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Affine Transformations

Examples of affine functions of i , j : i + j , i − j , i + 1, 2i + 5

Not affine: ij , i2, i2 + j2, a[j ]
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Figure: Iteration space

for (i = 0; i < N; i++){
for (j = 0; j < M; j++){

A[i+1][j+1] = f(A[i][j]);

}
}

t1 = i − j1 2 3−3 −2 −1 . . .. . . 0 N − 1−M + 1

t2 = j
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M − 1

Figure: Transformed space

#pragma omp parallel for private(t2)

for (t1=-M+1;t1<=N-1;t1++) {
for(t2=max(0,-t1);t2<=min(M-1,N-1-t1);t2++){

A[t1+t2+1][t2+1]=f(A[t1+t2][t2]);

}
}

Transformation: (i , j)→ (i − j , j)
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Affine transformations are attractive because:

Preserve collinearity of points and ratio of distances between
points
Code generation with affine transformations has thus been
studied well (CLooG, ISL, OMEGA+)

Model a very rich class of loop re-orderings
Useful for several domains like dense linear algebra, stencils,
image processing pipelines, Lattice Boltzmann Method

Aravind Acharya PLUTO+ 09 Feb 2015 4 / 25



Affine Transformations

i0 1 2 3 . . . N − 1

j

0

1

2

3

...

M − 1

Figure: Iteration space

t1 = i − j1 2 3−3 −2 −1 . . .. . . 0 N − 1−M + 1

t2 = j

0

1

2

3

...

M − 1

Figure: Transformed space

Affine transformations are attractive because:

Preserve collinearity of points and ratio of distances between
points
Code generation with affine transformations has thus been
studied well (CLooG, ISL, OMEGA+)
Model a very rich class of loop re-orderings
Useful for several domains like dense linear algebra, stencils,
image processing pipelines, Lattice Boltzmann Method

Aravind Acharya PLUTO+ 09 Feb 2015 4 / 25



Affine Transformations

i0 1 2 3 . . . N − 1

j

0

1

2

3

...

M − 1

Figure: Iteration space

t1 = i − j1 2 3−3 −2 −1 . . .. . . 0 N − 1−M + 1

t2 = j

0

1

2

3

...

M − 1

Figure: Transformed space

Can express complex compositions of simpler transformations
like permutation, skewing, reversal, scaling, shifting, tiling,
fusion, distribution

Affine transformations can improve parallelism and locality
(Feautrier 1992, Lim and Lam 1997, Pluto 2008)
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Pluto Algorithm

Proposed by Bondhugula et al. CC 2008, PLDI 2008

Improves locality and parallelism by minimizing dependence
distance

Assumption: Transformation coefficients are non-negative

Optimization Problem: Minimize dependence distance

Constraints:

Tile validity constraints
Dependence distance bounding constraints
Zero solution avoiding constraints
Linear Independence constraints

When transformation coefficients are negative, the above
constraints miss useful solutions
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Motivation: Periodic Stencils

Near-neighbor dependences and some long wraparound
dependences

Applications in fluid simulations of infinite domains

Periodic Lattice Boltzmann Methods (LBM) used in fluid
dynamics, Swim (shallow water equations) fall into this
category
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Tiling Periodic Domains

0 1 2 3 4 N N + 1 N + 2 N + 3 N + 4. . . N − 1 . . . 2N − 1

0
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...

T

Find a cut close to the mid point: (2i = N)

Reverse the second domain and shift it right by N:
(t, i)→ (t,N − i)

Now all dependences are short

Tile the time dimension (parallelogram, diamond)
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Challenge 1: Avoiding the Trivial Solution

Transformation coefficients are non-negative integers.
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Figure: Search space of
transformation coefficients
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c1, c2 ≥ 0,
c1 + c2 ≥ 1.

With coefficients being negative,
we may miss valid solutions. Eg:
c1 = 1, c2 = −1
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c1 6= 0 ∨ c2 6= 0.

This constraint results in a non
convex space. Approach does
not scale.
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Challenge 2: Finding Linearly independent
transformations

−2 −1 0 1 . . . c1

−2
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...

c2

Let (0, 1) be the first hyperplane

For the next hyperplane to be linearly independent: c2 6= 0
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Pluto+: Avoiding the Zero Solution

Assume that c0, c1, c2 are bounded by -4 and +4.

c0, c1, c2 can be considered to be in base 5

If (c0, c1, c2) = ~0, then 52c2 + 5c1 + c0 = 0 and vice versa

To avoid the zero solution,
(c0, c1, c2) 6= ~0 ⇐⇒ |52c2 + 5c1 + c0| ≥ 1. Make this
constraint convex by using a decision variable.

Since the coefficients are in base 5,
the maximum value of 52c2 + 5c1 + c0 is 53 − 1 = 124.
the minimum value of 52c2 + 5c1 + c0 is 1− 53 = −124.

Hence, upper and lower bounds for 52c2 + 5c1 + c0 are known
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Pluto+: Avoiding the Zero Solution

Introduce a decision variable to obtain a convex space
representing the constraint on the absolute value

We then have:

c0, c1, c2 6= 0 ⇐⇒ |25c2 + 5c1 + c0| ≥ 1.

Consider the following expressions where δ ∈ {0, 1} is a decision
variable:

52c2 + 5c1 + c0 ≥ 1− δ ∗ 53,

− (52c2 + 5c1 + c0) ≥ 1− (1− δ) ∗ 53.

If δ = 0 then,

52c2 + 5c1 + c0 ≥ 1.

52c2 + 5c1 + c0 ≤ 53 − 1.

Positive half-space

If δ = 1 then,

52c2 + 5c1 + c0 ≥ 1− 53.

52c2 + 5c1 + c0 ≤ −1.

Negative half-space
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Pluto+: Linear Independence

The hyperplanes for every statement have to be linearly
independent

Assume the hyperplane that has been found is[
1 1 0

]
Linear independence is given by[

1 −1 0
0 0 1

]  c1
c2
c3

 6= ~0

Newly found hyperplane must have a non-zero component in
the orthogonal subspace

|c1 − c2|+ |c3| ≥ 1

Get a convex space corresponding to the absolute value using
a decision variable.

Aravind Acharya PLUTO+ 09 Feb 2015 14 / 25



Pluto+: Linear Independence

The hyperplanes for every statement have to be linearly
independent

Assume the hyperplane that has been found is[
1 1 0

]
Linear independence is given by[

1 −1 0
0 0 1

]  c1
c2
c3

 6= ~0

Newly found hyperplane must have a non-zero component in
the orthogonal subspace

|c1 − c2|+ |c3| ≥ 1

Get a convex space corresponding to the absolute value using
a decision variable.

Aravind Acharya PLUTO+ 09 Feb 2015 14 / 25



Pluto+: Linear Independence

The hyperplanes for every statement have to be linearly
independent

Assume the hyperplane that has been found is[
1 1 0

]
Linear independence is given by[

1 −1 0
0 0 1

]  c1
c2
c3

 6= ~0

Newly found hyperplane must have a non-zero component in
the orthogonal subspace

|c1 − c2|+ |c3| ≥ 1

Get a convex space corresponding to the absolute value using
a decision variable.

Aravind Acharya PLUTO+ 09 Feb 2015 14 / 25



Pluto+: Linear Independence

The hyperplanes for every statement have to be linearly
independent

Assume the hyperplane that has been found is[
1 1 0

]
Linear independence is given by[

1 −1 0
0 0 1

]  c1
c2
c3

 6= ~0

Newly found hyperplane must have a non-zero component in
the orthogonal subspace

|c1 − c2|+ |c3| ≥ 1

Get a convex space corresponding to the absolute value using
a decision variable.

Aravind Acharya PLUTO+ 09 Feb 2015 14 / 25



Pluto+: Linear Independence

The hyperplanes for every statement have to be linearly
independent

Assume the hyperplane that has been found is[
1 1 0

]
Linear independence is given by[

1 −1 0
0 0 1

]  c1
c2
c3

 6= ~0

Newly found hyperplane must have a non-zero component in
the orthogonal subspace

|c1 − c2|+ |c3| ≥ 1

Get a convex space corresponding to the absolute value using
a decision variable.

Aravind Acharya PLUTO+ 09 Feb 2015 14 / 25



Outline

1 Affine Transformations

2 Pluto

3 Motivation for Negative Coefficients

4 Pluto+

5 Experimental Results

6 Related Work

Aravind Acharya PLUTO+ 09 Feb 2015 15 / 25



Implementation details

Implemented as PLUTO+

The optimization problem is solved using an open-source ILP
solver (ISL, GLPK)

Eg: Transformation obtained for LBM D2Q9 (periodic)

Original schedule Transformed schedule

S1: (t, i, j) S1: (t-i, t+i, t+j)
S2: (t+i-N, t-i+N, t+j)
S3: (t-i, t+i, t-j+N)
S4: (t+i-N, t-i+N, t-j+N)
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Benchmarks and Evaluation

Performance evaluation: Heat equation benchmarks with
periodic conditions from Pochoir, Swim from SPEC 2000fp,
several Lattice Boltzmann Method (LBM) simulations

Comparison with Intel C compiler, Palabos in addition for
LBM

Analysis of impact on polyhedral automatic transformation
time and overall compilation time
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Experimental Setup

Codes were run on Intel SandyBridge Machine with the
following configuration.

Intel Xeon E5-2680

Clock 2.7 GHz
Cores / socket 8
Total cores 16
L1 cache / core 32 KB
L2 cache / core 512 KB
L3 cache / socket 20 MB
Peak GFLOPs 172.8

Compiler Intel C compiler (icc) 14.0.1
Compiler flags -O3 -xHost -ipo

-restrict -fno-alias -ansi-alias
-fp-model precise -fast-transcendentals

Linux kernel 3.8.0-44
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Performance: Heat-2D
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Swim Benchmark (Spec 2000fp)
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Performance: LBM D2Q9
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Compile Times

Comparison of Pluto+ with Pluto (Pluto+ time
Pluto time )

Benchmark Auto-transformation Total Time

Polybench 0.89 1.15
Heat equation 0.39 2.25

Swim (SPEC2000fp) 9.71 2.83
LBM benchmarks 0.49 1.80

Pluto+ scales very well

Improvement in auto-transformation time in several cases due
to bounds on transformation coefficients

In most cases, the increase in compile time was due to an
increase in code generation time

Total compilation time varied from 0.013s (jacobi-1d-imper)
to 56.36s (LBM D3Q27)
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Performance Summary

Benchmarks Increase in
compilation time

Speedup in
running time

Heat equation 2.25× 2.91×
Swim 2.83× 2.73×

LBM benchmarks (mean) 1.8× 1.33×

Enables time tiling in the presence of periodic boundary
conditions

Scales like Pluto

Availability: Code and benchmarks available at
http://mcl.csa.iisc.ernet.in/
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Related Work

Griebl [Habilitation thesis 2008]: Forward Communication
Only (FCO) constraints. Finds extremal solutions of the space
of valid transformations. Expensive, practicality and scalability
not demonstrated

Lim and Lam [POPL’97 and ICS’99]: Objective is to reduce
frequency of synchronization and improve locality. No specific
objective function to choose among valid solutions

R-STREAM compiler [Encl. of Par. Computing 2011]: larger
number of decision variables per statement.
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Summary

Presented PLUTO+, models a significantly larger space of
affine transformations in the presence of a cost function,
complete in practice

Increase in overall compilation time by only 15%

Faster than Pluto in auto-transformation time on average

Speedup of 2.73× over icc on Swim benchmark

Speedup of 1.33× for Lattice Boltzmann Method
computations
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