PLUTO+: Near-Complete modeling of Affine Transformations for Parallelism and Locality

Aravind Acharya and Uday Bondhugula

Department of Computer Science and Automation Indian Institute of Science

Bengaluru, India
09 Feb 2015

Outline

(1) Affine Transformations
(2) Pluto
(3) Motivation for Negative Coefficients

4 Pluto+
(5) Experimental Results
(6) Related Work

Affine Transformations

- Examples of affine functions of $i, j: i+j, i-j, i+1,2 i+5$
- Not affine: $i j, i^{2}, i^{2}+j^{2}, a[j]$

Figure: Iteration space
for $(i=0 ; i<N ; i++)\{$
for $(j=0 ; j<M ; j++)\{$
$A[i+1][j+1]=f(A[i][j])$;
\}
$\}$
\#pragma omp parallel for private(t2)
\#pragma omp parallel for private(t2)
for (t1=-M+1;t1<=N-1;t1++) {
for (t1=-M+1;t1<=N-1;t1++) {
for(t2=max (0,-t1); t2<=min(M-1,N-1-t1);t2++){
for(t2=max (0,-t1); t2<=min(M-1,N-1-t1);t2++){
A[t1+t2+1][t2+1]=f(A[t1+t2][t2]);
A[t1+t2+1][t2+1]=f(A[t1+t2][t2]);
}
}
}
}

Figure: Transformed space

- Transformation: $(i, j) \rightarrow(i-j, j)$

Affine Transformations

- Examples of affine functions of $i, j: i+j, i-j, i+1,2 i+5$
- Not affine: $i j, i^{2}, i^{2}+j^{2}, a[j]$

Figure: Iteration space
for (i $=0 ; i<N ; i++)\{$
for ($\mathrm{j}=0 ; \mathrm{j}<\mathrm{M} ; \mathrm{j}+\mathrm{+}$) $\{$
$A[i+1][j+1]=f(A[i][j])$;
\}
\}
\#pragma omp parallel for private(t2)
\#pragma omp parallel for private(t2)
for (t1=-M+1;t1<=N-1;t1++) {
for (t1=-M+1;t1<=N-1;t1++) {
for(t2=max (0,-t1); t2<=min(M-1,N-1-t1);t2++){
for(t2=max (0,-t1); t2<=min(M-1,N-1-t1);t2++){
A[t1+t2+1][t2+1]=f(A[t1+t2][t2]);
A[t1+t2+1][t2+1]=f(A[t1+t2][t2]);
}
}
}
}

Figure: Transformed space

- Transformation: $(i, j) \rightarrow(i-j, j)$

Affine Transformations

Figure: Iteration space

Figure: Transformed space

- Affine transformations are attractive because:
- Preserve collinearity of points and ratio of distances between points
- Code generation with affine transformations has thus been studied well (CLooG, ISL, OMEGA+)

Affine Transformations

Figure: Iteration space

Figure: Transformed space

- Affine transformations are attractive because:
- Preserve collinearity of points and ratio of distances between points
- Code generation with affine transformations has thus been studied well (CLooG, ISL, OMEGA+)
- Model a very rich class of loop re-orderings
- Useful for several domains like dense linear algebra, stencils, image processing pipelines, Lattice Boltzmann Method

Affine Transformations

Figure: Iteration space

Figure: Transformed space

- Can express complex compositions of simpler transformations like permutation, skewing, reversal, scaling, shifting, tiling, fusion, distribution
- Affine transformations can improve parallelism and locality (Feautrier 1992, Lim and Lam 1997, Pluto 2008)
- Proposed by Bondhugula et al. CC 2008, PLDI 2008
- Improves locality and parallelism by minimizing dependence distance
- Proposed by Bondhugula et al. CC 2008, PLDI 2008
- Improves locality and parallelism by minimizing dependence distance
- Assumption: Transformation coefficients are non-negative
- Proposed by Bondhugula et al. CC 2008, PLDI 2008
- Improves locality and parallelism by minimizing dependence distance
- Assumption: Transformation coefficients are non-negative
- Optimization Problem: Minimize dependence distance
- Proposed by Bondhugula et al. CC 2008, PLDI 2008
- Improves locality and parallelism by minimizing dependence distance
- Assumption: Transformation coefficients are non-negative
- Optimization Problem: Minimize dependence distance
- Constraints:
- Tile validity constraints
- Dependence distance bounding constraints
- Zero solution avoiding constraints
- Linear Independence constraints

Pluto Algorithm

- Proposed by Bondhugula et al. CC 2008, PLDI 2008
- Improves locality and parallelism by minimizing dependence distance
- Assumption: Transformation coefficients are non-negative
- Optimization Problem: Minimize dependence distance
- Constraints:
- Tile validity constraints
- Dependence distance bounding constraints
- Zero solution avoiding constraints
- Linear Independence constraints

When transformation coefficients are negative, the above constraints miss useful solutions

Motivation: Periodic Stencils

- Near-neighbor dependences and some long wraparound dependences
- Applications in fluid simulations of infinite domains
- Periodic Lattice Boltzmann Methods (LBM) used in fluid dynamics, Swim (shallow water equations) fall into this category

Tiling Periodic Domains

Tiling Periodic Domains

- Find a cut close to the mid point: $(2 i=N)$

Tiling Periodic Domains

- Find a cut close to the mid point: $(2 i=N)$
- Reverse the second domain and shift it right by N : $(t, i) \rightarrow(t, N-i)$

Tiling Periodic Domains

- Find a cut close to the mid point: $(2 i=N)$
- Reverse the second domain and shift it right by N : $(t, i) \rightarrow(t, N-i)$
- Now all dependences are short

Tiling Periodic Domains

- Find a cut close to the mid point: $(2 i=N)$
- Reverse the second domain and shift it right by N : $(t, i) \rightarrow(t, N-i)$
- Now all dependences are short
- Tile the time dimension (parallelogram, diamond)

Challenge 1: Avoiding the Trivial Solution

Transformation coefficients are non-negative integers.

Figure: Search space of transformation coefficients

Challenge 1: Avoiding the Trivial Solution

Transformation coefficients are non-negative integers.

$$
\begin{array}{r}
c_{1}, c_{2} \geq 0 \\
c_{1}+c_{2} \geq 1
\end{array}
$$

Figure: Search space of transformation coefficients

Challenge 1: Avoiding the Trivial Solution

Transformation coefficients are integers.

$$
\begin{array}{r}
c_{1}, c_{2} \geq 0 \\
c_{1}+c_{2} \geq 1
\end{array}
$$

With coefficients being negative, we may miss valid solutions. Eg: $c_{1}=1, c_{2}=-1$

Figure: Search space of transformation coefficients

Challenge 1: Avoiding the Trivial Solution

Transformation coefficients are integers.

$$
c_{1} \neq 0 \vee c_{2} \neq 0
$$

Figure: Search space of transformation coefficients

Challenge 1: Avoiding the Trivial Solution

Transformation coefficients are integers.

$$
c_{1} \neq 0 \vee c_{2} \neq 0
$$

Figure: Search space of transformation coefficients

Challenge 1: Avoiding the Trivial Solution

Transformation coefficients are integers.

$$
c_{1} \neq 0 \vee c_{2} \neq 0
$$

This constraint results in a non convex space. Approach does not scale.

Figure: Search space of transformation coefficients

CHALLENGE 2: Finding Linearly independent TRANSFORMATIONS

- Let $(0,1)$ be the first hyperplane

Challenge 2: Finding Linearly independent TRANSFORMATIONS

- Let $(0,1)$ be the first hyperplane
- For the next hyperplane to be linearly independent: $c_{2} \neq 0$

Outline

(1) Affine Transformations
(2) Pluto
(3) Motivation for Negative Coefficients
(4) Pluto +
(5) Experimental Results
(6) Related Work

Pluto+: Avoiding the Zero Solution

Assume that c_{0}, c_{1}, c_{2} are bounded by -4 and +4 .

- c_{0}, c_{1}, c_{2} can be considered to be in base 5
- If $\left(c_{0}, c_{1}, c_{2}\right)=\overrightarrow{0}$, then $5^{2} c_{2}+5 c_{1}+c_{0}=0$ and vice versa

Pluto+: Avoiding the Zero Solution

Assume that c_{0}, c_{1}, c_{2} are bounded by -4 and +4 .

- c_{0}, c_{1}, c_{2} can be considered to be in base 5
- If $\left(c_{0}, c_{1}, c_{2}\right)=\overrightarrow{0}$, then $5^{2} c_{2}+5 c_{1}+c_{0}=0$ and vice versa
- To avoid the zero solution, $\left(c_{0}, c_{1}, c_{2}\right) \neq \overrightarrow{0} \Longleftrightarrow\left|\mathbf{5}^{2} \mathbf{c}_{\mathbf{2}}+\mathbf{5} \mathbf{c}_{\mathbf{1}}+\mathbf{c}_{\mathbf{0}}\right| \geq \mathbf{1}$. Make this constraint convex by using a decision variable.

Pluto+: Avoiding the Zero Solution

Assume that c_{0}, c_{1}, c_{2} are bounded by -4 and +4 .

- c_{0}, c_{1}, c_{2} can be considered to be in base 5
- If $\left(c_{0}, c_{1}, c_{2}\right)=\overrightarrow{0}$, then $5^{2} c_{2}+5 c_{1}+c_{0}=0$ and vice versa
- To avoid the zero solution, $\left(c_{0}, c_{1}, c_{2}\right) \neq \overrightarrow{0} \Longleftrightarrow\left|\mathbf{5}^{2} \mathbf{c}_{\mathbf{2}}+\mathbf{5} \mathbf{c}_{\mathbf{1}}+\mathbf{c}_{\mathbf{0}}\right| \geq \mathbf{1}$. Make this constraint convex by using a decision variable.
- Since the coefficients are in base 5 , the maximum value of $5^{2} c_{2}+5 c_{1}+c_{0}$ is $5^{3}-1=124$. the minimum value of $5^{2} c_{2}+5 c_{1}+c_{0}$ is $1-5^{3}=-124$.
- Hence, upper and lower bounds for $5^{2} c_{2}+5 c_{1}+c_{0}$ are known

Pluto+: Avoiding the Zero Solution

- Introduce a decision variable to obtain a convex space representing the constraint on the absolute value
- We then have:

$$
c_{0}, c_{1}, c_{2} \neq 0 \Longleftrightarrow\left|25 c_{2}+5 c_{1}+c_{0}\right| \geq 1
$$

Pluto+: Avoiding the Zero Solution

- Introduce a decision variable to obtain a convex space representing the constraint on the absolute value
- We then have:

$$
c_{0}, c_{1}, c_{2} \neq 0 \Longleftrightarrow\left|25 c_{2}+5 c_{1}+c_{0}\right| \geq 1
$$

Consider the following expressions where $\delta \in\{\mathbf{0}, \mathbf{1}\}$ is a decision variable:

$$
\begin{aligned}
& 5^{2} c_{2}+5 c_{1}+c_{0} \geq 1-\delta * 5^{3} \\
& -\left(5^{2} c_{2}+5 c_{1}+c_{0}\right) \geq 1-(1-\delta) * 5^{3}
\end{aligned}
$$

Pluto+: Avoiding the Zero Solution

- Introduce a decision variable to obtain a convex space representing the constraint on the absolute value
- We then have:

$$
c_{0}, c_{1}, c_{2} \neq 0 \Longleftrightarrow\left|25 c_{2}+5 c_{1}+c_{0}\right| \geq 1
$$

Consider the following expressions where $\delta \in\{\mathbf{0}, \mathbf{1}\}$ is a decision variable:

$$
\begin{aligned}
& 5^{2} c_{2}+5 c_{1}+c_{0} \geq 1-\delta * 5^{3} \\
& -\left(5^{2} c_{2}+5 c_{1}+c_{0}\right) \geq 1-(1-\delta) * 5^{3}
\end{aligned}
$$

If $\delta=\mathbf{0}$ then,

$$
\begin{aligned}
& 5^{2} c_{2}+5 c_{1}+c_{0} \geq 1 \\
& 5^{2} c_{2}+5 c_{1}+c_{0} \leq 5^{3}-1
\end{aligned}
$$

Positive half-space

Pluto+: Avoiding the Zero Solution

- Introduce a decision variable to obtain a convex space representing the constraint on the absolute value
- We then have:

$$
c_{0}, c_{1}, c_{2} \neq 0 \Longleftrightarrow\left|25 c_{2}+5 c_{1}+c_{0}\right| \geq 1
$$

Consider the following expressions where $\delta \in\{\mathbf{0}, \mathbf{1}\}$ is a decision variable:

$$
\begin{aligned}
& 5^{2} c_{2}+5 c_{1}+c_{0} \geq 1-\delta * 5^{3} \\
& -\left(5^{2} c_{2}+5 c_{1}+c_{0}\right) \geq 1-(1-\delta) * 5^{3}
\end{aligned}
$$

If $\delta=\mathbf{0}$ then,

$$
\text { If } \delta=\mathbf{1} \text { then, }
$$

$$
\begin{aligned}
& 5^{2} c_{2}+5 c_{1}+c_{0} \geq 1 \\
& 5^{2} c_{2}+5 c_{1}+c_{0} \leq 5^{3}-1
\end{aligned}
$$

$$
\begin{aligned}
& 5^{2} c_{2}+5 c_{1}+c_{0} \geq 1-5^{3} . \\
& 5^{2} c_{2}+5 c_{1}+c_{0} \leq-1 .
\end{aligned}
$$

Positive half-space
Negative half-space

- The hyperplanes for every statement have to be linearly independent

Pluto +: Linear Independence

- The hyperplanes for every statement have to be linearly independent
- Assume the hyperplane that has been found is

$$
\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right]
$$

Linear independence is given by

$$
\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) \neq \overrightarrow{0}
$$

Pluto +: Linear Independence

- The hyperplanes for every statement have to be linearly independent
- Assume the hyperplane that has been found is

$$
\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right]
$$

Linear independence is given by

$$
\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) \neq \overrightarrow{0}
$$

- Newly found hyperplane must have a non-zero component in the orthogonal subspace

Pluto +: Linear Independence

- The hyperplanes for every statement have to be linearly independent
- Assume the hyperplane that has been found is

$$
\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right]
$$

Linear independence is given by

$$
\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) \neq \overrightarrow{0}
$$

- Newly found hyperplane must have a non-zero component in the orthogonal subspace

$$
\left|\mathbf{c}_{1}-\mathbf{c}_{2}\right|+\left|\mathbf{c}_{3}\right| \geq \mathbf{1}
$$

PLUTO+: LINEAR INDEPENDENCE

- The hyperplanes for every statement have to be linearly independent
- Assume the hyperplane that has been found is

$$
\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right]
$$

Linear independence is given by

$$
\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) \neq \overrightarrow{0}
$$

- Newly found hyperplane must have a non-zero component in the orthogonal subspace

$$
\left|\mathbf{c}_{1}-\mathbf{c}_{2}\right|+\left|\mathbf{c}_{3}\right| \geq \mathbf{1}
$$

- Get a convex space corresponding to the absolute value using a decision variable.

Outline

(1) Affine Transformations
(2) Pluto
(3) Motivation for Negative Coefficients

4 $\operatorname{Pluto}+$
(5) Experimental Results
(6) Related Work

- Implemented as PLUTO+
- The optimization problem is solved using an open-source ILP solver (ISL, GLPK)

IMPLEMENTATION DETAILS

- Implemented as PLUTO+
- The optimization problem is solved using an open-source ILP solver (ISL, GLPK)
- Eg: Transformation obtained for LBM D2Q9 (periodic)

Original schedule	Transformed schedule
S1: (t, i, j)	S1: $(t-i, t+i, t+j)$
	S2: $(t+i-N, t-i+N, t+j)$
	S3: $(t-i, t+i, t-j+N)$
	S4: $(t+i-N, t-i+N, t-j+N)$

BENCHMARKS AND EvALUATION

- Performance evaluation: Heat equation benchmarks with periodic conditions from Pochoir, Swim from SPEC 2000fp, several Lattice Boltzmann Method (LBM) simulations
- Comparison with Intel C compiler, Palabos in addition for LBM

BENCHMARKS AND EvALUATION

- Performance evaluation: Heat equation benchmarks with periodic conditions from Pochoir, Swim from SPEC 2000fp, several Lattice Boltzmann Method (LBM) simulations
- Comparison with Intel C compiler, Palabos in addition for LBM
- Analysis of impact on polyhedral automatic transformation time and overall compilation time

Experimental Setup

- Codes were run on Intel SandyBridge Machine with the following configuration.

	Intel Xeon E5-2680
Clock	2.7 GHz
Cores / socket	8
Total cores	16
L1 cache / core	32 KB
L2 cache / core	512 KB
L3 cache / socket	20 MB
Peak GFLOPs	172.8
Compiler	Intel C compiler (icc) 14.0.1
Compiler flags	-O3 -xHost -ipo
	-restrict -fno-alias -ansi-alias
Linux kernel	-fp-model precise -fast-transcendentals

Performance: Heat-2D

- Speedup of $1.7 \times$ on single core and $6.7 \times$ on 16 cores against icc

Swim Benchmark (Spec 2000Fp)

- Speedup of $2.73 \times$ over on 16 cores icc

Performance: LBM D2Q9

- Speedup of $1.5 \times$ over icc and $1.9 \times$ over Palabos

Compile Times

- Comparison of Pluto+ with Pluto ($\left.\frac{\text { Pluto+ time }}{\text { Pluto time }}\right)$

Benchmark	Auto-transformation	Total Time
Polybench	0.89	1.15
Heat equation	0.39	2.25
Swim (SPEC2000fp)	9.71	2.83
LBM benchmarks	0.49	1.80

- Pluto+ scales very well
- Improvement in auto-transformation time in several cases due to bounds on transformation coefficients
- In most cases, the increase in compile time was due to an increase in code generation time
- Total compilation time varied from 0.013s (jacobi-1d-imper) to 56.36 s (LBM D3Q27)

PERFORMANCE SUMMARY

Benchmarks	Increase in compilation time	Speedup in running time
Heat equation	$2.25 \times$	$2.91 \times$
Swim	$2.83 \times$	$2.73 \times$
LBM benchmarks (mean)	$1.8 \times$	$1.33 \times$

- Enables time tiling in the presence of periodic boundary conditions

PERFORMANCE SUMMARY

Benchmarks	Increase in compilation time	Speedup in running time
Heat equation	$2.25 \times$	$2.91 \times$
Swim	$2.83 \times$	$2.73 \times$
LBM benchmarks (mean)	$1.8 \times$	$1.33 \times$

- Enables time tiling in the presence of periodic boundary conditions
- Scales like Pluto

PERFORMANCE SUMMARY

Benchmarks	Increase in compilation time	Speedup in running time
Heat equation	$2.25 \times$	$2.91 \times$
Swim	$2.83 \times$	$2.73 \times$
LBM benchmarks (mean)	$1.8 \times$	$1.33 \times$

- Enables time tiling in the presence of periodic boundary conditions
- Scales like Pluto
- Availability: Code and benchmarks available at http://mcl.csa.iisc.ernet.in/

Related Work

- Griebl [Habilitation thesis 2008]: Forward Communication Only (FCO) constraints. Finds extremal solutions of the space of valid transformations. Expensive, practicality and scalability not demonstrated

Related Work

- Griebl [Habilitation thesis 2008]: Forward Communication Only (FCO) constraints. Finds extremal solutions of the space of valid transformations. Expensive, practicality and scalability not demonstrated
- Lim and Lam [POPL'97 and ICS'99]: Objective is to reduce frequency of synchronization and improve locality. No specific objective function to choose among valid solutions

Related Work

- Griebl [Habilitation thesis 2008]: Forward Communication Only (FCO) constraints. Finds extremal solutions of the space of valid transformations. Expensive, practicality and scalability not demonstrated
- Lim and Lam [POPL'97 and ICS'99]: Objective is to reduce frequency of synchronization and improve locality. No specific objective function to choose among valid solutions
- R-STREAM compiler [Encl. of Par. Computing 2011]: larger number of decision variables per statement.

SUMMARY

- Presented PLUTO+, models a significantly larger space of affine transformations in the presence of a cost function, complete in practice
- Presented PLUTO+, models a significantly larger space of affine transformations in the presence of a cost function, complete in practice
- Increase in overall compilation time by only 15%
- Presented PLUTO+, models a significantly larger space of affine transformations in the presence of a cost function, complete in practice
- Increase in overall compilation time by only 15%
- Faster than Pluto in auto-transformation time on average
- Presented PLUTO+, models a significantly larger space of affine transformations in the presence of a cost function, complete in practice
- Increase in overall compilation time by only 15%
- Faster than Pluto in auto-transformation time on average
- Speedup of $2.73 \times$ over icc on Swim benchmark
- Presented PLUTO+, models a significantly larger space of affine transformations in the presence of a cost function, complete in practice
- Increase in overall compilation time by only 15%
- Faster than Pluto in auto-transformation time on average
- Speedup of $2.73 \times$ over icc on Swim benchmark
- Speedup of $1.33 \times$ for Lattice Boltzmann Method computations
- Presented PLUTO+, models a significantly larger space of affine transformations in the presence of a cost function, complete in practice
- Increase in overall compilation time by only 15%
- Faster than Pluto in auto-transformation time on average
- Speedup of $2.73 \times$ over icc on Swim benchmark
- Speedup of $1.33 \times$ for Lattice Boltzmann Method computations

Acknowledgments

- PPoPP'15 reviewers for their comments
- Albert Cohen, INRIA, for discussions
- Intel Labs, India, for equipment and software used for experimentation
- Microsoft Research, India and ACM SIGPLAN for travel grants

