefficient), are set to zero. Note that, none of the transformation

coefficients are constrained to be integers. The satisfiability of these constraints is checked

using an LP formulation with the same objective as Pluto. As described in Lemma 3.1, the

solution of this LP formulation is rational. This solution can be further scaled to integers

without violating dependences according to Theorem 3.1, because the newly added con-

straints either define lower bounds for variables or constrain them to zero and neither of

these are violated by scaling. Hence, the existence of a rational solution implies that there

exists an integer solution and vice versa. Therefore, if these constraints are unsatisfiable,

then dimension i is not permutable. Hence, we add a self edge on the vertex Si in the FCG

(line 18) which prevents coloring of the vertex i in the coloring phase. This edge will be re-

moved only when permute preventing dependences are satisfied at some outer level and the

FCG is reconstructed. Note that, if we are considering just feasibility of constraints, depen-

dence distance bounding constraints can be removed in the above formulation. However,

we intend to solve these constraints as an LP with the same objective as Pluto, because it

allows us to model parallelism preserving loop fusion heuristics alongside loop permuta-

tions, loop scaling and loop shifting transformations, which we describe in Section 5.3. The

objective function of the Pluto algorithm is meaningful only when dependence distances are

upper bounded, and therefore, dependence distance bounding constraints are essential. In

the rest of this thesis, whenever we check the satisfiability of a set of constraints, we solve

the constraints using an LP, with the same objective function as the Pluto algorithm.

Adding inter-statement edges: Algorithm 4 adds inter-statement permute and fusion pre-

venting edges in the routine ADDINTERSTMTEDGES. For each pair of statements Ss and St

that are adjacent in the DDG G, it collects all dependences (both intra and inter-statement
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dependences) between them according to Equation 5.3:

Dst ≡ {De|e = (Ss, St) ∈ GE ∨ e = (St, Ss) ∈ GE}. (5.3)

Validity of fusing dimension i of Ss with dimension j of St and permuting to the outermost

level is checked by solving dependence constraints ψst along with the constraints ci
s ≥ 1

and cj
t ≥ 1 (line 23). Coefficients corresponding to other dimensions of statements Ss and St,

apart from the shifting coefficient, are set to zero. The shifting coefficients c0
s and c0

t are lower

bounded by 0. If the above constraints are unsatisfiable, then, an edge is added between Si
s

and Sj
t in the FCG. This is because, fusing dimension i of Ss with dimension j of St will

violate some dependence between Ss and St. Again, the satisfiability of these constraints are

checked with an LP formulation with the same objective as Pluto.

Fusing two statements that do not have any reuse tend to pollute caches, resulting in

increase of conflict and capacity misses, increased register pressure and so on. Therefore, to

avoid fusion in such cases, we first construct the transitive closure of the DDG. This adds

edges between statements that are transitively dependent on each other. For every pair of

vertices (Ss, St), if they are not adjacent in the transitive closure of DDG, i.e, if

(Ss, St) /∈ G∗E ∨ (St, Ss) /∈ G∗E,

then fusion preventing edges are added between each and every dimension of Ss and St in

the FCG (lines 6-10). Addition of these edges ensure that statements that are not dependent

are distributed at the outermost level itself. These edges are added only when the FCG is

constructed for the first time and the above step is skipped during subsequent reconstruc-

tions of the FCG to avoid unnecessary distribution of statements at the inner levels.

Finally, the algorithm adds edges between vertices of the FCG that correspond to dimen-

sions the same statement (line 13), ensuring that two dimensions of the same statement are
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for(i=0; i<N; i++)
for(j=0; j<N; j++)

A[i][j]=i+j; \\ S1

for(i=0; i<N; i++)
for(j=0; j<N; j++)

B[i][j]=A[j][i]; \\ S2

for(i=0; i<N; i++)
for(j=0; j<N; j++)

C[i][j]=A[i][j]+B[N-i][j]; \\ S3

(a) Example code.

S1

S2

S3

(b) DDG.

S1

S2

S3

i j

(c) FCG.

Figure 5.2: FCG construction.

not given the same color.

Illustration: Consider the example shown in Figure 5.2a. The code has three statements

with each statement in a two dimensional loop nest. Therefore, the corresponding FCG

shown in Figure 5.2c has a six vertices. The DDG corresponding to the example code is

shown in Figure 5.2b. There are no intra-statement dependences in the program and hence

intra-statement permute preventing edges are not added. Then the algorithm adds inter-

statement fusion and permuting preventing edges in the routine ADDINTERSTMTEDGES.

For example, the loop i of S1 cannot be fused with loop i of S2 because fusing it will violate

the RAW dependence between S1 and S2. More specifically, the read A[j][i] would read a

stale value in the statement S2, and hence, an edge is added between vertex Si
1 and Si

2 in the

FCG. All intra-statement fusion and permute preventing edges are shown as solid lines in

Figure 5.2c. In the example, all statements are dependent and therefore no inter-statement

edges are added between statements that do not have a path between them in the DDG.

Finally edges between dimensions of the same statement are added and shown as dashed

lines in Figure 5.2c.
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5.1.3 Coloring the Fusion Conflict Graph

In this section, we provide details of our convex coloring algorithm to obtain convex inde-

pendent sets of the fusion conflict graph. We assume that SCCs in the DDG are numbered

according to a topological ordering of SCCs. Vertices of the FCG are colored by the topo-

logical ordering of the SCCs to which the statements belong. The coloring routine is driven

by the topological ordering of SCCs to enforce convexity of the independent set obtained

via coloring. We also assume that the colors are ordered, with smaller numbered colors

representing outer dimensions.

Algorithm 5 colors the vertices of the FCG, one color at a time starting from the first SCC

in the topological order. The routine COLORSCC (line 5) tries to color the vertices of the

FCG corresponding to the statements SCC i in the DDG. It returns true if the coloring suc-

ceeds for the SCC i; else it returns false. If there are many dimensions that can be colored,

it colors the outermost dimension in the original program order. At the outermost level,

the coloring of the first SCC will succeed. This is because, for any given SCC i, there exists

at least one dimension which fuses every statement in SCC i without violating any depen-

dences. However, coloring of any subsequent SCC might fail at any level. This will either

be due to a permute preventing dependence or a fusion preventing dependence. To dis-

tinguish the above two cases, the routine ISPERMUTEPREVENTING checks if vertices of the

FCG corresponding to dimensions of statements in SCC i can be colored in isolation. If not,

the routine returns false, indicating that, coloring in Line 5 failed due to permute preventing

edge in the FCG. Algorithm 5 removes dependences that are satisfied at the outer levels and

reconstructs the FCG (lines 7,8). If coloring failed due to a fusion preventing edge, that is,

the routine ISPERMUTEPREVENTING returned false, we distribute the current SCC and the

subsequent SCCs from the previous SCCs. We also update the DDG and the FCG by remov-

ing the edges corresponding to the dependences that are satisfied due to this distribution

(lines 20-23). Note that, the routine COLORSCC can fail for a maximum of two times for
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Algorithm 5: COLORFCG
Input : FCG F〈FV , FE〉 and DDG G〈GV ,GE〉 of a program P.
Output: Performs a convex coloring of the FCG, finds a valid permutation level by

level and then finds loop scaling and shifting factors for the permutation.
using Algorithm 2.

1 maxColors← max{ms : s ∈ S}
2 foreach c ∈ 1 . . . maxColors do
3 foreach i = 1 to |SCCs(DDG)| do
4 V ← set of vertices in SCC i of G
5 while ¬ColorSCC(V,c,F) do
6 if ISPERMUTEPREVENTING (V, C,

F) then
7 Update DDG by removing

deps satisfied at outer levels
8 F ← CONSTRUCTFUSION-

CONFLICTGRAPH(G)
9 else

10 UPDATEDDGFCG(i, G, F)

11 φ←ADDPERMUTATION(c, F, G)
12 SCALESHIFTPERMUTATIONS(φ, P)

13 function ISPERMUTEPREVENTING(vertices V,
color c, FCG F)

14 F′V = {Si ∈ FV |S ∈ V}
// Get the induced subgraph in F by F′V

15 F′ = F[F′V ]
16 if ColorSCC(V,color, F′) then
17 return true

18 return false

19 function UPDATEDDGFCG(scc1, DDG G,
FCG F)

20 V1 = {S ∈ GV |get_scc(S) < scc1}
21 V2 = {S ∈ GV |get_scc(S) ≥ scc1}
22 FE = FE − {(Si

1, Sj
2)|S1 ∈ V1 ∧ S2 ∈ V2}

23 GE = GE − {(Si, Sj)|Si ∈ V1 ∧ Sj ∈ V2}
24 function ADDPERMUTATION(color c, FCG F,

DDG G, program P)
25 foreach S ∈ P do
26 foreach i ∈ 1, . . . mS do
27 if Si is colored c then
28 φi

S ← 1

29 else
30 φi

S ← 0

any given SCC; once due to a permute preventing edge in the SCC and once due to a fusion

preventing edge. Thus, the loop in Line 5 is guaranteed to terminate. Algorithm 5 colors

all SCCs of the DDG with a color c. This corresponds to a valid permutation at the level l,

which we prove formally in Section 5.2.3. The loop scaling and shifting factors for the valid

permutation at level l are found immediately (line 12), using the scaling and shifting routine

SCALESHIFTPERMUTATIONS described in Section 4.3. Once loop scaling and shifting factors

are found, Algorithm 5 colors the FCG with the color c + 1.
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S1

S2

S3

i j

(a) FCG before distribu-
tion.

S1

S2

S3

(b) DDG after distribu-
tion.

S1

S2

S3

i j

(c) FCG after distribu-
tion.

S1

S2

S3

i j

(d) FCG after coloring
with second color.

Figure 5.3: Coloring the FCG of the program shown in Figure 5.2 using Algorithm 5.

Illustration: Consider the example FCG shown in Figure 5.2c for the example program

shown in Figure 5.2a. The coloring of this FCG using Algorithm 5 is shown in Figure 5.3. The

routine colors the dimension i of statement S1 and then the dimension j of S2 with the first

color (blue). However, while coloring statement S3 the routine COLORSCC fails to color both

Si
3 and Sj

3. The routine ISPERMUTINGPREVENTING checks that both vertices Si
3 and Sj

3 can

be colored in isolation, and therefore returns false. This calls the routine UPDATEDDGFCG

which leads to cutting the DDG and updating the FCG. This cut distributes the loop nest

at the outermost level, and the dependence between every S1 and S3, and S2 and S3. The

updated DDG is shown in Figure 5.3b. FCG is updated accordingly, by removing the edges

that connect any vertex belonging to any statement before before S3 with any vertex greater

than or equal to S3 in the topological order. The resulting FCG is shown in Figure 5.3c. The

algorithm then colors the vertex Si
3 in the FCG. This results in the permutation

φS1 = (1, 0), φS2 = (0, 1), φS3 = (1, 0)

at the outermost level. This scaling and shifting factors are then found immediately using

Algorithm 2. Then, Algorithm 5 colors the FCG with the second color (red) and the resulting
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for (i=0; i<N; i++) {
for (j=0; j<N; j++) {

A[i][j] = i+j; \\ S1
B[j][i] = A[i][j]; \\ S2
}

}

for (i=0; i<N; i++)
for (j=0; j<N; j++)

C[i][j] = A[i][j] + B[N-i][j]; \\ S3

Figure 5.4: Transformed code for the input program shown in Figure 5.2a.

coloring is shown in Figure 5.3d which corresponds to the permutation

φS1 = (0, 1), φS2 = (1, 0), φS3 = (0, 1),

at the second level. The scaling and shifting factors will be found to be 1 and 0 respectively

for all the statements by Algorithm 2. The transformed code is shown in Figure 5.4.

The coloring routine described in Algorithm 5 is exponential in the size of the SCCs in

the DDG. Moreover, if there exist many possible valid colorings for an SCC, then selecting

one of these valid colorings becomes tedious. Suppose the goal is to locally fuse as many

successors as possible for a given SCC S, then in the worst case, one would have to enumer-

ate all possible colorings for every successor of S and then decide the dimension of S to be

colored. Therefore, in Section 5.2, we provide a clustering heuristic which not only results in

a polynomial time SCC coloring routine, but also makes way for simplistic implementation

of greedy coloring heuristics.

5.2 Clustering

In this section, we describe a clustering heuristic to cluster the vertices of the FCG based

on SCCs in the DDG. We then present a polynomial time greedy coloring heuristic which

can be efficiently implemented using the clustered FCG. Later, in Section 5.3, we show how



5.2. Clustering 84

a parallelism-preserving fusion heuristic can be seamlessly incorporated in the clustered

FCG, without affecting the coloring routine.

5.2.1 Construction of the FCG with Clustering

Algorithm 6: BUILDSCCCLUSTERFCG

Input : Dependence Graph G〈GV , GE〉
Output: Fusion Conflict Graph F〈FV , FE〉

1 foreach SCCs S ∈ G do
2 ADDPERMUTEPREVENTINGEDGES(S)

3 foreach pair of Sccs (Ss, St) such that s < t do
4 ψst ← GETINTERSCCDEPCST(Ss, St)
5 foreach i ∈ 1 . . . dim(Ss) do
6 foreach j ∈ 1 . . . dim(St) do
7 ψij ←

∧
S∈Ss

(ci
S ≥ 1)

∧
S∈St

(cj
S ≥

1) ∧ ψst
8 if ψij is infeasible then
9 FE ← FE ∪ {(Si

s, Sj
t)}

10 foreach Sccs S ∈ G do
11 foreach i ∈ 1 . . . dim(S) do
12 FE ← FE ∪ {(Si, Sj)|i 6= j ∧ 1 ≤ j ≤

mS}

13 return F
14 function

ADDPERMUTEPREVENTINGEDGES(SCC S)
15 ψs ← All intra SCC dep constraints for

SCC S
16 foreach i ∈ 1 . . . dim(S) do
17 ψi ←

∧
S1∈S

(ci
S1
≥ 1) ∧ ψs

18 if ψi is infeasible then
19 FE ← FE ∪ {(Si, Si)}

Our clustering heuristic is based on the observation that, for every statement in the SCC,

there exists at least one dimension i that fuses all the statements of the SCC without violating

the tiling validity constraints. Therefore, if we assume that every statement in an SCC gets

the same transformed schedule, at a given level, then all statements within an SCC can be

clustered. We define dimensionality of an SCC to be the maximum of dimensionalities of all

statements in the SCC. Each vertex in the clustered FCG corresponds to a dimension of an

SCC in the DDG. Algorithm 6 depicts the construction of SCC clustered FCG. It is similar

to Algorithm 4 but with a few minor changes. Addition of permute preventing edges is

performed on a per-SCC basis by considering the intra-SCC dependences. For a given SCC
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S, the algorithm first collects intra-SCC dependence constraints according to the formula

DS ≡
∧

e∈DDG
(De|SCC(Src(e)) = SCC(Dest(e)) = S),

where the functions Src(e) and Dest(e) return the source and destination statements of the

an edge e in the DDG, and the function SCC(V) returns the SCC to which the vertex V

belongs in the DDG. Note that all the statements in the SCC are assumed to have the same

schedule, and hence, the lower bound of ci’s of all statements in the SCC are set to 1 (line 17)

while checking the permutability of a dimension i. Inter-SCC edges for every pair SCCs in

the DDG, by considering both intra and inter-SCC dependences (lines 3-9) according to the

equation

D ≡
∧

e∈DDG
(De|SCC(Src(e)), SCC(Dest(e)) ∈ {Ss, St}).

These edges are added for every pair of dimensions (i, j) of SCCs (Ss, St). Lower bounds

of transformation coefficients corresponding to i and j of all statements in SCCs Ss and St

are set to 1. Transformation coefficients corresponding to all other dimensions, apart from

the shifting coefficient, are constrained to 0. Satisfiability of these constraints are checked

with an LP formulation, in the same way as Algorithm 4, and edges in the FCG are added if

the constraints are unsatisfiable. Algorithm 6 also adds edges in the FCG between vertices

corresponding to SCCs that are not connected in the DDG (not shown in pseudocode). It

also adds edges between vertices corresponding to dimensions of the same SCC (line 12).

5.2.2 Coloring SCC Clustered FCG

Coloring of the clustered FCG is very similar to Algorithm 5. The obvious difference in

semantics of the coloring routine is that, when a vertex of the clustered FCG is colored, it

defines a permutation for every statement in the SCC, instead of a single statement. Now
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Algorithm 7: COLORCLUSTERFCG
Input : FCG F〈FV , FE〉 and DDG G〈GV , GE〉 of a program P
Output: Performs a convex coloring of the FCG, finds a valid permutation level by

level and then finds loop scaling and shifting factors for the permutation.
using Algorithm 2.

1 maxColors← max{ms : s ∈ S}
2 foreach c ∈ 1 . . . maxColors do
3 foreach i = 1 to |SCCs(DDG)| do
4 while ¬ColorSCC(i,c,F) do
5 if ISPERMUTEPREVENTING(I, F)

then
6 Update DDG by removing

deps satisfied at outer levels
7 F ← CONSTRUCTFUSION-

CONFLICTGRAPH(G)
8 else
9 UPDATEDDGFCG(i, G, F)

10 φ←ADDPERMUTATION(c, F, G)
11 SCALESHIFTPERMUTATIONS(φ, P)

12 function ISPERMUTEPREVENTING(Scc S,
FCG F)

13 if @j ∈ {1, . . . , dim(S)}|(Sj, Sj) ∈ FE then
14 return False

15 else
16 return True

17 function UPDATEDDGFCG(scc1, DDG G,
FCG F)

18 V1 = {S ∈ GV |get_scc(S) < scc1}
19 V2 = {S ∈ GV |get_scc(S) ≥ scc1}
20 FE = FE − {(Si

1, Sj
2)|S1 < scc1∧ S2 ≥

scc1}
21 GE = GE − {(Si, Sj)|Si ∈ V1 ∧ Sj ∈ V2}
22 function ADDPERMUTATION(color c, FCG F,

DDG G, program P)
23 foreach S ∈ P do
24 foreach i ∈ 1, . . . mS do
25 if Si is colored c then
26 φi

S ← 1

27 else
28 φi

S ← 0

the routine COLORSCC will have m choices to color a vertex. Since the permutation for

statements within the SCC is fixed, it does not consider any choices for statements within

the SCC. Apart from yielding a polynomial time coloring heuristic, clustering also has the

following advantages: (1) simplification of permutability check in Line 6 of Algorithm 5,

and (2) greedy coloring heuristics can be employed in a simplistic manner.

Algorithm 7 colors the vertices of the clustered FCG based on topological ordering of the

SCCs. The coloring routine COLORSCC in line 4 now checks if the vertex corresponding to a

dimension of SCC i can be colored from outermost to innermost. Therefore, the routine has
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to check at most m vertices where m is the dimensionality of the SCC i. In cases where there

are multiple vertices that can be colored, the algorithm employs a greedy fusion heuristic

which we describe later in this section. If coloring succeeds, then Algorithm 7 proceeds with

coloring the next SCC. If coloring fails, then it checks if the coloring failed due to a fusion

preventing edge or a permute preventing edge using the routine ISPERMUTEPREVENTING

(line 5). Note that, the implementation of the function ISPERMUTEPREVENTING is simple

and straight forward. Dimensions that inhibit permutation appear as self edges on the ver-

tices of the FCG. Therefore the function checks for any input SCC S, if there exists a dimen-

sion j such that the edge (Sj, Sj), is present in the FCG. If such edges is present, on all the

vertices of the FCG that correspond to the input SCC S, then the function ISPERMUTEPRE-

VENTING returns false; otherwise the function returns true. This check very simple when

compared to the check in Algorithm 5 (line 6). In cases where coloring in Algorithm 7 failed

due to a fusion preventing edge, SCCs are distributed at the current level and DDG and FCG

are updated accordingly (line 9). If coloring failed due to a permute preventing edge, depen-

dences satisfied at outer levels are removed and the fusion conflict graph is reconstructed

using Algorithm 6.

Illustration: Consider the fdtd-2d kernel from the PolyBench benchmark suite shown in

Figure 5.5. The DDG of the program has a single SCC, as shown in Figure 5.5b. Initial

FCG shown in Figure 5.5c has three vertices, the first corresponding to the time dimension

t and the rest corresponding to space dimensions i and j. Algorithm 5 colors the vertex

corresponding to the time dimension t in the first iteration, which is the only vertex that

can be colored. Therefore, the permutation at the outermost level corresponds to the time

dimension every statement. Coloring the FCG with the second color fails due to permute

preventing dependences. This is inferred by the presence of self edges on all the uncolored

vertices of the FCG, namely, the vertices corresponding to dimensions i and j. This check

is very simple when compared to the check implemented by the routine ISPERMUTEPRE-
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for(t = 0; t < tmax; t++) {
for(j = 0; j < ny; j++)

ey[0][j] = t; \\ S1
for (i = 1; i < nx; i++)

for (j = 0; j < ny; j++)
ey[i][j]=ey[i][j]-0.5*(hz[i][j]-hz[i-1][j]); \\ S2

for (i = 0; i < nx; i++)
for (j = 1; j < ny; j++)

ex[i][j] = ex[i][j]-0.5*(hz[i][j]-hz[i][j-1]); \\ S3
for (i = 0; i < nx; i++)

for (j = 0; j < ny; j++)
hz[i][j]=hz[i][j]-0.7*(ex[i][j+1]-ex[i][j]+ey[i+1][j]-ey[i][j]); \\ S4

}

(a) Fdtd-2d benchmark.

S1

S2

S3

S4

(b) DDG.

S1

t i j

(c) Initial FCG.

S1

S2

S3

S4

t i j

(d) FCG after reconstruction.

TS1(t, i)→ (t, i),
TS2(t, i, j)→ (t, j, i),
TS3(t, i, j)→ (t, j, i),
TS4(t, i, j)→ (t, j, i)

(e) Valid permutation.

Figure 5.5: Greedy clustering heuristic in fdtd-2d.
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VENTING in Algorithm 5. The presence of permute preventing edges leads to removal of

dependences that are satisfied at the outermost level (shown in blue in Figure 5.5b). The

updated DDG now has a single statement in every SCC. The reconstructed FCG is shown in

Figure 5.5d. Algorithm colors the only remaining dimension in SCC 1, and then, while col-

oring a vertex of SCC 2, it has two choices. Coloring vertex Si
2 with the second color would

enable us to color Si
3 only, whereas coloring Sj

2, would enable coloring both Sj
3 and Sj

4. Here,

the routine COLORSCC chooses the vertex which enables coloring of maximum number of

successor SCCs in the topological order, which, in this example, is the vertex Sj
2. This greedy

coloring heuristic can be implemented in the clustered FCG in a simplistic manner, whereas,

in the unclustered approach, we would have to look for coloring of vertices corresponding to

statements within a given SCC as well as its successors. The final coloring obtained is shown

in Figure 5.5d, which corresponds to the permutation shown in Figure 5.5e. This permuta-

tion leads to loop skewing and enables diamond tiling in the later stages of the Pluto-lp-dfp

framework.

5.2.3 Correctness

In this section, we describe the correctness of our approach to find valid permutations using

clustered FCG. The coloring routine described in Algorithm 5, which colors the unclustered

FCG, also colors on the FCG on a per SCC basis. Each SCC is colored atomically, i.e, there

does not exist a situation in which some vertices of corresponding to statements of a given

SCC S are colored with a color c and some vertices are not colored. Therefore, the proofs

that we provide here also hold for the unclustered approach as well.

We first prove that for a given SCC, there exists at least one dimension that fuses all the

statements of the SCC, without violating any dependences. This is the assumption on which

our clustering heuristic is based.

Theorem 5.1 Given a DDG G of a program P, for each SCC S in G, there exists at least one dimen-



5.2. Clustering 90

sion i that fuses all statements in S, without violating any dependences.

The intuition behind the proof of Theorem 5.1 is that, every statement in an SCC must be

surrounded by at least one loop i that carries a dependence along the back-edge. Since the

input program is correct, this loop does not violate any dependence in the SCC and will

satisfy the dependence constraints of all intra-SCC dependences.

Proof: We prove Theorem 5.1 by contradiction. Let us assume that there does not exist

any dimension i that fuses all statements belonging to SCC S, without violating any depen-

dences. However, in the input program, since the vertices are part of an SCC, there must ex-

ist a loop i, which carries a dependence along the back edge. This loop i fuses all statements

in S. Since the input program is correct, the dimension i will not violate any dependence,

and therefore, will satisfy the dependence constraints for all dependences in the SCC. �

The consequence of Theorem 5.1 is that, for every SCC S in the DDG, there exists a vertex

v corresponding to some dimension i of S in the FCG without a self edge, at the outermost

level. If there is a single SCC in the program, then v can be colored with the color c and

this corresponds to a valid permutation at a particular level. The greedy coloring heuristic

described in Section 5.2.2, is driven by a topological ordering of SCCs in the DDG, and

therefore, the set of vertices that have the same color form a convex independent set. In

Theorem 5.2 we prove that any convex independent set of the FCG found by the greedy

coloring algorithm, corresponds to a valid permutation for every statement in the input

program.

Theorem 5.2 Every convex independent set I of the FCG F, corresponds to a valid permutation for

the set of statements in the program P.

Proof: Let S = {S1, . . . , SN} be the SCCs in the DDG whose corresponding vertices are

present in I , i.e, S = {S|∃j.1 ≤ j ≤ dim(S) ∧ Sj ∈ I}. Without loss of generality, let us

assume that the dimension i of every SCC in S is present in I . Let c be the color used for col-

oring at a level `. We will prove that, at any point of time in the coloring routine, whenever a
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vertex Si
m of the FCG is colored with c (analogous to adding Si

m to I), the set of vertices that

are already colored with c (analogous to elements in I) represents a valid permutation for

statements in those SCCs whose vertices corresponding to dimension i have been colored.

We will assume that it is valid to color Si
m with c and the routine COLORSCC has succeeded.

If Si
m was the first vertex added to I , then by Theorem 5.1, it is a valid permutation. Let

Si
m be the mth vertex added to I . Let k j be the loop shifting factor required to shift and fuse

dimension i of SCCs Sj and Sj−1, where j < m. Let k be the maximum shifting factor, which

is required to fuse SCC Sm with its predecessors in the DDG. We make an observation that

if two SCCs are connected in the DDG, then the target SCC can be delayed further by a loop

shifting transformation without violating any dependences. Therefore, when Si
m is colored

with c, there exists an integer k′ = k2 + k3 + · · ·+ km−1 + k, that will be a valid loop shifting

factor for every statement in Sm. Hence, there exists a loop shifting factor for every statement

in every SCC of S such that dependences are not violated. The existence of loop scaling fac-

tors can also be proved in a similar way. Once all the SCCs are colored, I corresponds to a

valid permutation for every statement in the program. �

Theorem 5.2 proves that a convex independent set of the FCG obtained via convex color-

ing represents a valid permutation. The scaling and shifting factors for the permutation are

found using the the routine SCALESHIFTPERMUTATIONS described in Section 4.3.

5.3 Typed Fusion

The approach described in Section 5.2 constructs the FCG and the coloring heuristic greedily

fuses as many statements as possible, under a given loop. However this fusion strategy is

not desirable because it may inhibit parallelism. For example consider the example program

shown in Figure 5.6a. The two statements are distributed and each loop is parallel. The fu-

sion algorithm described in Section 5.2, as well as the default fusion heuristic in Pluto, fuses

the two statements and the fused loop nest shown in Figure 5.6b code results is sequen-
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for(i=0;i<N;i++)
A[i] = 2*i;

for(i=1;i<N;i++)
B[i] = A[i-1] + A[i-2];

(a) Example code.

A[0] = 2*0;
for(i=1;i<N;i++) {

A[i] = 2*i;
B[i] = A[i-1] + A[i];

}

(b) Transformed code with Algorithm 6.

Figure 5.6: Fusion resulting in loss of parallelism with Algorithm 6 and Pluto.

tial. Incorporating parallelism preserving loop fusion heuristics in polyhedral compilers

like Pluto would require solving an exponential number of ILPs, thereby, resulting in very

large compilation times, making it practically infeasible for adaption in general-purpose

compilers like LLVM.

In this section, we provide a variant of typed fusion developed by Kennedy and McKin-

ley [KM93], which ensures that loop fusion does not result in loss of parallelism. The typed

fusion heuristic allows fusion of a subset of loops that preserve parallelism when compared

to the approach described in Section 5.2, in particular, it allows only the subset of valid loop

fusion opportunities where there is no loss of parallelism. Hence, our approach would be

to add more edges in the FCG. More specifically, we add parallelism preventing edges during

the construction of the FCG, in addition to permute and fusion preventing edges.

5.3.1 FCG Construction and Coloring

Algorithm 8 provides details on construction of the FCG, which is very similar to Algo-

rithm 6. The routine ADDPERMUTEPREVENTINGEDGES, in addition to adding permute pre-

venting edges, adds parallelism preventing edges on vertices that correspond to serial di-

mensions (line 26). For a given SCC S, the routine ADDPERMUTEPREVENINGEDGES, solves

the same set of constraints as Algorithm 6, as a Linear Program (LP) with the same objective

as Pluto (line 24), which is to find lexmin ~u, w. If a non-zero solution for ~u or w is obtained,

then a parallelism preventing self-edge is added on the vertex Si in the FCG. In addition to

adding parallelism preventing edges, the routine also marks an SCC as parallel if there is at
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Algorithm 8: BUILDFCGTYPED

Input : Dependence Graph G〈GV , GE〉
Output: Fusion Conflict Graph F〈FV , FE〉

1 foreach SCCs S ∈ G do
2 ADDPERMUTEPREVENTINGEDGES(S)

3 foreach pair of Sccs (Ss, St) such that s < t do
4 ψst ← GETINTERSCCDEPCST(Ss,St)
5 foreach i ∈ 1 . . . dim(Ss) do
6 foreach j ∈ 1 . . . dim(St) do
7 ψij ←

∧
S∈Ss

(cS
i ≥ 1) ∧ ∧

S∈St

cS
j ≥

1∧ ψst
8 if ψij is infeasible then
9 FE ← FE ∪ {(Si

s, Sj
t)}

10 else
11 sol← PLUTOLPSOLVE(ψ1)
12 if sol(~u, w) 6=~0∧

isParallel[Ss] ∨ isParallel[St]
then

13 FE ← FE ∪ {(Si, Sj)}

14 Add edges betweeen sequential and parallel
SCCs

15 Add scale and shift conflict edges
16 return F
17 function

ADDPERMUTEPREVENTINGEDGES(SCC S)
18 ψs ← All intra SCC dep constraints for S
19 foreach i ∈ 1 . . . dim(S) do
20 ψi ←

∧
S1∈S

cS1
i ≥ 1∧ ψs

21 if ψi is infeasible then
22 FE ← FE ∪ {(Si, Si)}
23 else
24 sol← PLUTOLPSOLVE(ψ1)
25 if sol(~u, w) 6=~0 then
26 FE ← FE ∪ {(Si, Si)}
27 else
28 isParallel[S]← true
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least one parallel dimension along the canonical axes (Line 28) by checking if at least one of

the LPs during addition of permute preventing edges has a solution with ~u =~0 and w = 0.

Thus, after adding preventing edges, parallel SCCs would also be marked. Then, the algo-

rithm adds inter-SCC fusion and permute preventing edges for every pair of adjacent SCCs

(Ss, St) (lines 3-13). Parallelism preventing edges are also added if fusing two dimensions

of Ss and St in the DDG does not result in a parallel loop (line 13). This is again achieved

by checking the solution of the LP formulation. Parallelism preventing edges are also added

between vertices of the FCG that correspond to dimensions of sequential and parallel SCCs

(line 14). Analogous to Algorithm 6, Algorithm 8 also adds edges between SCCs that are not

connected and between vertices corresponding to the dimensions of the same SCC. For the

example shown in Figure 5.6, Algorithm 8 adds a parallelism preventing edge between Si
1

and Si
2, thereby, distributing the loop nests without resulting in loss of parallelism.

Parallelism can also be lost by fusing SCCs that require different loop scaling or shifting

factors. For example, consider the code shown in Figure 5.7a. Statements S1 and S2 can be

fused together by shifting S1 by 1 with respect to loop i, while preserving parallelism, and

similarly S2 and S3 can be fused with by shifting S2 by 1 with respect to i. However, if all

three statements are fused, then the resulting fused loop nest will not be parallel. This is

because, S2 should be delayed from S3 by 1 and S1 should be delayed by 1 with respect to S2

thereby resulting a net delay of 2 for the statement S1 with respect to S3. However, S1 can be

fused with S3 only with a delay of 1, while preserving parallelism. In order to account for

such conflicting shifts, we add shift conflict edges in the FCG (Line 15 in Algorithm 8). This

routine traverses SCCs in the reverse topological order, while summing up the shifts. The

shifts for a pair of statements are computed during the addition of inter-SCC edges using

the solution of the LP formulation (Line 11). Whenever the routine detects a conflicting shift,

i.e two different shifting factors for fusing two dimensions of any two statements, it adds a

parallelism preventing edge between dimensions of SCCs that requires a larger shift. In
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for(i=0;i<N;i++)
A[i] = 2*i; \\ S1

for(i=1;i<N;i++)
B[i] = A[i-1] + i; \\ S2

for(i=2;i<N;i++)
C[i] = B[i-1] + A[i-1]; \\

S3

(a) Example code.

S1

S2

S3

i

(b) FCG.

A[0] = 0;
for(i=1;i<N;i++) {

A[i] = 2*i; \\ S1
B[i] = A[i-1] + i; \\ S2

}
for(i=2;i<N;i++)

C[i] = B[i-1] + A[i-1]; \\ S3

(c) Transformed code.

Figure 5.7: Typed fusion in cases where parallelism is inhibited by loop shifting.

the above example parallelism preventing edge is added between Si
1 and Si

3 (dashed edge

in Figure 5.7b). A similar approach is followed to add scale conflict edges in the FCG. The

transformed code in which the statements S1 and S2 are fused and statement S3 is distributed

is shown in Figure 5.7c.

Once the FCG is constructed, we use the greedy coloring heuristic described in Sec-

tion 5.2.2 to find convex independent sets. In case of typed fusion, the coloring heuristic

also ensures that if there exists a parallel hyperplane along the canonical axes, it is found

at the outermost level, resulting in a communication-free loop nest. We illustrate this in

Section 5.4 with an example. Note that, in cases where communication free loop nests are

obtained by loop skewing, the skewing phase will ensure that parallel hyperplanes that are

found after skewing are moved to the outermost level if they correspond to communication-

free hyperplanes. Thus, by adding parallelism preventing edges in the FCG, we not only

accomplish the objective of inhibiting fusion that results in parallelism, but also ensure that
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for(t = 0; t < T; t++) {
for(i = 1; i < N-1; i++)

for(j = 1; j < N-1; j++)
B[i][j]=0.2*(A[i][j]+A[i][j-1]+A[i][1+j]

+A[1+i][j]+A[i-1][j]); \\ S1
for(i = 1; i < N-1; i++)

for(j = 1; j< N-1; j++)
A[i][j]=0.2*(B[i][j]+B[i][j-1]+ B[i][1+j]

+B[1+i][j]+B[i-1][j]); \\ S2
}

(a) Jacobi-2d code snipet from PolyBench.

S1

t i j

(b) Initial FCG.

S1

S2

t i j

(c) FCG after reconstruc-
tion.

Figure 5.8: Typed fusion in multi-statement stencils.

good permutations with communication free hyperplanes are found whenever they exist.

5.3.2 Stencil Characterization

The typed fuse heuristic described in Section 5.3 distributes loop nests when fusion leads

to loss of parallelism. However, there are scenarios where this distribution might result

in a loss of performance. For example, consider the FCG constructed by Algorithm 8 for

the jacobi-2d benchmark from the PolyBench benchmark suite shown in Figure 5.8b. The

coloring algorithm first colors the vertex corresponding to the time dimension in the FCG.

Coloring fails while coloring with the second color due to the permute preventing edges

in the FCG which results in updating the DDG by removing the dependences satisfied by

the outer level and FCG is reconstructed. Algorithm 8 adds parallelism preventing edges

between vertices that correspond to dimension i of SCCs S1 and S2 as shown in Figure 5.8c.

Now, coloring fails while coloring dimension i of SCC 2 due to a parallelism preventing

edge, leading to distribution of SCCs 1 and 2. This distribution disables diamond tiling in

stencils, resulting in performance degradation of 3× to 5×, due to poor locality. In the rest

of this section, we characterize stencil dependence patterns that have tile-wise concurrent

start.

Though time-iterated stencils lack outer parallelism, concurrent start can be enabled with
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diamond tiling [BPB12], thereby avoiding pipeline start-up and drain phases. These stencil

patterns are local to SCCs and have the following properties:

1. dependences span the entire iteration space, or equivalently, there does not exist an

outer parallel hyperplane,

2. there is a face with concurrent start, and,

3. along a hyperplane that is normal to the face with concurrent start, all dependences

are short, i.e., the dependence distances are not parametric.

Our approach to formalize these properties and incorporate them as a part of a single auto-

transformation algorithm is described in the rest of the section.

Existence of communication-free loop nest: For each SCC S, we first check if the SCC

has an outer parallel parallel hyperplane by solving an LP formulation. The constraints in

this LP formulation include the tiling validity constraints, dependence distance bounding

constraints and trivial solution avoidance constraints as shown:

lexmin (~u, w)

subject to : φ(~t)− φ(~s) ≥ 0,

φ(~t)− φ(~s) ≤ ~u · ~p + w,

∀T ∈ S,
mT

∑
i=1

cT
i ≥ 1, (5.4)

where~s and~t are source and target iterations of a dependence whose source and target state-

ments belong to the SCC S. The last constraint in Equation 5.4, added for every statement T

in SCC S, represents trivial solution avoidance constraint for each statement T in the SCC S.

Note that, this LP formulation differs from the Pluto-lp formulation described in Chapter 3

by not adding linear independence constraints. This is because, for the outermost hyper-
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plane (or communication free hyperplane), linear independence constraints and trivial solu-

tion avoiding constraints are the same and hence adding linear independence constraints is

redundant. These constraints are solved with the same objective function as Pluto. If there

exists a parallel hyperplane, then in the solution of the LP formulation, (~u, w) = (~0, 0) (c.f,

Theorem 3.4). Hence, if an outer parallel hyperplane is found, then, the SCC is not marked

as a stencil.

Face allowing concurrent start: SCCs that have stencil dependence patterns have a face

that allows concurrent start. Therefore for each SCC S that does not have an outer parallel

hyperplane, we find the face ~f that allows concurrent start, as described by Bondhugula

et al. [BBP17]. This is a generalization of the single statement case proposed previously by

Krishnamoorthy et al. [KBB+07]. This face with concurrent start satisfies the condition ~f .~d ≥

1 for all intra-SCC dependences. We use an LP formulation instead on an ILP formulation

proposed by Bondhugula et al. [BBP17]. If there is no face that allows concurrent start, then

the SCC is not classified as a stencil. We will refer to the face that allows concurrent start as

~f for the rest of this section.

Short dependences: SCCs with stencil dependence patterns have short dependence dis-

tances, i.e, non parametric dependence distances, along the hyperplane that is that is normal

to the phase that allows concurrent start. We find a hyperplane~h that is normal to ~f using

the LP formulation:

minimize (w)

subject to : ~h · ~f = 0,

∀~d ∈ DS.− w ≤~h · ~d ≤ w,

0 ≤ w ≤ 10, (5.5)



5.3. Typed Fusion 99

where DS represents the set of all intra-SCC dependences for the SCC S. The first constraint

in the LP formulation ensures that~h is normal to ~f . The constraint −w ≤~h · ~d ≤ w, enforces

non-parametric upper and lower bounds on dependence distance for each dependence. This

constraint can be linearized by the application of Farkas lemma [Sch86]. The last constraint

enforces an upper bound on w in the non-negative half space. A solution to the above LP is

a hyperplane along which the dependence distances are constant and are bounded by w. If

there does not exist a solution to the above LP formulation, then it implies that there does

not exist an hyperplane that is normal to ~f along which the dependence distances are short.

A more precise characterization would be to solve the LP formulation in Equation 5.5 for

every hyperplane~h that is orthogonal to ~f , because, with a single LP, Equation 5.5 classifies

an SCC with dependences (1,+,−1), (1,−,−1), (1, 0, 1), (1, 0,−1) as a stencil. This can be

acheieved by iteratively adding orthogonality constraints for after finding each hyperplane

~h to the above LP formulation. However, for the benchmarks that we studied, a single LP

formulation shown in Equation 5.5 was sufficient and the experments described in Chapter 7

solve a single LP formulation shown in Equation 5.5.

Therefore, for a given SCC that does not have an outer parallel hyperplane and has a

face ~f that allows concurrent start, if there exists a solution to the LP formulation shown

in Equation 5.5, then the SCC is classified as a stencil. As a pre-processing step, we first

mark and separate SCCs in the DDG that are classified as stencils. This separation of SCCs

is performed by cutting the DDG. Let S be an SCC that is marked as a stencil. Every inter

SCC dependence for which the source or the target statements are outside the SCC S is sat-

isfied by loop distribution. Then, during the construction of the FCG, for each SCC S that is

marked as a stencil, parallelism preventing edges are not added during FCG construction by

Algorithm 8. Hence, even in the case of typed fusion, we do not distribute multi-statement

stencils to enable tile-wise concurrent start via diamond tiling.
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for(i=0; i<N; i++)
for(j=0; j<N; j++)

A[i][j] = A[i][j] + u1[i]*v1[j] + u2[i]*v2[j];

for(i=0; i<N; i++)
for(j=0; j<N; j++)

x[i] = x[i] + beta* A[j][i]*y[j];

(a) Gemver code snippet.

S1

S2

(b) DDG.
for(i=0; i<N; i++) {

for(j=0; j<N; j++)
A[j][i] = A[j][i] + u1[i]*v1[j] + u2[i]*v2[j];

for(j=0; j<N; j++)
x[i] = x[i] + beta* A[j][i]*y[j];

}

(c) Transformed gemver code snippet.

S1

S2

i j

(d) FCG.

Figure 5.9: Typed fusion in gemver.

5.4 Hybrid Fusion

In this section, we discuss a fusion model called hybrid fusion. This model is a combination

of max-fuse model and the typed-fuse model. The typed-fuse model described in Section 5.3

enables parallelism preserving loop fusion alongside loop permutations, loop scaling and

loop shifting transformations. However, typed fuse model can distribute loops leading to

loss of locality. The hybrid fusion model that we propose in this section, overcomes this

drawback of typed fusion by performing typed fusion until a parallel hyperplane is found

for a given SCC. Then it performs max-fusion at the inner levels to improve locality. We

illustrate this model with an example.

Consider the code snippet from the gemver kernel from the PolyBench benchmark suite

shown in Figure 5.9a. Both loops i and j of the statement S1 are parallel. The i loop of

the second statement is parallel while the j loop of the second statement carries an intra-

statement dependence. The DDG for the code snippet is shown in Figure 5.9b. The fusion
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conflict graph constructed using Algorithm 8, shown in Figure 5.9d has parallelism prevent-

ing edges (Si
1, Sj

2) and (Sj
2, Sj

2) in the FCG, along with other fusion and permute preventing

edges. The greedy coloring routine described in Algorithm 7 colors the vertex Sj
1 and Si

2 with

the first color (green). This corresponds to a loop interchange for the the first statement. Note

that, the vertex Si
1 is not chosen for coloring because if Si

1 is chosen for coloring, no vertex

from statement S2 in the FCG can be colored, whereas coloring Sj
1 will enable coloring vertex

Sj
2 as well. Therefore, the greedy choice enables parallel loops to be found at outer levels in

case of typed fusion. Then while coloring with the second color, the coloring routine colors

vertex Si
1 and distributes the two statements before coloring the vertex Sj

2. The transformed

code is shown in Figure 5.9c. In the transformed code, if the innermost loops of statements

S1 and S2 are fused, then the access A[j][i] will have register reuse. However, due to

the presence of parallelism preventing edge (Si
1, Sj

2) the coloring algorithm distributes these

statements at the innermost level.

In the hybrid-fuse model, the coloring routine checks that both statements S1 and S2

have a parallel loop at the outermost level. Hence, while coloring with the second color, the

hybrid fuse model ignores the parallelism preserving edge between these two statements,

and the coloring proceeds without distribution of loops at the inner level. Intuitively, the

it can be assumed that the coloring routine removes parallelism preventing edges between

SCCs for which a parallel hyperplane has already been found. For the above example, col-

oring with the second color is analogous to coloring the FCG shown in Figure 5.10a. The

hybrid fuse fusion model fuses both the statements at the innermost level by ignoring the

parallelism preventing edge. The transformation found by hybrid fusion model is given by

TS1(i, j)→ (j, i), TS2(i, j)→ (i, j).

The resulting transformed code is shown in Figure 5.10b.

The hybrid fusion heuristic finds parallel loops at outer levels because it performs typed
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S1

S2

i j

(a) FCG during col-
oring with second
color.

for(i=0; i<N; i++)
for(j=0; j<N; j++) {

A[j][i] = A[j][i] + u1[i]*v1[j] + u2[i]*v2[j];
x[i] = x[i] + beta* A[j][i]*y[j];

}

(b) Transformed code with hybrid fusion.

Figure 5.10: Transformation of code snippet from gemver kernel with hybrid fusion.

fusion at the outermost level. Just like typed-fuse model described in Section 5.3, the hybrid

fuse model does not add parallelism preventing for SCCs that are classified as stencils and

performs max-fusion for these SCCs. Once, parallel hyperplanes are found for non-stencil

SCCs, the objective of the fusion model shifts towards maximizing locality by using the

max-fuse heuristic. We use hybrid-fuse model as the default fusion model in the Pluto-lp-

dfp framework. Before we provide the details on the entire Pluto-lp-dfp compiler toolchain

is provided in Chapter 6, we provide on complexity of finding valid permutations in the

next section.

5.5 Time complexity of Finding Valid Permutations

In this section, we provide the time complexity of our approach to find valid permutations

using the clustered approach which incorporates the greedy fusion heuristic, as described in

Section 5.2.

The input to our approach for finding valid permutations is the data dependence graph

G. Let S denote the set of all statements in the program and S denote the set of all SCCs in

the DDG. We will assume that the complexity of solving an LP formulation is O(n3) where

n is the number of variables in the LP formulation. To simplify the notation, without loss of

generality, let us assume that every SCC in the DDG is of dimensionality m. The construction

of FCG by Algorithm 6 has m× |S| LP formulations for the addition of permute preventing
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edges — one LP per dimension of an SCC. For the addition of inter-SCC edges in the FCG,

|S|2×m2 LP formulations are solved. Each of these LPs have |S| × (m + 1) variables. Hence

the construction of the FCG is of the order of O(|S|5m5) because the number of statements

in the program P is of the same order as the number of SCCs in the DDG of P. The coloring

routine in the clustered approach checks only m vertices to conclude if coloring failed due

to a fusion preventing edge or a permute preventing edge. The greedy choice for coloring a

vertex is made by looking at all convex successors of a given SCC. Hence, for a given SCC,

the complexity of coloring is of the order of O(|S| × m2). Every SCC in the DDG has to

be colored with a given color. Therefore, the coloring routine has the time complexity of

O(|S|2m2). Each of these steps might have to be repeated at most m times and hence the

complexity of finding a valid permutation is O(|S|5m6), which is the complexity of adding

inter-SCC edges in the FCG. With a valid permutation found in polynomial time, the Pluto-

lp-dfp framework finds a schedule in polynomial time. The above discussion also holds for

the typed-fuse and hybrid-fuse variants, because, both Algorithms 6 and 8 rely on the same

LP formulation and the same coloring routine, with some minor modifications that do not

affect the time complexity, in the case of hybrid-fusion.



Chapter 6

Pluto-lp-dfp Toolchain

In this chapter, we provide the workflow of the Pluto-lp-dfp framework. Pluto-lp-dfp is a

polyhedral auto-transformation framework that takes polyhedral dependences as an input

and outputs tiled, OpenMP parallelized C code. The framework uses the same front end

and the backend of Pluto [Plu08] and is shown in Figure 6.1. The modifications that were

made to the Pluto’s toolchain are mentioned in blue boxes.

Pluto and Pluto-lp-dfp frameworks take inputs from either a C source or in the form

of dependences and statement domains that are specified using isl_maps and isl_sets re-

spectively. From the C source, polyhedral representations can be extracted either using

Clan [Basb] or Pet [VG12] frontends. Dependences from these programs are then extracted

using Candl [Basa] or ISL [Ver13]. Once, polyhedral dependences dependences are obtained,

Pluto and Pluto-lp-dfp diverge in the auto-transformation phase. While, the Pluto algorithm

uses an ILP formulation to find the transformation coefficients, the auto-transformation

phase in Pluto-lp-dfp framework first constructs identifies the and marks the SCCs that are

classified as stencils as described in Section 5.3.2. Once stencil SCCs are marked, the SCC

clustered fusion conflict graph is constructed using Algorithm 8. During the construction

of the FCG parallelism preventing edges are added for non-stencil SCCs to prevent fusion
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FCG construction and coloring
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LP formulations

Figure 6.1: Pluto-lp-dfp toolchain.

that leads to loss of parallelism. Then coloring the FCG begins and the coloring algorithm

employs the greedy fusion heuristic described in Section 5.2.2 with locally maximizes the

number of dimensions to be fused. Since, the hybrid fuse model performs typed fusion at

the outer levels and max-fusion at the inner levels, the coloring routine also marks the SCCs

for which a parallel hyperplane has already been found. For the marked SCCs, parallelism

preventing fusion edges are ignore at the inner level leading to max-fusion strategy adapted

at the inner levels. For SCCs that are marked as stencils, the max-fusion strategy is used by

default and parallelism preventing edges are not added by the FCG construction routine. If

coloring fails at any level, then Pluto-lp-dfp framework either distributes the SCCs or recon-

structs the SCCs depending on whether coloring failed due to a permute preventing edge

or a fusion preventing edge. When the FCG is rebuilt, the dependences satisfied at the outer

levels are removed. This rebuilding of the FCG is analogous to unclustering the vertices of

the FCG and a fresh set of edges are added. During rebuilding the FCG, the information

regarding colors of vertices before rebuilding are propagated to the newly constructed FCG

and the coloring will proceed. Once vertices corresponding to all SCCs are colored, the loop
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scaling and shifting factors for the permutation at the current level obtained by coloring are

found. This cycle is repeated until for m times, where m is the maximum of dimensionali-

ties of all statements in the program. Then, the Pluto-lp-dfp framework finds loop skewing

transformations at the if and only if it enables loop tiling. In case communication free hy-

perplanes are found during the introduction of loop skews, these hyperplanes are moved

to outer levels. Note that, the entire auto-transformation phase in Pluto-lp-dfp relies on LP

formulations and scales the rational solutions of LP formulations to integers.

Once a transformation is found by Pluto-lp-dfp (or Pluto), tileable bands are computed

and loop tiling is performed. This is where the toolchain of Pluto-lp-dfp merges with the

toolchain of Pluto. The tiled loop nest is then subjected to intra-tile optimizations to exploit

spatial locality and enable vectorization. After performing intra-tile optimizations, AST is

generated from polyhedral schedules using CLooG [Clo04]. Unroll jamming is performed

on the ClooG AST using a cost model. In the rest of this chapter, we describe the cost models

used for intra-tile optimizations and unroll jamming and are common to both Pluto and

Pluto-lp-dfp.

6.1 Intra-tile Optimizations

The cost model incorporated in Pluto and the default hybrid fusion model in Pluto-lp-dfp

favor outer parallel loops. However, each core in a modern multicore CPU exploits data-

parallelism in loop nests through SIMD/vector units. Many modern compilers generate

SIMD instructions for statements in the innermost loop if they are parallel and have zero or

unit stride accesses. Hence, it necessary for an auto-transformation framework like Pluto to

transform the loop nests such that parallel loops are present as the innermost loops and the

accesses in the innermost loop have zero or unit strides. In this section, we describe the intra-

tile optimizations that are used in both Pluto and Pluto-lp-dfp. Note that, the cost model by

itself is not the contribution of the author of the thesis but is included for the purpose of
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completeness.

Pluto performs intra-tile optimizations on the tiled loop nest by permuting the intra-tile

iterators. Note that, as the loop nest is tiled, they can be permuted as well. Hence, intra-tile

optimizations of Pluto permute the intra-tile loop iterators with a cost model, on a per band

basis. For each permutable band (referred to as a band from here-after), Pluto computes the

following for a given intra-tile loop `:

• a, the total number of accesses under `,

• s, the total number of accesses that would have spatial reuse if ` is made the innermost

loop,

• t, the total number of accesses for which the loop iterator of ` does not appear in the

access function, i.e, these accesses are invariant with respect to `, and

• v, a parameter indicating whether ` is vectorizable. The value of v is 1 if the loop is

parallel and all accesses under the loop ` have either stride zero or an unit stride.

After computing these accesses, Pluto computes the cost of making a loop ` as the innermost

using the formula

score = (2× s + 4× t + 8× v− 16× (a− s− t)) ∗ ×|S`|, (6.1)

where S` denotes the set of statements that are nested under the loop `. Intuitively this cost

function, assigns a higher score to loops that have vectorizable accesses at the innermost

level. The intra-tile loop loop in the band with the highest score is made the innermost. This

intra-tile optimization pass was previously available in Pluto.

The intra-tile optimization pass in Pluto assigns the same intra-tile iteration hyperplanes

for all the statements in the a given permutable band. However, this may miss out on certain

cases, which we illustrate in this section. Consider the 2mm benchmark kernel from the
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for(i = 0; i < I; i++)
for(j = 0; j < J; j++)

for(k = 0; k < K; ++k)
tmp[i][j] += alpha * A[i][k] * B[k][j];

for(i = 0; i < I; i++)
for(j = 0; j < L; j++)

for(k = 0; k < J; ++k)
D[i][j] += tmp[i][k] * C[k][j];

(a) Code from 2mm kernel.

TS1 : (i, j, k)→ (i/32, j/32, 0, k/32, i, j, 0, k)
TS2 : (i, j, k)→ (i/32, k/32, 1, j/32, i, k, 1, j)

(b) Transformation found by Pluto.

Figure 6.2: Intra-tile optimizations in 2mm benchmark from PolyBench.

PolyBench suite shown in Figure 6.2a. The transformation found by Pluto after tiling is

shown in Figure 6.2b. The transformation found by Pluto, enables vectorization for the

statement S2 but not statement S1. This is because the intra-tile optimization pass enforces

the same intra-tile schedule for all the statements in a permutable band and in this case, both

the statements fall in the same permutable band of loops because they share the at least one

inter-tile iterator. However, note that, the two statements are distributed at level 3 indicated

by the scalars 0 and 1 in the transformation. This says that the tile iterators of the loops at the

first two levels are fused and then the statements are distributed. This means that the two

statements do not share any intra-tile iterators. We make the observation that, whenever two

statements in a permutable band of loops do not share a single intra-tile iterator, then these

two statements can have different intra-tile permutations. That is, the intra-tile schedules

for two statements that do not share a single intra-tile iterator can be different. Hence, we

relax the restriction of Pluto’s intra-tile optimization pass so that statements with at least one

common intra-tile iterator have the same intra-tile schedule, as opposed to all statements in
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the permutable band. With this relaxation, we find the transformation,

TS1 : (i, j, k)→ (i/32, j/32, 0, k/32, i, 0, k, j)

TS2 : (i, j, k)→ (i/32, k/32, 1, j/32, i, 1, k, j),

which enables vectorization of both statements leading to significant performance gains.

6.2 Unroll and Jam Optimizations

Loop tiling is known to improve reuse in caches. In addition to improving reuse in caches,

register reuse can also be exploited to further improve performance. In order to exploit

register reuse, we rely on unroll jamming loops of a loop nest. In this section, we describe

the cost model used for unroll jamming.

The objective of unroll jamming a loop is to improve register reuse. Loops for unroll

jamming are chosen based on the following criteria:

1. The loop being unroll jammed must be the part of a fully permutable loop nest. This

condition can be relaxed and any loop from the innermost permutable band can be

unroll jammed as well.

2. The loop correspond to an intra-tile iterator. Unroll jamming an inter-tile iterator might

lead to accessing data from a different tile, and hence, may increase the number of

cache misses. Therefore, we restrict unroll jam to intra-tile iterators only.

3. The loop that is being unroll jammed must not be the innermost loop. This restriction

is because, we want the innermost loop to be vectorized by the host compiler. Register

reuse for the innermost loop will be exploited via vectorization. There might be dif-

ferent vectorization strategies some of them exploit register reuse via register shuffles;

but efficient vectorization strategies are orthogonal to the contributions of thesis.
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4. The loop to be unroll jammed must have some temporal reuse. If the loop does not

have temporal reuse, then register reuse will not be exploited in such cases. Unrolling

such a loop will lead to increased register pressure and might result in generation of

spill code by the native compiler which will result in loss of performance.

5. Finally, the number of distinct accesses in the innermost level must not increase beyond

a particular threshold. Again, increased number of distinct accesses in the innermost

level will result in generation of spill code which, will negate the advantages of unroll

jamming. The threshold is computed using the equation

score = 32− (a× ufactor− t× (u f actor− 1)),

where a represents the total number of accesses at the innermost level and t represents

the number of invariant accesses at the innermost loop. Intuitively, a × ufactor - t ∗

×ufactor− 1 is an estimate for the number of registers needed at the innermost loop.

This score is computed for every loop that satisfies the above criteria, and if the score

is positive for a loop `, then unroll jamming the loop is marked for unroll and jam. The

constant value 32 in the above equation was derived through using empirical results.

Loops that are satisfy the above criteria are unroll jammed using CLooG’s AST. Note that,

multiple loops may satisfy the above criterion and in such cases we unroll jam all of them.

This cost model is not restricted to proper loop nests and hence our implementation has the

capability to unroll jam improper loop nests as well. After unroll jamming loops in CLooG’s

AST, OpenMP parallel C code is generated from the AST.

In the next chapter, we will describe the impact of Pluto-lp-dfp framework on auto-

transformation times of Pluto and also compare the performance of the generated codes

with state-of-the-art polyhedral auto-transformation frameworks.



Chapter 7

Experimental Evaluation

In this chapter, we provide the details of our experiments. We implemented our auto-

transformation framework, pluto-lp-dfp, in Pluto, basing it on its git version [Plu08]. The

objective of our experimental evaluation was to provide details on the following queries:

1. How do the auto-transformation times of Pluto-lp-dfp compare with that of Pluto,

especially in programs with tens to hundreds of statements?

2. What is the impact of decoupling on the performance of the transformed codes? In par-

ticular, how do the codes generated by various fusion models in Pluto-lp-dfp compare

with the codes generated by Pluto?

3. What is the additional overhead of incorporating parallelism preserving heuristics like

typed-fuse (described in Section 5.3) and hybrid-fuse (described in Section 5.4) on the

auto-transformation times of the max-fuse variant?

4. What is the impact of SCC based clustering heuristics on auto-transformation times?

In the rest of this chapter, we provide details of our experimental setup and provide quanti-

tative comparison of the proposed Pluto-lp-dfp framework with the state-of-the-art polyhe-

dral auto-parallelizers.
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Table 7.1: Experimental setup.

Processor Intel Xeon Silver 4110 @ 2.10GHz (Skylake-SP)
Cores 16
LLC 11.2 MB

Memory 256GB DDR4, 2666 MT/s
OS Centos 7.6 (Linux kernel 3.10.0-957.1.3.el7.x86_64)

Compiler Intel C Compiler 19.0.4
Flags -O3, -xHost, -ansi-alias, -ipo, -fp-model precise

7.1 Experimental Setup

All our experiments were performed on a 16 core, dual socket (8 cores per socket), Intel

Xeon Silver 4110 CPU (based on the Skylake-SP micro-architecture) running at 2.10 GHz.

OpenMP threads in the auto-transformed codes were explicitly pinned to cores 0 to 15 and

thus SMT was not utilized. We used Intel C Compiler (icc) to compile the codes generated

by PoCC+, Pluto and Pluto-lp-dfp. The detailed experimental setup is provided in Table 7.1.

We compare the performance of Pluto-lp-dfp with the state-of-the-art polyhedral auto-

parallelizers namely the recent the work of Kong et al. [KP19], which we refer to as PoCC+ [PoC19],

PPCG, and an improved version of Pluto. The improvements to Pluto included enhance-

ments to intra-tile optimization heuristics and implementation of unroll and jam optimiza-

tions which were described in Chapter 6. We provide the impact of these improvements on

the performance of codes generated by Pluto, by comparing with an older version of Pluto

(version 0.11.) from December 2018, which is similar to the one used by Kong et al. [KP19],

for their comparison. All the auto-transformation frameworks were built with gcc-8.3.0.

We used GLPK (version 4.65) as LP package with Pluto-lp-dfp. We used GLPK to solve

ILPs in Pluto and LPs in Pluto-lp-dfp. PoCC+ and PPCG do not have support for GLPK

and hence, pip was used as a solver with PoCC+ and isl as the solver with PPCG. Note that,

GLPK does not offer the lexmin objective and hence in Pluto, we model the lexmin function

as a weighted sum objective. Hence, the weights of the variables in the ILP formulation
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that occur in the objective are tuned for Pluto’s lexmin function. A high integer tolerance

of 0.01 was used to neutralize the effects of rational to float conversions in LP solver for the

scaling routine (Algorithm 1). The flags –lastwriter, –glpk, –tile and –parallel

were used with Pluto, and Pluto-lp-dfp. We used the flags –tile, –target=c –openmp to

generate OpenMP parallelized CPU codes using PPCG. The flags to be used with PoCC+

was obtained via private communication from the authors. We used a default tile size of 32

with Pluto, Pluto-lp-dfp and PPCG for all the benchmarks.

Optimized C codes corresponding the polyhedral schedules found by Pluto and Pluto-

lp-dfp were generated using ClooG [Clo04]. Unroll and jam optimizations were performed

on the ClooG AST and OpenMP parallelized C code was generated. We used a default un-

roll jam factor of 8 with both Pluto-lp-dfp and Pluto. This factor was found by empirical

evaluation and it was found to be the best across all benchmarks. PoCC+ also implements

unroll jamming of statements in the innermost loop using its own intermediate AST repre-

sentation. However, its implementation is currently limited to unroll jamming of a single

loop containing a single statement, and whose trip count is a multiple of the unroll jam fac-

tor. Both Pluto and Pluto-lp-dfp support multi-loop unroll jam of improper loop nests via

ClooG’s AST.

Fusion models : We implemented the following three fusion models in Pluto-lp-dfp:

1. max-fuse variant that uses clustering and greedy coloring heuristics described in Sec-

tion 5.2,

2. typed-fuse variant that performs parallelism preserving fusion by adding parallelism

preventing edges, as discussed in Section 5.3, and

3. hybrid-fuse variant that performs typed fusion at outer levels and max fusion at inner

levels, as described in Section 5.4.
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7.2 Benchmark Selection

Selected benchmarks from NAS Parallel benchmark (NPB) suite and PolyBench 4.2 [Pol10]

suites were used for experimental evaluation. From the NAS Parallel benchmark suite, we

selected the BT, LU and SP benchmarks; the routine rhs being the hot spot in each of them.

The C versions of the NAS parallel benchmarks are obtained from [NPB11]. These bench-

marks from NPB suite have large number of statements in their loop nests ranging from few

10s of statements to 100 statements in case of rhs routine in the LU benchmark. These rou-

tines were also used by Mehta et al. [MY15] to study the scalability of the Pluto algorithm.

Benchmarks from PolyBench has been widely used to study the performance of Polyhedral

auto-transformation frameworks. The ADI benchmark in PolyBench was not chosen for

evaluation because the benchmark has a decrementing loop. The dependence analysis in

Pluto’s toolchain can not extract dependences from such loops.

The goal of our experiments is to have significant compile time improvements with

Pluto-lp-dfp over Pluto in benchmarks from NAS, and to match or out-perform state-of-the-

art polyhedral auto-parallelizers on benchmarks from PolyBench. In particular, the paral-

lelism preserving fusion heuristics that we proposed, namely typed and hybrid fusion, must

not incur significant compile time overheads when compared to the max-fusion variant in

Pluto-lp-dfp. We use the Clan [Basb] front-end of Pluto to extract polyhedral representation

of programs from the C source. PET [VG12] was used to extract polyhedral representation

from the source code in case of PPCG.

7.3 Impact on Auto-transformation Times

In Table 7.2, we detail the impact of our fusion models on auto-transformation times of

the Pluto-lp-dfp framework. In particular, our goal was to measure the compile-time over-

head of typed and hybrid fusion variants over the max-fuse variant. The second and third
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Table 7.2: Compilation (automatic transformation) times in seconds. Cases in which auto-
transformation framework did not terminate in 10 hours or ran out of memory are marked
with a ’-’.

Benchmark PPCG PoCC+ Pluto
Pluto-lp-dfp hybrid-fuse speedup

max-fuse typed-fuse hybrid-fuse PoCC+ Pluto

2mm 0.019 15.81 0.019 0.011 0.014 0.014 1138.32 1.339
3mm 0.034 72.13 0.043 0.020 0.025 0.026 2823.06 1.700
atax 0.011 2.100 5.1× 10−3 4.0× 10−3 5.5× 10−3 5.1× 10−3 408.81 0.993
bicg 0.008 1.763 4.1× 10−3 3.6× 10−3 5.0× 10−3 4.7× 10−3 373.14 1.031
cholesky 0.012 5.750 0.029 0.007 0.011 0.011 518.91 2.593
correlation 0.054 463.2 0.161 0.036 0.044 0.043 10798.3 3.762
covariance 0.037 58.09 0.033 0.017 0.019 0.018 3153.63 1.805
doitgen 0.027 - 0.023 0.013 0.015 0.015 - 1.551
durbin 0.048 15.81 0.049 0.011 0.014 0.014 1129.71 3.507
fdtd-2d 0.043 20.59 0.045 0.029 0.040 0.040 508.91 1.113
floyd-warshall 0.009 1.982 0.017 0.018 0.022 0.022 89.30 0.763
gemm 0.007 1.626 4.6× 10−3 4.0× 10−3 5.3× 10−3 5.1× 10−3 321.38 0.919
gemver 0.009 1.636 6.7× 10−3 4.0× 10−3 5.6× 10−3 5.4× 10−3 300.97 1.247
gesummv 0.013 2.372 5.9× 10−3 4.2× 10−3 5.6× 10−3 5.2× 10−3 455.81 1.143
gramschmidt 0.067 39.81 0.065 0.016 0.019 0.019 2084.67 3.416
heat-3d 0.508 63.58 0.083 0.102 0.133 0.134 476.09 0.618
jacobi-1d 0.009 1.096 0.009 0.008 0.012 0.012 94.50 0.771
jacobi-2d 0.033 7.276 0.033 0.034 0.046 0.046 156.81 0.701
lu 0.013 4.607 0.025 0.006 0.010 0.010 484.44 2.605
mvt 0.002 0.271 0.002 0.002 0.003 0.003 93.27 0.844
seidel-2d 0.013 4.217 0.012 0.018 0.021 0.021 203.97 0.598
symm 0.022 19.82 0.028 0.012 0.015 0.015 1319.82 1.843
syr2k 0.006 1.150 3.8× 10−3 3.5× 10−3 4.5× 10−3 4.3× 10−3 267.75 0.901
syrk 0.006 1.131 4.0× 10−3 3.6× 10−3 4.5× 10−3 4.4× 10−3 258.05 0.905
trisolv 0.006 0.615 3.9× 10−3 2.9× 10−3 3.9× 10−3 3.9× 10−3 157.63 1.000
trmm 0.007 1.811 5.6× 10−3 4.9× 10−3 6.4× 10−3 6.2× 10−3 282.12 0.880

bt 2.18 - 297.41 3.04 3.25 3.24 - 91.83
lu 129.67 - 30.7× 103 25.53 26.29 26.20 - 1172.7
sp 3.16 - 402.68 3.17 3.38 3.39 - 118.90
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columns list the auto-transformation times of PoCC+ and Pluto, the fourth fifth and sixth

columns provide the auto-transformation times of max-fuse, typed-fuse and hybrid-fuse

variants in the Pluto-lp-dfp framework respectively. The last two columns in Table 7.2 pro-

vide the speedups of the hybrid fuse variant in Pluto-lp-dfp over PoCC+ and Pluto with

respect to compilation time. The auto-transformation times in case of the Pluto-lp-dfp frame-

work include time taken for identifying stencil dependence patterns in SCCs, FCG construc-

tion and coloring time (Algorithms 4 and 5), time taken to find loop scaling and shifting

factors, and time taken by the loop skewing phase. PoCC+ does not have support for ei-

ther Gurobi [GO16] or GLPK, which are the LP solvers used by the Pluto-lp-dfp framework.

Moreover, the ILP formulation in PoCC+ is significantly more complex than the ILP for-

mulation in Pluto. Hence, in order to nullify the effects of the ILP solver, we ignore the

constraint solving times in PoCC+, whereas, include these in the automatic transformation

times for Pluto and Pluto-lp-dfp.

We first observe that the construction of constraints in PoCC+ is significantly slower than

Pluto-lp-dfp. The fusion variants in Pluto-lp-dfp are over 104 times faster than PoCC+ in the

correlation benchmark. The hybrid-fuse variant, which is the best performing variant among

the rest in terms of execution time, has a geomean speedup of 461× over PoCC+. In case of

NAS benchmarks, we observe that PoCC+ did not terminate in over 10 hours for any bench-

mark. The max-fuse variant of Pluto-lp-dfp is faster than Pluto by a geomean factor of 246×.

Even typed and hybrid fusion variants are faster than Pluto by a factor of 234×. We also ob-

serve that max-fuse, typed-fuse and hybrid-fuse variants are faster than Pluto by 60%, 25%

and 27% respectively across all benchmarks. We note that PPCG is significantly faster than

Pluto in terms of auto-transformation time and is comparable to the auto-transformation

time of Pluto-lp-dfp. This is because they model the linear independence in a different way

than Pluto as described by Verdoolaege and Janssens [VJ17]. The implementation in PPCG

incrementally searches for optimal solutions of the ILP formulation in a linearly independent
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subspace instead of modeling the full space of linearly independent solutions before solving

the ILP. The consequence of incremental modeling of linear independent solutions on the

transformations found by PPCG remains unexplored. Even with this incremental model-

ing, we observe that Pluto-lp-dfp is faster than PPCG by a geomean factor 1.41× across all

benchmarks and 4.5× in the largest case. In Section 7.4 we show that codes generated by

PoCC+, Pluto and Pluto-lp-dfp significantly outperform the codes generated by PPCG, thus

indicating that PPCG is far from the state-of-the-art for polyhedral compilation for multicore

CPUs.

We observe that typed-fuse and hybrid-fuse variants are slower than max-fuse due to

the application of Farkas lemma and more LP calls to identify SCCs with stencil dependence

patterns.Note that, typed fuse and hybrid fuse variants are slower than max-fuse by≈ 5.2%,

demonstrating that, using the FCG, complex fusion models can be incorporated in Pluto-

lp-dfp, without significant compile time overhead. Moreover, these fusion models scale

efficiently to loop nests with large number of statements.

7.3.1 Breakdown of Auto-transformation Times in Pluto-lp-dfp

Figure 7.1 provides the times taken by each stage of the Pluto-lp-dfp framework with hybrid-

fuse fusion model. Note that, we provide the breakdowns only for the NAS benchmarks be-

cause the auto-transformation times in benchmarks are higher when compared to the bench-

marks from PolyBench. The graph represents the fraction of auto-transformation times

taken by each stage in the Pluto-lp-dfp framework. The time taken to find the permutation

accounts for almost half the time taken for finding a transformation for the given program

and includes cost of construction and coloring of the fusion conflict graph. This is primar-

ily because, the addition of intra-statement permute and fusion preventing edges involves

solving a large number of ILP formulations. Introduction of loop skewing is the second

most time consuming step. In our implementation, we construct direction vectors for every

dependence to find tiling preventing dependences, i.e, dependences that have some nega-



7.3. Impact on Auto-transformation Times 118

bt lu sp

0

0.2

0.4

0.6

0.8

1

N
or
m
al
iz
ed

ti
m
e

Permutation Scaling Skewing
Stencil Check Total time

Figure 7.1: Breakdown of auto-transformation times in Pluto-lp-dfp framework with hybrid-
fuse model for selected benchmarks from NAS benchmarks suite.

tive component at some level. This step consumes a large amount of time, and we want to

explore better ways to implement this check in Pluto, which will further reduce compilation

time. Stencil check also takes a significant amount of time, primarily because it involves

construction of constraints using Farkas Lemma for intra-SCC dependences in every SCC.

We observe that the scaling coefficients to integers is the cheapest phase in the Pluto-lp-dfp

framework. Figure 7.1 also indicates that the time spent in construction of tiling validity

constraints and dependence distance bounding constraints will become a bottleneck, once

the time taken to construct the FCG is brought down. Statement clustering heuristics can be

used to further reduce the time taken to construct the FCG by reducing the number of LP

formulations. In the next section, we provide details on the impact of clustering on finding

valid permutations.

7.3.2 Impact of Clustering on Auto-transformation times of Pluto-lp-dfp

In this section, we describe the impact of clustering on the auto-transformation times of the

Pluto-lp-dfp framework. In particular, we observe that clustering has on finding valid per-
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Figure 7.2: Normalized FCG construction and coloring times.

mutations. Therefore, we provide the results on the impact of clustering on construction

and coloring of the fusion conflict graph. Since the auto-transformation times for bench-

marks from PolyBench are very small, we only only provide details on FCG construction

and coloring times in NAS benchmarks. Figure 7.2 shows the speedup in construction and

coloring of the FCG due to clustering with the max-fuse fusion model. The unclustered ap-

proach uses Algorithm 4 for FCG construction and a simplified variant of Algorithm 5 for

FCG coloring. Simplifications to Algorithm 5, the routine ISPERMUTEPREVENTING returned

true for the the first call and returned false for the second call for a given SCC while coloring

with a given color. Note, that greedy coloring heuristic is also not well defined on the un-

clustered approach, and hence, the greedy coloring heuristic is not used by Algorithm 5 as

opposed to Algorithm 7.

We observe that the SCC based clustering heuristic results in a geomean improvement of
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1.47× in FCG construction time. This is because, clustering reduces the number of LP prob-

lems that are solved during the construction of the FCG. The FCG coloring time in case of

LU benchmarks increases significantly in case of LU benchmark due to the greedy coloring

heuristic. In case of LU, we observe that for a given SCC there are a large number of convex

successors that can be colored but it remains valid to color only a few of them. Hence, the

greedy coloring heuristic takes longer than the simplified implantation of Algorithm 5. We

observe that our clustering contributed to an improvement of 1.31× in auto-transformation

time over the unclustered approach.

The clustering technique described by Mehta et al [MY15] does not allow efficient mod-

eling of loop distribution. On a slightly different experimental setup1, we observed that

their clustering technique, along with variable liberalization [MY16] provided an improve-

ment 3.5× on the NAS benchmarks considered for evaluation. The fusion model that we

considered for this experiment was the same as in scalefuse, and we found the same trans-

formation as that of scalefuse in these cases. However, since their clustering heuristic did

not allow modeling of loop distribution efficiently, we did not incorporate the it in the Pluto-

lp-dfp framework. Hotspots from hsmoc and lorentz routines in zeusmp benchmark of the

SPEC CPU 2006 benchmark suite studied by Mehta et al. [MY15] were also considered for

experimental evaluation. However the results from these benchmarks are not included in

this thesis because tools like Scalefuse and PolyOpt-Fortran were not maintained during the

submission of this thesis. Hence, quantitative evaluation of both compile time and execu-

tion time was not possible with the fusion heuristics in Pluto-lp-dfp. These experiments

demonstrated that, with the same fusion heuristic like Pluto in Pluto-lp-dfp, on the SPEC

benchmarks, Pluto-lp-dfp was faster than Pluto by a geomean factor of 180×. The reader is

encouraged to refer to the PLDI paper [ABC18] for further details.

1These experiments were performed on a sandybridge machine and the complete experimental setup is
described in [ABC18]. Scalefuse, which had the implementation of Mehta et al [MY15] was not maintained
and hence it was impossible to reproduce the results in the current experimental setup.
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7.4 Performance Evaluation

The execution times on 16 cores of all fusion models are listed in Table 7.3. The second col-

umn provides the execution times of the codes generated by PPCG [PPC13]. Note that for

benchmarks that are marked with a ’*’, the codes generated by PPCG could not be com-

piled with icc. Therefore, in these cases we used gcc-8 to compile transformed codes gen-

erated by PPCG. The third column provides the execution times for codes generated by

an older version of Pluto (version 0.11.4-463). This version is similar to the version used

by Kong et al. [KP19] for their comparison of PoCC+ with Pluto. The fourth and the fifth

columns present the execution times of the codes generated by PoCC+ and the recent ver-

sion of Pluto (version 0.11.4-920) that includes improved intra-tile optimizations and unroll

and jam heuristics (c.f. Chapter 6). Columns 5-7 correspond to the execution times of max-

fuse, typed-fuse and hybrid-fusion variants implemented in the Pluto-lp-dfp framework.

The last three rows correspond to benchmarks from the NAS benchmark suite while the rest

correspond to benchmarks from PolyBench. From Columns 3 and 5, we observe that these

optimizations result in a significant performance improvement over the older version of

Pluto by a geomean factor of 1.4× and over 3× in benchmarks like 2mm and 3mm. This im-

proved version of Pluto is used as the baseline for the comparison of Pluto-lp-dfp with Pluto,

unless specified otherwise. The first observation that we make is that PPCG is significantly

slower than PoCC+, Pluto, and the fusion variants in Pluto-lp-dfp. The codes generated by

Pluto-lp-dfp faster than the transformed codes generated by PPCG by a geomean factor of

5.8× across all benchmarks. This is primarily due to the cost model in PPCG and it also

lacks the support to generate vector pragmas. In the rest of this section, we only present the

details on comparison of Pluto-lp-dfp with PoCC+ and Pluto.

Figure 7.3 provides the speedup of PoCC+ and the fusion variants in Pluto-lp-dfp with

respect the Pluto, for the stencil benchmarks in PolyBench on which diamond tiling was
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Table 7.3: Execution times on 16 cores (in seconds). Cases in which auto-transformation
frameworks did not find a transformation in 10 hours or ran out of memory are marked
with a ’-’. For benchmarks marked with a ’*’, PPCG generated codes were compiled with
gcc-8.

Benchmark PPCG
Pluto

PoCC+
Pluto Pluto-lp-dfp

0.11.4-463 0.11.4-920 max typed hybrid

2mm 1.473 0.908 0.236 0.289 0.294 0.286 0.293
3mm 2.005 1.732 0.390 0.400 0.402 0.400 0.405
atax 0.004 0.003 0.003 0.003 0.003 0.003 0.003
bicg 0.003 0.003 0.003 0.003 0.003 0.003 0.003
cholesky 100.0 1.566 1.355 1.066 0.417 0.416 0.416
correlation* 1.543 0.521 0.332 0.398 0.276 0.394 0.396
covariance 1.882 0.710 0.361 0.400 0.366 0.394 0.394
doitgen 1.117 1.106 - 0.831 1.352 1.327 1.335
durbin 0.051 0.020 0.020 0.020 0.051 0.050 0.050
fdtd-2d 24.99 2.418 8.588 1.776 1.770 1.764 1.762
floyd-warshall 198.7 43.71 136.2 46.86 46.35 46.34 46.19
gemm 0.977 0.400 0.255 0.207 0.182 0.281 0.181
gemver 0.027 0.019 0.027 0.019 1.886 0.022 0.020
gesummv 0.006 0.007 0.005 0.006 0.007 0.007 0.007
gramschmidt* 41.05 3.086 8.551 1.438 1.492 1.432 1.431
heat-3d* 967.0 14.75 10.88 8.687 4.967 4.956 4.961
jacobi-1d 0.016 1.7× 10−3 0.018 1.3× 10−3 1.7× 10−3 1.3× 10−3 1.3× 10−3

jacobi-2d 27.11 3.394 5.482 2.341 1.357 1.355 1.369
lu 106.6 1.820 7.942 1.731 2.052 2.052 2.054
mvt 0.015 0.015 0.016 0.017 0.014 0.014 0.014
seidel-2d 169.3 17.20 18.32 16.65 16.65 16.65 16.65
symm* 14.69 56.03 17.38 20.09 20.09 10.61 10.64
syr2k 1.507 1.444 2.196 1.119 1.185 1.190 1.182
syrk 0.905 0.940 1.481 0.690 0.554 0.595 0.554
trisolv 1.453 0.004 0.020 0.005 0.017 0.005 0.005
trmm* 0.487 0.149 0.323 0.127 0.183 0.103 0.115

bt* 26.68 18.90 - 18.26 577.7 17.53 16.91
lu* 477.3 75.24 - 79.53 2359.7 93.98 93.88
sp* 57.45 38.42 - 37.74 1100.6 34.78 34.30
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Figure 7.3: Speedup of different auto-transformation frameworks on stencil benchmarks
from PolyBench benchmark suite.

possible. In case of jacobi-1d/2d, heat-3d, fdtd-2d), both Pluto and all our fusion models in

Pluto-lp-dfp perform better than PoCC+ because of diamond tiling. Pluto-lp-dfp performs

better than Pluto in case of multi-statement, time-iterated stencils (heat-3d, jacobi-2d) due to

a better transformation that increases the L1 hit rate. For example, in case of jacobi-2d, Pluto

finds the transformation

TS1(t, i, j)→ (2t− i, 2t + i, 2t + j)

TS2(t, i, j)→ (2t− i + 1, 2t + i + 1, 2t + j + 1),

which then tiled. Note that, the above transformation after tiling enables tile-wise concur-

rent start. Pluto-lp-dfp on the other hand finds the transformation

TS1(t, i, j)→ (2t− i, 2t + i, 2t + i + j)
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Figure 7.4: Speedup of different auto-transformation frameworks on selected linear algebra
benchmarks from PolyBench benchmark suite.

TS2(t, i, j)→ (2t− i + 1, 2t + i + 1, 2t + i + j + 1),

which involves more skewing at the innermost level. We first tuned the stencil benchmarks

for tile sizes and then measured the profiled the best performing variant for analysis of cache

behavior. Tile sizes were tuned in the space of 8, 16,32, 64, 128, 256 for each dimension, to

ensure that the default tile size of 32 was not favoring the transformation found by Pluto-

lp-dfp. The best performing variant was then profiled with perf during which we observed

that the L1 hit rate was better with the transformation found by Pluto-lp-dfp.

Figure 7.4 provides the speedup of linear algebra benchmarks from PolyBench for cases

where a significant difference in performance was observed. The first observation that we

make here is that the performance of PoCC+ is comparable to tiled codes generated by the
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Figure 7.5: Benchmarks from PolyBench on which we observe performance degradation.

improved version of Pluto in all cases other than gramschmidt. This is because in bench-

marks that involve matrix multiplications, the performance of tiled codes can be matched

register tiling via unroll jam optimizations. Note that, our improvements to intra-tile op-

timization heuristics and implementation of unroll and jam optimization, enabled us to

closely match the performance of PoCC+ in cases like 2mm, 3mm and gramschmidt. In

cholesky, we observe that transformation found by Pluto-lp-dfp improves register reuse by

enabling unroll jam of loops. This was not possible with the transformation found by Pluto,

because the transformation found by Pluto resulted in triangular loop nests.

Figure 7.5 lists the benchmarks in which the codes generated by Pluto-lp-dfp have a

degradation in performance. In doitgen, Pluto-lp-dfp finds a scaled up version of the trans-

formation found by Pluto. Such transformations are found by Pluto-lp-dfp in cases where

there exist spurious loop carried dependences due to updates to a loop private variable.

This issue can either be addressed by a code-generator, or by incorporating techniques like

variable liberalization [MY16] or live range re-ordering [VC16] in the auto-transformation
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framework, to remove such spurious dependences. In case of durbin, all our fusion variants

find a parallel loop at the innermost level. However, this inner parallel loop not only has

significant OpenMP synchronization cost, but also suffers from load imbalance, because, it

traverses a triangular domain. However, Pluto finds a transformation in which loop skew-

ing enables loop fusion, resulting in loss of parallelism. Thus the loop nest found by Pluto

is not parallelized using OpenMP. We profiled our code using Intel’s VTune and identified

OpenMP synchronization cost to be primary reason for loss of performance. To further

strengthen our claim, all the fusion variants were able to match the performance of the Pluto

generated code, in a single threaded execution. In future, we would like to have a model to

identify scenarios where parallelizing a loop with OpenMP results in performance degrada-

tion.

7.5 Summary of Results

In this section we summarize the results of our experiments. We first observe that the Pluto-

lp-dfp framework is significantly faster than state-of-the-art polyhedral auto-transformation

frameworks in terms of compile time. The default hybrid-fuse fusion model in the Pluto-lp-

dfp framework is faster than Pluto by a geomean factor of 2.2× in compilation time, with

more significant gains on larger NAS benchmarks and over 1000× in the largest case. On

these large cases PoCC+ did not terminate in a reasonable amount of time. Even when

restricted to PolyBench suite, our framework was faster than PoCC+ by 461×. We also ob-

served that incorporation of parallelism preserving fusion incurred a mere additional over-

head of ≈ 5.2% on compilation time. These massive improvements in compilation time are

meaningful only when there is no loss of performance. In terms of execution time, Pluto-lp-

dfp outperforms PoCC+ by 1.8× and PPCG by 5.8×. The intra-tile optimization heuristics

and multi-loop unroll and jam optimizations described in Chapter 6 improved the perfor-

mance of the then existing version of Pluto by a factor of 1.4×. The Pluto-lp-dfp framework
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is faster than this optimized version of Pluto by 7%. In the best case, we observe a perfor-

mance improvement of 2.6×. Thus, the Pluto-lp-dfp framework achieves our objective our

obtaining high performance with low compilation times, while efficiently modeling paral-

lelism preserving loop fusion heuristics in polyhedral compilation.



Chapter 8

Related Work

In this chapter, we discuss the related work around scalability of polyhedral compilation

and then in Section 8.2, we discuss the literature around loop fusion both in traditional and

polyhedral compilation.

8.1 Scalability of Polyhedral Frameworks

The first set of works on using affine schedules to improve performance were those by

Feautrier [Fea92a, Fea92b]. Feautrier’s schedules aimed at greedily satisfying dependences

as early as possible to obtain minimum latency schedules. Feautrier’s approach to find

multi-dimensional schedules [Fea92b] involves binary decision variables, and it thus can

only be relaxed to an Mixed Integer Programming (MIP) formulation instead of an LP for-

mulation. Feautrier’s schedules did not consider tiling or coarse-grained parallelization op-

portunity, and are thus very different from the ones found by Pluto [BBK+08, BHRS08].

The consequence of relaxing the ILP formulation in Feautrier’s multi-dimensional affine

scheduling formulation to a MIP formulation remains unexplored. However, Feautrier [Fea06]

identified the scalability issues in this ILP formulation and proposed a solution to optimize

the large programs by
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1. reducing the number of Farkas multipliers during the construction of dependence con-

straints using Gaussian elimination,

2. replacing the simplex algorithm with a different elimination algorithm that exploits

the sparsity of dependence constraints.

3. individually optimizing small program chunks.

All these methods aim at reducing the number of variables seen by the ILP solver, along

with exploiting the structure of constraints generated by polyhedral scheduling algorithms.

These approaches are orthogonal to the approach presented in the paper and can be incor-

porated in Pluto-lp-dfp to further improve auto-transformation times.

Several polyhedral frameworks have either relied on variants of Feautrier’s scheduling

approach, Pluto’s scheduling algorithm (ref Chapter 2), or a combination of these [VJC+13].

Vasilache [Vas07] modeled the space of multi-dimensional schedules using a single ILP for-

mulation, and has been extended to model driven and iterative approaches [PBB+10, KP19].

However, the ILP formulation is relatively more complex than the one in Pluto, and its im-

pact on compilation times was demonstrated in Chapter 7.

Variants of the scheduling algorithm in Pluto and the multi-dimensional algorithm by

Vasilache [Vas07] have been extended to model spatial and temporal reuse in order to ex-

ploit efficient vectorization [VMBL12, KVS+13]. The approach of Vasilache et al. [VMBL12]

restricts the space of affine transformations such that the innermost loop has stride-0 or

stride-1 accesses. Kong et al. [KVS+13] on the other hand, introduce a polyhedral reschedul-

ing step. The first scheduling step involves finding a transformation for the program using

the Pluto algorithm [BHRS08], then tileable loops are detected and parametrically [BHT+10]

tiled, and then, partial and full tiles are separated. In the second step, the intra-tile itera-

tors of full tiles obtained in the first step, are subjected to intra-tile rescheduling. The newly

found intra-tile schedule tries to maximize fine-grained parallelism, maximize unit stride
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and stride-0 references, and penalize unaligned loads and stores. Both these approaches

involve solving more ILPs that contain decision variables per dependence. Therefore, the

number of variables in these ILP formulations is significantly large. Relaxing integrality

constraints in such formulations is outside the scope of this work. In the case of Pluto algo-

rithm, we were able to relax it to an LP formulation, while seeking tileable bands. Moreover,

in Pluto, we were able to efficiently model intra-tile optimizations using heuristics with-

out solving ILPs (refer Chapter 6). We also observe that these heuristics are sufficient to

match or outperform state-of-the-art polyhedral auto-parallelizers in terms of performance

of transformed codes, as demonstrated by our experiments described in Chapter 7.

Several tiling strategies have been incorporated in the state-of-the-art polyhedral com-

pilers like Pluto and PPCG. Bandishti et al. [BPB12] introduced diamond tiling, which was

later generalized by Bondhugula et. al [BBP17], to enable tile-wise concurrent start in sten-

cils as rescheduling step in Pluto. Prior to that, overlapped tiling and split tiling techniques

were used to enable tile-wise concurrent start in stencils, by altering the transformations

obtained by Pluto [KBB+07]. Hexagonal tiling, which can be viewed as an extension of

diamond tiling by allowing hexagonal shaped tiles instead of diamond tiles, was intro-

duced by Grosser et al. [GCH+14] for tiling stencil computations on GPUs. Overlapped

tiling [RKBA+13, MVB15, HPS12] has been studied in the context of domain specific compi-

lation for both stencils and image processing applications for both CPUs and GPUs. Efforts

to reduce redundant computation that arise due to overlapped tiling have been made by hi-

erarchical tiling schemes that perform overlapped tiling at inner level and rectangular tiling

at outer levels [ZGG+12, ZGP15]. Very recently, Zhao and Cohen [ZC19] proposed flex-

tended tiling, in which tile shapes can be asymmetric/scalene trapezoids, by deriving tighter

bounds on the amount of redundant computation. Their approach integrates affine transfor-

mations like loop fusion and permutation, among many others, with storage optimizations

like, scratchpad allocation, in a general-purpose compiler, thereby yielding performance
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that is comparable with diamond tiling on CPUs and hexagonal/hybrid tiling on GPUs.

All these tiling techniques rely on Pluto’s or Feautrier’s scheduling algorithm, and hence

suffer from the scalability issues described in this thesis. It is a part of our future work,

to study the impact of incorporating overlapped tiling instead of loop skewing in the last

auto-transformation stage of the Pluto-lp-dfp compiler.

Recent efforts explored ways to improve the scalability of Pluto by reducing the num-

ber of variables in its ILP formulation. Pradelle et al. [PMB+16] hierarchically project out

dimensions (per level of tiling) of the dependence polyhedron with a focalisation operator.

This operator projects out the outer dimensions while intra-tile optimizations are performed

and vice-versa. Every focalization operator is associated with a defocalisation operator that

reintroduces the dimensions that were projected out by the focalization operator. This ap-

proach was implemented in R-Stream compiler [RST08], which relies on Feautrier’s schedul-

ing constraints. Their approach does not address the scalability problem stemming from the

ILP formulation and the construction of linear independence constraints.

Mehta et al. [MY15] and Baghdadi [Bag15] propose statement clustering heuristics to re-

duce the number of statements seen by the polyhedral optimizer. All the statements within

a cluster will have a single set of transformation coefficients and hence get the same trans-

formation. The statement clustering heuristic of Mehta et al. [MY15], clusters successive

statements that have the same iteration domain into an O-molecule (optimization molecule).

This heuristic is slightly more generic than basic block clustering used in LLVM-Polly; for ex-

ample, in cases where statements in consecutive loop nests have the same iteration domain,

these statements are clustered into an O-molecule. They also employ dependence conden-

sation techniques, where only a sufficient set of dependences are considered, reducing the

taken for the construction of tiling validity and dependence distance bounding constraints.

Though they achieve significant compile time improvements over the Pluto algorithm, their

approach inhibits opportunities for loop distribution. Moreover, these compilation time im-
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provements are tightly coupled with the ability to construct O-molecules with a large num-

ber of statements. We observed that on some large image processing pipelines, their cluster-

ing heuristic fails to form large clusters, which results in auto-transformation times similar

to that of Pluto. This is because, even after clustering, the auto-transformation framework

still relies on the ILP formulation and the construction of linear independence constraints.

On the other hand, the Pluto-lp-dfp framework completely avoids these major bottlenecks

in the Pluto algorithm.

The SCC based clustering approach proposed by Baghdadi [Bag15], was able to find the

same set of transformations as Pluto, apart from a few practically harmless loop shifting

transformations. Their clustering heuristic clusters statements in an SCC that belong to a

same basic block. This results in smaller clusters than our clustering heuristic described in

Section 5.2. This is because, their approach does not have the ability to uncluster during

the auto-transformation phase, where as, in Pluto-lp-dfp, unclustering is performed during

the reconstruction of the FCG. Statement clustering approaches are orthogonal to the pro-

posed framework and the advantages of integrating these heuristics was demonstrated in

Chapter 7.

Upadrasta and Cohen [UC13] explored yet another angle to improve the scalability of

affine scheduling: by approximating LP problems into lower complexity sub-polyhedral fea-

sibility problems (e.g., octagons). This complementary approach remains currently limited

in its ability to model optimization problems, and its implementation and further evaluation

remains to be explored.

Shirako et al. [SPS14] decompose the affine scheduling problem into polyhedral and AST

based transformation stages. The output of their polyhedral stage is a valid transformation

consisting of loop permutation and loop shifting transformations. This can be used as an

alternative for the permutation black box part of our approach, and the scaling and shift-

ing phase can be skipped. However, their transformations do not consider loop scaling to
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enable fusion. Also, their approach can not be relaxed to an LP because, their polyhedral

phase relies on Feautrier’s multi-dimensional scheduling constraints [Fea92b] involving bi-

nary decision variables. Their fusion heuristic is guided by the distinct lines model [Sar97]

which considers cache occupancy and tries the minimize the number of conflict misses in

the cache, along with other factors. Their approach relies on traditional AST based methods

for loop skewing and loop tiling and hence are limited to tiling of perfect loop nests. The

proposed Pluto-lp-dfp framework is a pure polyhedral framework which does not have the

restrictions of traditional loop transformation approaches and has precise dependence infor-

mation in the form of dependence polyhedra, and hence, it allows loop skewing and loop

tiling to be modeled in a more generic fashion.

8.2 Related Work on Fusion

Traditionally loop fusion and distribution has been studied in the context of maximizing

parallelism and locality. Seminal work by Kennedy and McKinley on parallelism preserv-

ing loop fusion or typed fusion [KM92, KM93] involved fusing loops that have the same type

(parallel or sequential). Optimal loop fusion has been proven to be NP-complete [KM93] and

Darte [Dar00, Dar99] established NP-completeness for a broader class of loop fusion prob-

lems. Both polynomial time and optimal solutions have been proposed for the weighted

loop fusion problem [Ken00, MS97]. All these approaches do not consider loop fusion in

conjunction with other loop transformations like loop permutation, loop scaling and shift-

ing.

Sarkar and Gao [SG91] use interference graphs to model loop reversals and loop permu-

tations to enable loop fusion. These graphs have two vertices per dimension of a statement.

Edges in these graphs are analogous to edges in the FCG. However, their model does not

consider transformations that involve loop shifting or loop scaling to enable fusion. Their

primary objective is to improve reuse and enable scalarization of arrays and do not consider
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Table 8.1: Summary of various fusion heuristics available in polyhedral auto-transformation
frameworks.

Fusion heuristic Parallelism-preserving More ILPs Implementation status

Smart-fuse 7 7 Default in Pluto
Max-Fuse 7 7 Available in Pluto
No-Fuse 7 7 Available in Pluto
Wise-fuse 3 3 Unavailable
Typed-fuse 3 3 Default in ISL/PPCG

parallelism in their objective. To model loop reversals in the FCG, we can extend the FCG by

duplicating its vertices to model reversals, similar to interference graphs. However, we ob-

serve that, in practice, transformations like loop scaling and loop shifting enable loop fusion

in large number of cases when compared to loop reversals.

Polyhedral compilers like LLVM Polly [GZA+11], Pluto, PPCG [VJC+13], model loop

distribution with various heuristics. PPCG fuses two SCCs only if it preserves parallelism

by solving more number of ILPs. Hence, even with certain heuristics, implementation of

parallelism-preserving fusion models in a polyhedral compiler would involve solving a sig-

nificantly large number of ILP formulations, resulting in large auto-transformation times.

Loop fusion heuristics in Pluto are adhoc and do not consider any optmization criteria as

described in Chapter 2. A summary of these fusion heuristics is provided in Table 8.1. Us-

ing the FCG we were able to model parallelism preserving loop fusion heuristics to work

alongside other affine loop transformations in a polyhedral compilation framework with-

out significant compilation time overhead, as evidenced by our experiments described in

Chapter 7.

Mehta et al. [MLY14] provide a loop fusion heuristic in the polyhedral framework called

wisefuse, which is similar to typed fusion. Their approach fuses two SCCs only if there is

reuse and also ensures that the resulting loop nest remains parallel. Their approach de-

tects if a hyperplane found by Pluto resulted in loss of parallelism and if so, it discards the

hyperplane found, distributes the SCCs, and then, finds a new hyperplane using Pluto’s al-
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gorithm. This adds more compile time overhead to the existing auto-transformation times

of Pluto (refer Table 7.2).

The recent work of Kong and Pouchet [KP19], which we referred to as PoCC+ in Chap-

ter 7, obtains significant performance benefits over the then existing version of Pluto (version

0.11.4-85), which we were able to reproduce. They exploit register reuse by unroll and jam-

ming loops, due to which, the benefits of cache tiling diminish. Their loop transformations

are guided by a series of objectives based on the characteristics of the program. Experimental

results therein concluded that excellent performance improvements could be achieved with-

out actually performing loop tiling. We implemented unroll and jam optimizations in Pluto

(and Pluto-lp-dfp) to exploit register reuse and also improved intra-tile optimization heuris-

tics. These optimizations, in addition to loop tiling, not only enabled us to closely match the

performance of PoCC+ with default tile sizes on benchmarks like 2mm and 3mm, but also

achieve overall performance improvement over PoCC+ with both Pluto and Pluto-lp-dfp.

Tuning for tile sizes will further improve our performance over PoCC+. This re-establishes

the need for loop tiling and also motivates further research on tile size selection models. To

the best of our knowledge, they are the first to incorporate a model to characterize stencils

in a general-purpose compiler. Their characterization classifies an SCC as a stencil if the

condition

is_stencil∧ Ndep ≤ 3×m

evaluates to true, where Ndep represents the number of dependences in the SCoP, m is the

maximum of dimensionalities of all statements in the SCoP, and the predicate isstencil is true

if at least half the number of statements in the SCoP refer to at least two neighboring points

in the iteration space of the same statement. This characterization can be restricted to a per-

SCC basis rather than the entire SCoP with minor modifications. However, it is based on

the number of dependences and the number of statements in the SCoP and does not take

into account tile-wise concurrent start, constant dependence vectors, absence of communi-
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cation free parallel loops, which are characteristics of time-iterated stencils, as described in

Section 5.3.2. Note that, in case of stencil benchmarks, significant performance gains were

obtained primarily enabling of tile-wise concurrent start by diamond tiling, which is our

characterization takes into account. Finally, the construction of constraints in PoCC+ is rel-

atively more expensive, resulting in very high auto-transformation times, as evidenced by

our experiments in Section 7.3.

Fusion on coarser grained operators has been widely implemented in domain-specific

compilers like Halide [RKBA+13], XLA [XLA17], and Polymage [MVB15]. Such fusion is

more general than traditional loop fusion since the former could lead to redundant compu-

tation and impact intermediary storage in different ways. XLA implements operator fusion

on its intermediate representation relying on the type of operators. In Halide and Polymage,

stages of an image processing pipeline are fused greedily, based on reuse and the amount of

redundant computation [MAS+16, JB18] among other factors.



Chapter 9

Conclusions and Future Work

In this chapter we conclude the thesis by reiterating the contributions of the thesis and

provide insights on some possible future extensions to the proposed Pluto-lp-dfp auto-

transformation framework.

9.1 Conclusions

Loop optimizations are known to provide significant performance gains in applications from

various domains. Therefore, automatic loop transformation frameworks have become more

popular to extract performance on modern architectures and meet the increasing compute

and memory requirements of complex algorithms. Polyhedral auto-transformation frame-

works have the ability to model a rich class of affine loop transformations with objectives.

However, these frameworks still remained as optional passes in general-purpose compilers

like LLVM, because these frameworks did not scale to programs with hundreds of state-

ments. This thesis not only focused on improving the scalability of the widely used Pluto

algorithm to programs with hundreds of statements, but also provided a way to model com-

plex loop fusion heuristics in polyhedral auto-transformation frameworks.

The scalability issues in the Pluto algorithm has been traditionally known to arise from

the ILP formulation and the associated combinatorially expensive construction of linear in-
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dependence constraints. Hence, in this thesis, we first studied the effects of relaxing the

integrality constraints on the variables in the ILP formulation of the Pluto algorithm. We

showed that relaxing the ILP formulation in Pluto results in rational solutions, that can be

scaled to integers without violating any dependences. However, the sub-optimalities that

arise due to this relaxation manifested as loop skewing transformations that degraded per-

formance significantly in some cases. In spite of these sub-optimalities, we showed that the

relaxed formulation can be used as a light-weight check for existence of communication free

parallel hyperplanes and tileability of the loop nest. On the contrary, the relaxed formula-

tion still involved the construction of linear independence constraints that played a key role

in the scalability of the Pluto algorithm.

In order to overcome the sub-optimalities arising due to relaxation of the ILP formulation

and avoid the construction of linear independence constraints, we designed an automatic

transformation algorithm within the polyhedral framework. This new framework, Pluto-

lp-dfp, addressed the key scalability issue in polyhedral compilation by decomposing the

auto-transformation phase into the following three stages: 1) loop fusion and permutation,

2) loop scaling and shifting, and 3) loop skewing. In each stage, the Pluto-lp-dfp frame-

work relied on LP formulations instead of ILP and completely avoided the construction

of linear independence constraints by reorganizing the construction of affine transforma-

tions. Experimental results demonstrated that, the proposed reorganization does not miss

any profitable transformations for benchmarks from NAS and PolyBench benchmark suites.

A consequence of decoupling the construction of polyhedral loop transformations allowed

loop fusion to be modeled in conjunction with other loop transformations like loop permu-

tation, loop scaling and loop shifting. Loop fusion in Pluto-lp-dfp was modeled using a

data structure called the fusion conflict graph (FCG). We proved that convex independent

sets that were obtained using a convex coloring routine corresponded to valid loop permu-

tations, and these valid permutations allowed various loop fusion heuristics to be modeled
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efficiently using the FCG. Then, we proposed clustering heuristics that allowed us to im-

plement greedy fusion models, in particular, fusion models that did not result in loss of

parallelism. We also characterized dependence patterns exhibited by time-iterated stencils

that have tile-wise concurrent start. This characterization allowed to use different fusion

heuristics in such program segments. Thus, the Pluto-lp-dfp framework allows seamless

integration of complex loop fusion heuristics in polyhedral compilation as a part of a single

auto-transformation algorithm.

Our experiments demonstrated that Pluto-lp-dfp was faster than Pluto by a factor of

234× on larger NAS benchmarks in compilation time, without sacrificing performance of

executed codes. Even while considering the smaller benchmarks from PolyBench, Pluto-

lp-dfp was faster than Pluto by a factor of 2.2× and PoCC+ by a factor of 461×. We also

demonstrated that incorporating greedy parallelism preserving loop fusion heuristics did

not incur significant compile time overhead. These improvements in compilation time came

along with an improvement in performance of generated codes. The hybrid fusion model in

Pluto-lp-dfp outperforms PPCG, PoCC+, and an improved version of Pluto by a by geomean

factors of 5.8×, 1.8× and 7% respectively. Thus, Pluto-lp-dfp framework complementary to

other recent approaches in the subject of scalability of polyhedral auto-transformation and

allows integration of these approaches. Pluto-lp-dfp not only advances state-of-the-art in

polyhedral compilation but also introduces other research opportunities, some of which we

detail in the next section.

9.2 Future Directions

In this section, we provide some insights into some possible future extensions.

Further reducing compilation times: We would further reduce the compilation times of

Pluto-lp-dfp by improving the clustering heuristic. If not the clustering heuristic described

by Mehta et al. [MY15], we hypothesize that a more careful clustering along similar lines
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would reduce the compilation times further. Secondly, we in our previous experiments, we

had observed that applying loop distribution heuristic of Pluto at the outermost level, even

before the construction of the FCG, reduces the time taken to construct the FCG by a factor

of 1.5×. This is because, it reduces the number of LP formulations during the construction

of the FCG. Incorporating such loop distribution strategies at the outermost level while con-

sidering certain optimization criteria is a part of our future work. In order to reduce the

overall compilation time in Pluto-lp-dfp, in addition to reducing FCG construction time, the

time taken to construct polyhedral dependence constraints (tiling validity and dependence

distance bounding constraints) by the application of Farkas Lemma has to reduced. One can

identify a minimal set of dependences to be satisfied in order to ensure correctness, however

a more interesting approach would be to rely on a mixture of experts approach. Loop opti-

mizations on certain parts of the program can be performed by traditional approaches by

using dependence vectors, and polyhedral dependences can be used in certain other parts.

Optimizing loops with a mix of polyhedral and traditional loop transformation approaches

applied on different program segments is currently unexplored.

Modeling loop fusion: The loop fusion models that we proposed here only considered

parallelism into account. However, loop fusion can increase register pressure and also re-

duce the performance of prefetchers if the fusion model is very aggressive. In future we

would like to model these factors into cost model, more likely during the coloring phase

of the Pluto-lp-dfp framework. We would also like to incorporate other cost models like

weighted loop fusion [Ken00, MS97] in the Pluto-dfp framework. In other words, we would

like to evaluate the performance of older approaches to loop fusion in a polyhedral environ-

ment. Using the FCG, Pluto-lp-dfp is able to unify the benefits of traditional and polyhe-

dral loop transformations, and hence, is a good candidate to be incorporated into a multi-

abstraction-level infrastructure like MLIR.
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Extensions to overlapped tiling: Overlapped tiling has been proven to be effective in es-

pecially in the domains of image processing and machine learning. However, the adoption

of this tiling strategy in general-purpose compilation has not gained much popularity in

state-of-the-art polyhedral compilers. This is primarily due to large overhead of redun-

dant computation that might arise in general purpose programs. As observed by Vasista

et al [VNBB17], even within the class of stencils, performance of diamond tiled and over-

lap tiled codes vary significantly. Moreover, apart from time-iterated stencils, it is unclear

whether loop skewing performs better than codes with overlapped tiling. Using the sten-

cil characterization provided in Section 5.3.2, one can not only distinguish between lower

and higher dimensional stencils (higher dimensional stencils have high over head of redun-

dant computation in case of overlapped tiling), but also replace the loop skewing phase in

the Pluto-lp-dfp benchmarks with overlapped tiling in cases where it is considered to be

profitable.

Extensions to Domain Specific Languages (DSLs): We plan to apply our fusion model to

DSLs like PolyMage and TensorFlow-XLA where loop fusion strategies are predefined and

operator fusion heuristics have been studied. These operation fusion heuristics not only

aim at exploring reuse, at times, even with the expense of redundant computation, but also

optimize for storage by using small buffers to store intermediate results, if necessary. In

such cases, fusion models would to consider many different criteria, as described by Jangda

et al. [JB18]. We would like to extend the FCG to model operation fusion in DSLs to optimize

for storage and performance in a unified manner.
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