Automatic Distributed-Memory Parallelization and Code
Generation using the Polyhedral Framework

Uday Bondhugula
Department of Computer Science and Automation
Indian Institute of Science, Bangalore 560012

[ISc-CSA-TR-2011-3

Sep 2011

Abstract

Compiling for distributed-memory parallel architectuissonsidered
very challenging. In spite of the large amount of work donaddress
this problem, no practical and efficient solution currergkists.

We present new techniques for compilation of regular setiplen
programs for distributed-memory parallel architecturesypically, a
cluster of multicores interconnected with a high performannter-
connect. Compilation for distributed memory requires getien of
communication code and its quality is key to scalable penforce.
Our framework is implemented as a source-level transfotimeruses
the polyhedral compiler framework, and generates paral@egle with
communication expressed with the Message Passing Inee(fdP1)
library. We are able to handle sequences of arbitrarily eestoops
with affine dependences, and generated code is paramettie imum-
ber of processors and problem sizes. The proposed appraeschéen
implemented into a tool and we report experimental resuita glus-
ter of multicores demonstrating its effectiveness. Coetpéw all pre-
vious approaches, ours is a significant advance either (fl) reispect
to the generality of input code handled, or (2) efficiency @hmu-
nication code, or both. To the best of our knowledge, thifésfirst
work reporting end-to-end fully automatic distributedsmay paral-
lelization and code generation for input programs and tfansation
techniques as general as those we allow.

1. Introduction and Motivation

Shared memory for multiple processing elements is a useftrac-

tion for parallel programmers. However, due to limitatiémscaling

shared memory to a large number of processors, the compute pb

shared-memory multiprocessor systems is limited. For @kanit is

currently hard to find shared memory systems with more thaor 33

cores. To get greater processing power, multiple procgsgides are
connected with a high performance interconnect such asBair or

10 Gigabit Ethernet to form a cluster. Each node has its owmang

space that is not visible to other nodes. The only way to sthatieebe-
tween nodes is by sending and receiving messages over #nednt

nect. The Message Passing Interface (MPI) [24] is the cudemi-

nant parallel programming model used to program computxgive

applications on such distributed-memory clusters.

addition, whenever pipelined parallelism exists, i.et,albprocessors
are active to start with, or when there is a significant amairttis-
contiguous data to be transferred to multiple nodes, whiditen the
case, MPI parallelization can be a nightmare. Hence, a hatldan
automatically parallelize for distributed-memory pagbiirchitectures
can provide a big leap in productivity.

In this paper, we propose techniques and optimizations dtw-a
matic translation of regular sequential programs to pelralhes suit-
able for execution on distributed-memory machines: tyipica clus-
ter of multicore processors. We use the polyhedral comfitane-
work to accomplish this in a portable and efficient mannerAasult,
we are able to handle sequences of arbitrarily nested lodghgegu-
lar (affine) accesses, also knownadfine loop nestdVe would like to
emphasize that distributed-memory compilation of evesistricted
class of codes is very challenging and no automatic soletkists de-
spite decades of research. Codes such as these are comnian
scientific and embedded computing domains. Our contribataver
previous works are at least one or more of the following: @ndies
imperfect loop nests with affine dependences, (2) signifigdesser
communication in the presence of parametric problem sizésiam-
ber of processors, and (3) fully automatic end-to-end céipalor
distributed-memory parallelization. Experiments cortddcon a 32-
node InfiniBand cluster demonstrates high speedups.

The problem of distributed memory parallelization regsiiaesolu-
tion to several sub-problems. New techniques presentdusrpaper
are for efficient communication code generation, i.e., wadrans-
formed parallelized code is given as input. Hence, appestiat de-
termine computation or data partitioning are orthogonat.tBor ex-
perimental evaluation, we coupled our proposed code geoetach-
nigue with a computation partitioning-driven polyhedralrgllelizer
Pluto [8, 26]. Our framework is thus implemented as a solecel
transformer that generates parallel code using the MParybas its
communication backend. Code we generate is parametrieindh-
ber of processors and other problem sizes, and provablgador any
number of MPI processes. Besides parallelizing for disted mem-
ory, code we generate is also optimized for execution oncat< of
each node, and for locality on each core. Targeting a peartatud rel-
atively low-level communication library like MPI allows tis benefit
a wide range of architectures.

Distributed memory makes parallel programming even harder The rest of this paper is organized as follows. Section 3udises

from many angles. A programmer has to take care of distobund
movement of data in addition to distribution of computatiData dis-
tribution and computation distribution are tightly cougple changing
the data distribution in a simple way often requires a coteplewrite
of compute and communication code. Debugging multiple ggses

challenges. Section 2 provides background and notatioctidbe4
and Section 5 describe our solution and optimizations. i@ed
provides experimental results. Discussion of related i@pkesented
in Section 7 and conclusions are presented in Section 8.

that send and receive messages to and from each other isigidso s

nificantly more difficult. Parallelizing even simple regulaop nests
for distributed memory can be very error-prone and unpriygeicin

int



2. Background and Notation

The polyhedral compiler framework is an abstraction forygsia and
transformation of programs. It captures the execution ofcgam
in a static setting by representing its instances as infegjets inside
parametric polyhedra. Most publicly available tools anchpders that
use this framework extract such a representation from C,, @nél
Fortran programs.

Polyhedral representation of programs: Let S1, S2, ..., S, be
the statements of the program. Each dynamic instance ofearstat,
S, is identified by its iteration vectarthat contains values for indices

of the loops surrounding, from outermost to innermost. Whenever

the loop bounds are affine functions of outer loop indicesmangram
parameters, the set of iteration vectors belonging to arst form
a convex polyhedron called idomainor index set Let Is be the
index set ofS and let its dimensionality bexs. Let 7 be the vector of
program parameters. Program parameters are not modifiechany
in the portion of code we are trying to model.

A function f on a domain/s is called an affine function if it can
be represented in the following form:

=

f@) = e ... emsl (7 ) +co, iels

Regular data accesses in a statement are representediegimeitsional

affine functions of domain indices. Codes that satisfy tlvesstraints
are also known aaffine loop nests

that of distributing the parallel loop across processoesdacoupled.
No matter how the parallel iterations are scheduled acnaxzepsors,
the hardware would transparently guarantee visibility afect data
after synchronization points.

Generating code parametric in problem sizes and proceissalsn
very important for portability. For proprietary softwaseyendor may
not be able provide binaries for each configuration of pnobénd
system size, and a user would not be able to recompile for it.

Plugging in the number of processors as a parameter in tigagol
dral representation does not help since it introduces imaadity. For
example, a simple loop a¥ iterations, when divided acrosgrocs
processors would lead to the following SPMD code (eveN b be a
multiple of nprocs below):

for (i=my_rank«N/nprocs; k= (my_rank+1}N/nprocs-1; i++)

Thus, there is no turn-key approach to get polyhedral machito
directly compute data accessed inside such a loop. In addithe
number and identity of communication partners as well asneani-
cation data may often depend on the total number of proceasavell
as other program symbols, actual values of which will onlkbewn
at runtime. These are hard problems and we provide a cortipite-
solution to these.

Polyhedral dependences: The data dependence graph (DDG) is C .
a directed multi-graph with each vertex representing @stant, and 4- Distributed memory code generation
an edge¢ € E, from nodeS; to S; representing a polyhedral depen- |n this section, we describe all steps involved in obtairgogimuni-
dence from an iteration of; to an iteration ofS;: it is characterized cation code given the original program and a transformatiocom-

by a polyhedronpD., called thedependence polyhedrahat captures
exact dependence information corresponding:.tdhe dependence
polyhedron is in the sum of the dimensionalities of the sewttd tar-
get iterations spaces, and the number of program paramAatdesast
one of the source and target accesses has to be a write.

for (t=0; t<=T—1; t++)
for (i=1; i<=N-2;i++)
for (j=1; j<=N—-2;j++)
alillj] = (ali —1]—1] +a[i-1]f] + a[i —1]+1]
+ali][j—1] +a[il[j] +a[il[j+1] +
ali+1][j —1] + a[i+1][j]+ a[i+1][j +1])/9.0;

Figurel. Seidel-style code

putation partitioning for it.

4.1 Dependencesand communication

When code is partitioned across multiple processing elénamy
communication required arises out of data dependenceslIRleat
there are primarily three types of data dependences: floadRéer-
Write or RAW), anti (Write-after-Read or WAR), and output (ite-
after-Write dependences). It is interesting to contrast éffect of
these dependences when compiling for shared-memory véosus
distributed-memory systems. Anti and output dependencelyn
exist because the same memory location is being reusedsénafa
shared memory auto-parallelization, anti and output dépeces are
still important — this is because when iterations that aneeddent
via such a dependence are mapped to different processoirsg ow

For example, for the code in Figure 1, the dependence betwedd the same shared memory location they access, synchtionizs

the write a[i][j] at § = (t,4,4) and the read at = (t',#,;') at
ali’ —1][j' — 1] is given by the dependence polyhedréh,(3,, 7, 1),
which is a conjunction of the following equalities and inatjies:
i'=i+1 t'=t
1<i<N-3 1<Z<j<N-3

i =i+1,
0<t< T—1,

3. Problem and Challenges

When compiling for shared memory, synchronization priveii take
care of preserving data dependences when dependentoitaratie
mapped to different processors. Shared memory supporideaby
hardware takes care of transparently providing data thdtbeen
written to by one processor before a synchronization ptiranother
one after it. However, in case of distributed-memory systethis
movement of data has to be performed in software via comratiait
over the interconnect.

Unknown number of processors: A number of difficulties arise
due to the fact that the number of processes we are compiini f
not known at compile time, and has to be treated as a pararbter
is not an issue with shared-memory auto-parallelizatioper®1P
support takes care of partitioning a parallel loop with aichoof
strategies, and since no software data transfer is perthrthe two
steps of generation of parallel code (marking a loop as ledrand

needed. However, in case of distributed memory, each psocéms
its own address space. This coupled with the fact that tiseme flow
of data results in anti and output dependences neithemigadiany
communication nor any synchronization.

Note that our goal is to generate a distributed-memory pirogr
that preserves semantics of the original sequential pnog&nce the
parallelized portion of the input code finishes executidhyesults
are to be available at a single process, say, the mastergstotieus,
even in the absence of any dependences, communication dedhee
to make sure that all results will have been gathered at tretenma
process by the time all parallel processes have finishedigrgcWe
show that this communication code can be generated effigiasing
output (WAW) dependences.

A loop that can be placed at any position and marked parael h
no dependence components along it, and is called an outalighar
or a communication-free parallel loop. Outer parallelisiti kequire
no communication except a gather of results at the masteegso
Wherever pure inner parallelism exists, i.e., communicatannot
be avoided via transformation, generating efficient comoation
code is crucial. Note that inner parallelism, wavefrongliatism, and
pipelined parallelism can all be converted into inner gatiaim, i.e.,
one parallel loop followed by a synchronization call whenning
on shared memory, or communication code in case of distibut
memory.



4.2 Computing communication sets

In the rest of this section, kjle we refer to the portion of computation
under a given iteration of the parallel dimension, i.e. diathensions
surrounding it and including itself serve as parameterstertile. It
may or not have been obtained as a result of loop tiling. Hésstmall-
est piece of computation for which we will define communicatsets.
Itis important to note that constraints that describe &tdemain are
affine at compile time. We classify communication data fateaimto
two classes:

1. Writes to locations that are read at another process tktetimee
the same loop is run in parallel, i.e., for another iteratbrihe
surrounding (outer) sequential loop if any.

2. All results need to be available at a root node once pérvate
computation has finished executing, i.e., final writes férdaka
spaces need to be aggregated.

We show that by computing two sets for each data variablefane
each of the above cases, one can determine all that has toteuse
from a process after it has finished executing a tile. We bal¢ the

flow-outset and thevrite-outset. Each of these sets can be a union o

convex polyhedra. The integer points in these polyhedrial wetual
data elements to be communicated.

sionalitiesm, andmgj respectively

I%: iterations inside the tile reading data written to in the ds a result
of dependence

O!: source iterations of the tile whose writes are read by fima
outside the tile through dependence edge

ti.: k'™ dimension off{,

The first step is that of finding the subset of the transformed
dependence polyhedron that has both its source and taegatidns
in the same tile. This can be obtained by intersecfiffg with a set
of equalities equating the firstlimensions oﬁ:qﬂ_ to those oflfgfj. Let
E be that set of equalities, i.e.,

El:{tizt{ ANth=tL AL A t’;:t{}
We now obtain the set of all iterations of the tile that wribevalues
that are (later) read within the same tile through depereledgec:
ct DI NnE
I! = project_out (Cﬁ,msi + 1,msj)

fNext, subtracting/! from the set of all source dependence iterations

in the tile yields those source dependence iterations wivoises are

Running example: We use the code in Figure 2 as an example td€ad outside the tile:

demonstrate all steps, showing results and code they \tielth step.
This is a typical Jacobi-style stencil with time along thetioal axis

and space along the horizontal. For simplicity, assumeathdimen-

sions are tiled by a factor of 32. Tiling serves a number oppses
in our context: increasing granularity of parallelism aeducing the
frequency of communication, improving locality, and boungpbuffer

sizes by a factor proportional to tile size where possible.

o =

project_out (DeT,msi + 17msj) \ Ie

Now, computing the image of the source write access fungction
M., on O}, yields the flow-out set for this particular write access and
dependence.

v = Iy(Mgi, 0L

In the rest of this section, whenever we refer to a set, we raeanAlgorithm 1 computes the entire flow-set for a particulariable.

union of convex polyhedra with integer points enclosed leytloeing
of interest to us. Whenever a set of linear equalities andualities
are listed, they represent a conjunction of those. Recddltion intro-

Transformed dependence polyhedra and transformed inteegasebe
generated by taking the original ones and augmenting thehtrains-
formation functions that map old iterators to hew ones, &et fpro-

duced in Section 2\ is used as the set difference operator. In additionjecting out the old ones. This yields the dependence reldtiween

some polyhedral operations are notated as below:
project_out(D, p,n): eliminatesn dimensions from seb
starting fromp'” dimension p > 1)
image of D under a multi-
dimensional affine function M
while treating! outermost dimen-
sions as parameters
extend dimensionality of D by
adding n (unconstrained) dimen-
sions at positiomos (pos > 1)
Algorithms for projection are provided by polyhedral libies. For
parametric image, the chosen parameters are not projectaxf the
image. In particular, if one needs data accessed for a gatesf suter

IP(M7 D: l)

pad(D, pos,n)

loops through an access functidf, the outer loops are to be treated g.

as parameters just like other program parameters appeariogp

bounds, and/ is used as the function for the image operation. As an¥:

example, ifD is
1<i:<N-1, 1 <3< N-1
32y <1< 320 +31, 0 < 5—-325r < 31
andM = (i — 1,5 —1),1=1.ThenZ,(M,D,l) is
0<do< N—2, 327 < do< 32 +31
0<di<N-2

421 Flow-out set

iterations in the target spad@?. Since anti and output dependences

Algorithm 1 Computing flow-out set for variable

INPUT Depth of parallel loopi; setS. of (write access, statemergairs for
variablex

1. F, =0

2: for each(M,, S;) € Sw do

3. for each dependencdS; — S;) € E do

4: if e is of type RAW and source accessaif M,, then
5: Elz{ﬂi:t{/\té:té/\.../\tf:t{}
6: Ct=DTNE

7 It = project_out (C’é, mg, + 1,msj>

O! = project_out (Dg,msi + 17msj> \ I
F2,, = F  UT,(Myi,Ot,1)

out —
10: end if

11:  endfor

12: end for

OUTPUT FZ

out

are ignored, multiple copies of the same location may exitt dif-
ferent processors. However, when a later read to the samaéidoc
happens, the correct written value would end up being tearesd due
to the presence of a flow edge between the write and the read.

422 Write-out set

Theflow-outset of a tile is the set of all values that are written to in-Thewrite-outset of a tile is the set of all those data elements to which

side the tile, and then next read from outside the tile. Temyosets
used in the algorithm have the following meanings. &&e a RAW
dependence from; to S;.

DZT': dependence polyhedron for edgin the transformed space

I; I;,fj: domains ofS; and.S; in the transformed space with dimen-

3

the last write access across the entire iteration spacefisrped in
the tile. We compute this by looking for any WAW edges leaving
the tile. If they do, subtracting the sources of those edgaw fthe
set of all points written to in the tile in an iterative manraaross
all WAW deps leaves us with locations that have been “findlize



O Tile

for (i=1; i<=T—1, i++){
for (j=1; j<=N—1;j++)}{
ufil[j] = 0.333x(u[i —1][j—1]
+uli—1][] + uli —1][+1]);

Figure2. Jacobi-style code

m Flow-out set

/ Dependence

Figure 3. Flow-out set for code in Figure 2

by computation in the tile. A union has to be taken across &tiew
accesses to a given variable in a tile. For edgassociated with
variablez, let:

M, M;: source and target write access functions respectivelydge

e,
Iz/: iterations that write to locations that were written toidesthe
tile,

Qt: iterations outside the tile that will again write data teations
that were written to inside the tile, and

W write-out set due to a given write access, and

WZ.,+: write-out set forz.

Algorithm 2 computes the write-out set for a variable.

Algorithm 2 Computing write-out set for variable

INPUT Depth of parallel loop!; setS., of (write access, statemergairs for
variablex

1wz, =0

2: for each(My,, S;) € Sw do

the copy-out code. Note that for simplicity, the above crists are
expressed in terms of source iterators. They are actuatypated
in the space of transformed iterators, i.e., in termsteft2) where
t1 = i, ta = i+ j, since tiling has been performed here after a
skewing of the space dimension. As for the write-out setyailes
that occur in a tile here are last writes, and they all neectednt out.

4.3 Packing and unpacking communication sets

With MPI, itis easy to transfer data from, and receive intmt@uous
buffers. However, in nearly all cases, we require discauatis data to
be sent and copied back on the receiver side. Hence, aftabthe
communication sets are computed, one has to, (1) pack ddia to
sent in a contiguous buffer, (2) map to communication liprealls,
(3) unpack data at receiver side, and (4) determine sendesaive
buffer sizes for allocation. We construct additional stegets to add
to the polyhedral representation of the source programhiercbopy-
out, copy-back. The flow-out and write-out sets serve as tineaths
for the copy statements.

Reasonably tight upper bounds on send and receive buffes siz
can be determined from tile constraints; we do not presaatlden it
here due to space constraints. Write-out sets are gathetteziraaster
process — in our case, this can be chosen to be the MPI prodgiss w
rank 0.

A naive approach: A naive approach that works is to send the
flow-out set to all processors, i.e., each processor sesdit-out
set to all processors. This means that all of the data to hdssent,
but not just to the processors that need them. Hence, a pacesy

receive more data than necessary, and a processor that oesgl n
ceive any data may receive some; the latter is a matter ofegrean-
cern. However, this approach provides a very clean way terges

3 W =TIp(Muw, I 1)
4:  for each dependenedS; — S;) € E do
5: if e is of type WAW and source accesseais M., then
6: Let M be the target access of
. T _ T
7 ISj = pad (Isj,msi +1,msj)
. — pT AT’
8: I};/_ DI n Isj
9: It = project_out (Iﬁ, I+1, msi)
10: Q=1 \ I
11: W =W \ Z,(M;,QL1)
12: end if
13:  endfor
14 Wz, =Wz, uUuW
15: end for
OUTPUT WZ .
4.2.3 Example

For the code in Figure 2, Figure 3 shows the flow-out set. Ibtaioed
as a union of the following two polyhedra:

1<i<T-2 1<j<N-2
327 +30 < do+d1 < 327 + 31
327 < do < 321 + 31

= 32xir+31, 1 <1< T-2
1 <3< N-1, 32ir < do+di < 32ir +31
The second one corresponds to the horizontal line, whilditsieto
the two oblique linesd, andd; will index the array dimensions in

4

communication code. Two of MPI's collectiveldPl _Al | gat herv

(all-to-all broadcast) anPl _Gat her v perfectly fit. Allgather can
be used to broadcast flow-out sets to all processors. TheeGedifi

with process 0 as root is used to collect write-out sets.

5. Optimizing communication code

Recall that communication sets were defined per ‘tile’, ftich we
have affine constraints at compile time. This allowed us eopayhe-
dral machinery to compute them in the first place. Multipletstiles
may get mapped to a single physical processor and commiamdat
done only after all of these tiles have been executed, foyeteration
of immediately surrounding sequential loop, if any.

5.1 Precisedetermination of communication partners

The naive scheme described in the previous section brosdibes-
out sets to all processors. In cases, where we have inndtetiara,
depending on communication latencies and bandwidth, titliikely
lead to a bottleneck. Recall again that the problem in detengp



communication partners was that the allocation of tilesraxpssors to higher dimensional processor spaces achieve betterutatign to
is not known at compile time. Consider the simple scenari@wh communication ratios, for a given number of processors aollem
the number of communication partners itself depends on dt# t size.
number of processors. Long dependences may traverse aryenum
of processors. However, in many cases such as in the presénce5.2 Transitivity in dependences
uniform dependences, only near-neighbor communicatioreésled.
Even in these cases, if iteration spaces are shaped pécutine
cannot predict near-neighbor communication just based epert
dence distances. Hence, even for uniform dependencesuthben
and identity of communication partners cannot be deterchiiteom-
pile time.

We describe a solution below that achieves the following fitw-
out set is not sent to processors that do not need any valethis
flow-out set. More precisely, we guarantee the following:

We know that dependences that lead to communication of figw-o
sets are RAW dependences. If RAW dependences are trahsitive
covered by other dependences, one would end up commuigjcatin
from several sources instead of just the last one, i.e. rbelat writes
last to the location as per the original program. We use ardipee
tester that can compute such last writers or the exact datsstidhat
RAW dependence polyhedra do not contain any redundancy.

Interestingly, one observes the converse of the aboveteffieen
dealing with write-out sets. Note that transitivity can Beneated
1. Every element in the flow-out set sent by a processor isateed  from write-after-write dependences as well. A WAW depermgecan

at least one other processor be covered by other WAW dependences as well as through a nambi
tion of RAW and WAR dependences. If transitivity is elimiaedtfor
WAW dependences and with Algorithm 2 only looking at WAW deps
one would miss writes that happen outside the tile and to dnees

We define two functions as part of the output code for eactiocations written to in a tile. This leads to a write-out setam larger
data variablex, that can be a multidimensional array or a scalarthan the actual one, often, almost the entire set of locatwritten

2. Only processors that expect to receive at least one vatme f
another processor receive the flow-out set

If t1,...,t; is the set of sequential dimensions surrounding paralleio. Hence, Algorithm 2 will only be exact if all transitivelyovered
dimensiont,, the functions are: WAW dependences are preserved. In summary, one has to réfyeon
right dependence testing and analysis techniques. ISL{f®]ides
1. m(t1, 2, ... i, tp): rank of processor that executes, (2, .-, fynctions to compute last writers as desired as part of jedeence
t tp) testing interface and we use it.
2. 05(t1,t2,...,t,t,): Set of processors that need the flow-out set In spite of the above, with our scheme, the amount of data com-
for data variabler from the processor calling this function municated is not optimal when different parts of the flow-seithave

different ss, i.e., different lists of receiving processors. An optima
decomposition of flow-out sets if at all possible at comgiteetis left
for future research.

Generating m and o: Code form ando functions is meant to be
generated and added to output code. Construatisgtraightforward.
It only requires the lower and upper bound expressiong fpand
the number of processors.is also used in computing... o, can be

5.3 Putting all communication code together
expressed as follows.

. ., We compute domains, schedules for the additional copy-anpiy-
ox(ti,ta, ..., ti,tp) = A{m(ti,ta,...,t,1,) | Je € Eonw, back, and communication statements, and they have all coenp®
DI (ty, .. tp, ., th, rthy 1)} in the polyhedral representation just like the original pome state-
ments. The new program comprising these added statemegit®is
o can be constructed as follows for each variahl&or each rele- to the code generatorl to generate final code in one pass.
vant RAW dependence polyhedron in the transformed spacelime
inate all dimensions that are innertta We then scan the dependence | mplementation: Our framework is implemented as part of the
polyhedron to generate loops for the target iterators windating  publicly available source-to-source polyhedral tool ohatlan [7],
source iterators as parameters, i.e., running the geddp nest at  |SL [16], Pluto [26], and Cloog-isl [11] are used to perforrly
run-time will enumerate all dependent tilgs;,t5, ..., t;,¢,), given  hedral extraction, dependence testing, automatic tramsfion, and
the coordinates of the source tile. However, our goal ismenumer-  code generation, respectively. The Pluto scheduling algoi8, 9] is
ate dependent tiles, but to determine processors they ggpeddo. first used to determine a parallelizing transformation, agcomputa-
Hence,oc makes use ofr to aggregate a set of distinct values corre-tion partitioning. To implement polyhedral operations &lrcompu-
sponding to processor ranks that the target tiles were noefop@he  tations in Section 4 and Section 5, Polylib [27] was used. Wegxul
overhead of evaluating at runtime is minimal since a call to it is feature of our framework is that it will work with any othergak
made only once per all computation for a givgn rithm for transformation and detection of parallelism. Aseault of
Send-synchronous scheme: With ¢ andn functions, generating using the polyhedral representation as both the input afpubwf
more accurate communication code for a parametric numbpresf  our scheme, code can be generated after any sequence ofraakd
cessors now becomes possible. Processes send out datastéd tife  formations have been applied. Nothing prevents our comeation
processor ranks returned lay, and receivers aréorcedto receive  code generation scheme to be used in a system that spectfesda
them. The receivers will use received data in one or moraduts  computation distributions in a different way as long as ¢hesppings
erations. Hence, sends and receives are posted in a synasroran-  can be expressed as affine functions.
ner, relatively speaking. Non-blocking sends and recevesised so
that simultaneous progress is made on all sends acrosstalvaia-  Data distribution free:  The distributed memory parallelization tool
ables when possible. We wait for their completidfP( Wai t al | )  chain as described above is computation driven. Data mowasgro-
and copy-back received data to the right place before theiteeation  cessor to another in a manner completely determined by tmpao
of the sequential loop outer to the parallel one starts. Conication  tation partitioning and data dependences. An initial daséridution
code can now either be expressed with point-to-point sendsre&  can be specified, but it would only affect communication atstart.
ceives to processor ranks obtained from There exists no owning processor for data. However, lagewom-
An arbitrary allocation: A powerful feature of this scheme is that munication can be modified easily to gather last writes atritpet
an arbitraryr function can be used. So far, we have only alluded to grocessors based on a user-supplied distribution. At th@eng no
block scheduling of the parallel loop. Howevercan be generated to pragmas, directives, or distributions are provided to gatesn, i.e., it
achieve a block-cyclic scheduling, or any other modelarior even s fully automatic. Also, generated code is SPMD. We choosggther
dynamic scheduling. In addition, itis easy to use a multatisionalr  all results at process ‘0’ only to provide exactly the samiedveor as
whenever we have more than one parallel dimension. Suchinggpp the unmodified sequential input program.

5



5.4 Dataallocation Benchmark Problem size
We do not address the issue of data allocation in this papeasaume strmm 10000

that each processor has the entire data space for a variefole Lt tmm 8000

starts executing the portion of the program that was paizadig: It dsyr2k 4096

would however only work on portions of the data space it ndeds covcol N = 8192

— based on the computation partitioning. Though this is @lera seidel N =10000, T =600
on a very large distributed memory machine, it is not a litiota jac-2d N =10000, T = 1000
of the code generation scheme itself, i.e., the problem eailyebe fdtd-2d N =6000, T = 256
addressed in an incremental manner. Keeping a view of thieeent 2d-heat | N =10000, T = 1000

space was a natural first choice since our input is an unmddifie
sequential program. [31] is a recent work that addressesishue
while performing distributed memory parallelization fogstricted
input, those with uniform dependences. We plan to incoteasach a
scheme in the future.

Table 1. Problem sizes used

over InfiniBand) is the MPI implementation used. On this tdusit
provides a point-to-point latency of 3.38&, unidirectional and bidi-

; rectional bandwidths of 1.5 GB/s and 2.56 GB/s respectivaly
55  Improvement over previous schemes codes were compiled with Intel C/C++ compiler (ICC) versibh1

In this section, we describe in detail how our scheme im@axer  with option -fast (implies ‘-O3 -ipo -static’ on 64-bit Lin). Portland
existing ones for communication code generation. We censftee  Group’s compiler pghpf 12.1 (with -O4 -Mmpi) was used where a
past works that subsume others in the literature. Thesehateof  comparison with HPF was performed — it was the only publistgila
Amarasinghe and Lam [2], Adve and Mellor-Crummey [1], andable HPF compiler we could find.

Classen and Griebl [10]. The above schemes have the foliplivin- Input sequential code without any modification is taken irohy
tations that we have overcome partly or fully: system and compilable MPI code is generated fully autorakiiin

1. All three approaches used a virtual processor to physicaessor &/l ca@ses. The entire framework runs fast and the increasedirce-
to-source transformation time due to distributed memomitation

mapping to deal with symbolic problem sizes and number of pro; . h X .
cessors. Communication finally occurs between virtualgssors S €SS than 1.5s in all cases. We thus did not pay partictienton
to optimize compilation time at this point.

that do not map to the same physical processor. In spite gfithi )
multiple receiving virtual processors map to the same [aiaygiro- Benchmarks: We evaluate performance on selected commonly
used routines and applications from dense linear algehiastancil

cessor and data being sent to two or more of these is notmlisjoi X ) .
the receiving physical processor ends up receiving negedsta computations. All of these can be found in the Polybencheqaid].

multiple times. For example, if a virtual processdris mapped ~Heat-2D is available with the Pochoir suite [29]. All comatibns

to physical processaP; and two other virtual processor§; and ~ US€ double-precision floating point operations. Probleressiised are
Vj2 are both mapped to physical processyr(P; # P;), and 9venin Table 1. All results are with strong scaling. . .
V,(P;) sends the same data or a large portion of the same data to COMparison: Regarding experimental comparison with previous
both V1 (P;) and Vj2(P;). Avoiding it is not trivial since one has approaches, we were unable to find a publicly available systet

to look for commonality in data being sent out across a seeof r Could perform such code generation. A number of techniques f
ceiving virtual processors as well as determine the liseogivers ~ the literature only a address part of the problem, and reinglan

— these are only known at runtime if the number of processuds a end-to-end system with them is infeasible. We believe thetietailed
problem sizes are parametric. The sigma function-basedisol discussion provided in Section 5.5 and related work dematest our

presented in this section provided an efficient solutiomimprob-  contributions. Comparison is thus provided with manuaiyafielized
lem. MPI versions of these codes, and with HPF where possible.

. L ) ) Though each node has eight cores and our tool is able to denera
2. [2, 1] determine communication sets by directly lookigead  MmpP|+OpenMP code, in order to focus on the distributed-merpart,
and write accesses as opposed to data dependences. Coamunjge run only one OpenMP thread per process, and one MPI process
tion is only needed between the last write before a read aad tther node. In these figuresur - commopt refers to our tool with the
read, and algorithms presented in those works do not appear §ptimization described in Section 6ur - al | gat her refers to the
consider this issue. Since our approach relies on depeesietiits  pasic all-to-all broadcast-based communication scherseritied in
requirement is easily captured in the lastwriter propeftylaw  section 4.3manual - npi refers to hand-parallelized MPI version

dependences. of the code we developedeq refers to original code compiled with
Note that the second limitation also compounds redundarey ¢ | cC with flags mentioned earlier. ]
ated due to the first. Not eliminating transitive relatioaads to more For the first four codes that exhibit outer parallelism, thyo

one-to-many patterns and such one-to-many patterns thatiteads communication that occurs is that of W(ite-out sets. We desec

to greater redundant communication with a simple virtuaphysi-  t0 ideal speedup for these. Results wihr - al | gat her and

cal processor model. The approach of Classen and Griebldd®} manual - npi are not shown since _they v_vould yield the same__perfor-
not suffer from the second limitation since it is based onedep Mance. Due to all of these codes involving non-rectangéaation
dences like ours. However, their work was preliminary andcep- ~ SPaces, manual parallellzauor_l still mvolves_ significeffiort. pghpf

tual, and reported very limited implementation and experital eval- Was unable to correctly compile HPF versions of these — énréix-
uation. Communication polytopes are constructedefachflow de- ~ Perimentation revealed that non-rectangularity was thetrikely
pendence, and so communication code is generated depeng@®s ~ Cause. o

Since communication sets for multiple dependences maw oéfer to Figure 4 show GFLOPs performance and scalability on the- clus

axes are on a logarithmic scale. Table 2 shows the actualigsrc

. . times and reports speedup factors. &er del , the original loop nest
6. Experimental evaluation has no parallel loops. Our approach includes automatidcgtian of
Setup: We conducted experiments on a 32-node InfiniBand clustesuch a transformation and then performing distributed ngrmode
of dual-SMP Xeon servers. Each node comprises two quadinere generation. With approaches such as HPF, this code cannparbe
tel Xeon E5430 2.66 GHz processors with a 12 MB L2 cache andllelized unless the programmer manually transforms it before
16 GB of main memory. The InfiniBand host adapter is a Mellanoyproviding additional directives. Performing manual MPradkeliza-
MT25204. All run Linux 2.6.18 64-bit. MVAPICH2-1.4 [25] (MP tion for itis extremely cumbersome, even without tiling thee loop.

6



T T T T T T 25 T T T T T T
our -commopt —— our -commopt ——
our -allgather —>¢— our -allgather —>¢—
manual mpi —¥— manual mpi —¥—

15 20r pghpf ———
pluto-seq —ll—
seq —O— /
/ 15 /
10

20

Ny

GFLOPs
=
o
GFLOPs

) A . . . . 0 5 . .
1x1 2x1 4x1 8x1 16x1 32x1 1x1 2x1 4x1 8x1 16x1 32x1
Number of nodes (1 core per node) Number of nodes (1 core per node)
(a) Seidel (b) Jac-2d
20 T T T 100 T T T
our -commopt —— our -commopt ——
our -allgather —>¢— our -allgather —>¢—
manual mpi —¥— pluto-seq —¥— ﬁ
sl pghpf —— 80 seq —=—
pluto-seq —ll—

seq —O—
60

10 /
40 ‘

20 /

> W

32x1 1x1 2x1 4x1 8x1 16x1 32x1

GFLOPs
GFLOPs

1x1 2x1 4x1 8x1 16x1

Number of nodes (1 core per node) Number of nodes (1 core per node)
(c) FDTD-2d (d) 2d-heat

Figure4. Performance of parallelized code on a 32-node cluster

Benchmark| seq pl ut o- seq Execution time foiour - commopt (number of procs) | Speedupour - commopt - 32 over
(icc) 1 2 4 8 16 32 | seq our - conmopt -1

strmm 30.4m 247s 240s 124.6 63.5s 33.6 17.3 9.4 194 26.3

tmm 35.5m 91.8s 96.4s 51.3s 27.4s  15.28s 7.14s  3.74s570 24.5

dsyr2k 127s 39s 38.8s 22.4s 13.5s 6.8s 3.8s 1.57s80.8 24.7

covcol 462s 30.9s 30.7s 16.7s 8.8s 4.6s 2.48 1.35 355 23.8

seidel 17.3m 643.5s 692s 338.7s 174.34s 94s 65.58s 33.03s31 20.8

jac-2d 21.9m 206.7s 218s 111.2s 62.27s 40.73s 29.3s  21.4581.3 9.6
fdtd-2d 139s 129.7s 95.2s 70.7s 40.26 25.3s 16.8s 11.6841.9 11
2d-heat 19m 266s 280s 157s 81s 52s 33s 244 47.5 11.7

Table2. Summary of performance

As can be seen, automatically generated code performs et bs ~ ory code generation in conjunction with complex transfdiores is

a result of it being fully tiled (both space and time dimensijowhich  thus a key strength of our tool.

in turn leads to better locality and a reduced frequency ofiroa- Figure 5 shows the split between compute time and other eaelrh
nication. It realizes a pipelined parallelization of 3-&4i The same i.e., time spent in communication and in packing to and ukipac
is also true fof ac- 2d as well ad dt d- 2d, improved locality and from communication buffers. Results from our fully optimidzcodes
reduced frequency of communication leads to a better solufihis  (‘four-commopt’) were used for this plot.

explanation is also supported by the fact that ‘manual-reghibits

super-ideal improvement when going from 16 to 32 procesfors

f dt d- 2d), and in general performs relatively better with higher aum 7.  Related work

ber of processors —a decrease in working set size hides peality  g¢, /614 attempts have been made at achieving distributetbryepar-
for ‘manual-mpi’. Manually parallelized code fgrac- 2d performs  4jization. Most works [4, 2, 3, 5, 14] addressed the pobin a
significantly poorer due to lesser computation per comnatitia call  jiitaq way with the following limitations: (1) applicable restricted
when compqrfed tbdt d- 2d for gxample. Our code Sh?‘”? uniformly input such as perfectly nested loops with uniform depene&n(2)
good scalability throughout. Being able to perform disitésl mem-  544ress only a few steps of the actual parallelization adé gener-



compute+pack EXXX®
communication exzzR
unpack m—

0.8

XXRXXXX,

0.6

K
4
i
o

0.4

Normalized execution time
KX KKK I K KT I IR I I XXX XXX XX

0.2

WIS LKL

Vu’e 7u2_3 7«%, 7\%, 7"’6’ TP Ty TPy TR
tmm strmm dsyr2k covcol ssymm seidel jac2d fdtd-2dheat-2d

Figure 5. Breakdown of compute, communication, and pack/unpac

times while running code generated by our scheme on 4 and
processors

ation problem, (3) lead to excessive communication withratsylic
number of processors or problem sizes.

Baskaran et al. [6] presented a compiler-assisted dynarhaxdsil-
ing scheme that constructs and schedules the inter-tilerdismce
graph on a multicore. Our communication code optimizaticimesne
in Section 5.1 can be viewed as a compiler-assisted scherde-to
termine communication partners at runtime. Kim et al. [18gent
automatic pipelined parallelization for distributed mesnwith spec-
ulation. Their scheme is completely orthogonal to ours enkimd of
codes it is applicable to and beneficial for, and the way feish
is extracted. The RSTREAM compiler provides some suppordifs
tributed memory execution [22]. However, due to its relmoo PGAS
as its target instead of a message passing one, it does reotchdeal
with communication code generation. One would expect thiesult
in higher communication overhead — a comparison would haverm
theless been interesting if it was available.

8. Conclusions

We presented techniques and optimizations for translatiGequen-
lgal affine loop nests to code suitable for execution on itisted-
emory parallel architectures. Communication code gé¢ioerand
optimizations to minimize associated overhead were theokalylems
addressed. The scheme we proposed constructs communisat®
while completely relying on data dependences. Helpermestgener-
ated by the compiler by scanning dependence relations ahgation
of those routines at runtime provided an efficient way to etee
communication partners in the presence of symbolic prolsiees or

Researchers have looked at the steps of data decomposiibn &,ymper of processors, and for arbitrary allocations. Theseniques

computation decomposition while addressing distributeeimory

compilation [28, 3, 17]. Computation transformation amtoes
in the polyhedral framework have themselves undergone naegga
through [13, 21, 20, 8] that result in better parallelizatfor shared
memory. Note that the affine partitioning works related tdS[21,

20] do not address distributed-memory code generation y &he
transformation and parallelization algorithms. The Plsthedul-

were developed within a polyhedral abstraction of the inpogram
allowing sequences of complex transformations to be auioedly
applied before code is generated. We have implemented them i
source-to-source transformation tool for an end-to-etig wtomatic
application. Experiments conducted on a 32-node InfiniBelogter
demonstrated good results.

Given how difficult manual parallelization for distributedem-

ing algorithm has been. shown to be a ;ignificant improvement Oory is, we believe our tool will be very useful. Directly tating a
those [8, 9], and we use it to apply parallelizing and logaithancing \yigely implemented message-passing communication backke
transformations before communication code generatiohnigoes  \ip| makes our system very portable and in a position to tramesyly
described in this paper are applied. As we have shown, gBMBra penefit from advances in message passing hardware and saftwva

efficient communication code on top of any auto-transforomasl-
gorithm involves a number of non-trivial problems. With@ugood
scheme, even the best computation partitioning is unlit@lyrovide
good parallel speedup.

Since the primary contributions of this paper are relatembtomu-
nication code generation as opposed to computation or datafor-
mations, the closely related works from literature are¢hafsAmaras-
inghe and Lam [2], Adve and Mellor-Crummey [1], and Classed a
Griebl [10]. [2] handled only perfectly nested loops, whil¢and [10]
are based on the polyhedral framework. As explained in 8e&i5,
all of these works result in a significantly large amount afuredant
communication than ours, in particular with parametricbea sizes
and number of processors. However, dHPF [23] implementsrédoau
of optimizations (such as multipartitioning [12]) that argeful for any
distributed-memory compilation system. Our system doeésmple-
ment such an allocation scheme yet, but can do so. The disouats
the end of Section 5.1 makes this evident.

Griebl [15] provides a discussion on distributed-memoryoau
parallelization using the polyhedral framework. The workgnses
a technique for scheduling and allocation keeping distedmemory
architectures in mind. However, communication code geierés not
discussed.

Works that translate OpenMP to MPI address a subset of prable
that we addressed. The latest among them is [19]. Unlike ouk vit
is restricted to a subset of affine loop nests that transteséime set
of data every invocation of the parallel loop, and commuincaeset
construction is primarily done at runtime. In addition, w@penMP to
MPI approaches, one may have to provide an optimized/wamsfd
OpenMP code to get good performance, adding significant o4ty
to input taken in by such systems. A future comparison with it
available will be interesting.

will be publicly available shortly.

References

[1] V. S. Adve and J. M. Mellor-Crummey. Using integer sets diata-
parallel program analysis and optimization. RhDI, pages 186-198,
1998.

[2] S. P. Amarasinghe and M. S. Lam. Communication optingratind
code generation for distributed memory machines.PLDI, pages
126-138, 1993.

[3] J. Anderson, S. Amarasinghe, and M. Lam. Data and Cortipota
Transformations for Multiprocessors. ACM SIGPLAN PPoPPpages
166-178, July 1995.

[4] J. M. Anderson and M. S. Lam. Global optimizations forgdkalism and
locality on scalable parallel machines. RDI, pages 112-125, 1993.

[5] P. Banerjee, J. A. Chandy, M. Gupta, J. G. Holm, A. Lain,JDPalermo,
S. Ramaswamy, and E. Su. The paradigm compiler for diseibut
memory multicomputerslEEE Computer28(10):37—47, 1995.

[6] M. Baskaran, N. Vydyanathan, U. Bondhugula, J. Ramanyj&. Roun-
tev, and P. Sadayappan. Compiler-assisted dynamic sahgdat
effective parallelization of loop nests on multicore prem@'s. INACM
SIGPLAN PPoPPpages 219-228, 2009.

[7] C. Bastoul. Clan: The Chunky Loop Analyzer.

[8] U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramgm,
A. Rountev, and P. Sadayappan. Automatic transformations f
communication-minimized parallelization and localitytiopization in
the polyhedral model. IETAPS CCApr. 2008.

[9] U. Bondhugula, A. Hartono, J. Ramanujam, and P. SadamappA
practical automatic polyhedral program optimization syt InPLDI,
June 2008.



[10] M. Classen and M. Griebl. Automatic code generationdistributed
memory architectures in the polytope modellBEE IPDPS Apr. 2006.

[11] CLooG: The Chunky Loop Generator. http://www.cloag.o

[12] A. Darte, J. Mellor-Crummey, R. Fowler, and D. ChavaiMiranda.
Generalized multipartitioning of multi-dimensional arsafor paralleliz-
ing line-sweep computationdPDC, 63:887-911, Sep 2003.

[13] P. Feautrier. Some efficient solutions to the affine dalieg problem:
Part I, one-dimensional timéJPP, 21(5):313-348, 1992.

[14] G. I. Goumas, N. Drosinos, M. Athanasaki, and N. Kozifidessage-
passing code generation for non-rectangular tiling ti@msétions.
Parallel Computing 32(10):711-732, 2006.

[15] M. Griebl. Automatic Parallelization of Loop Programs for Distribdte
Memory ArchitecturesUniversity of Passau, 2004. Habilitation thesis.

[16] Integer Set Library. Sven Verdoolaege, An Integer Serdry for
Program Analysis.

[17] K. Kennedy and U. Kremer. Automatic data layout for dizited-
memory machinesACM TOPLAS$20(4):869-916, 1998.

[18] H. Kim, A. Raman, F. Liu, J. W. Lee, and D. |. August. Sduia
speculative parallelization on commodity clusters. MICRO, pages
3-14, 2010.

[19] O. Kwon, F. Jubair, R. Eigenmann, and S. Midkiff. A hybapproach
of openmp for clusters. IACM SIGPLAN PPoPPpages 75-84, 2012.

[20] A. Lim, G. I. Cheong, and M. S. Lam. An affine partitionimdgorithm
to maximize parallelism and minimize communication. AGM ICS
pages 228-237, 1999.

[21] A. Lim and M. S. Lam. Maximizing parallelism and mininiig
synchronization with affine partition®arallel Computing 24(3-4):445—
475, 1998.

[22] B. Meister, A. Leung, N. Vasilache, D. Wohliford, C. Bast, and
R. Lethin. Productivity via automatic code generation fgag platforms
with the r-stream compiler. IWorkshop on Asynchrony in the PGAS
Programming Model2009.

[23] J. Mellor-Crummey, V. Adve, B. Broom, D. Chavarria-Mirda,
R. Fowler, G. Jin, K. Kennedy, and Q. Yi. Advanced optimiaati
strategies in the Rice dHPF compileConcurrency: Practice and
Experiencepages 741-767, 2002.

[24] MPI: A Message-Passing Interface Standard - versignttp://www.mpi-
forum.org/docs/.

[25] MVAPICH: MPI over InfiniBand, 10 GigE/iWARP and RoCE.
http://mvapich.cse.ohio-state.edu.

[26] PLUTO: A polyhedral automatic parallelizer and lotgloptimizer for
multicores. http://pluto-compiler.sourceforge.net.

[27] PolyLib - A library of polyhedral functions.
http://icps.u-strasbg.fr/polylib/.

[28] J. Ramanujam and P. Sadayappan. Compile-time tecksitpr data
distribution in distributed memory machineParallel and Distributed
Systems, IEEE Transactions,@{4):472-482, 1991.

[29] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and E.
Leiserson. The pochoir stencil compiler. $AA pages 117-128, 2011.

[30] Polybench. http://polybench.sourceforge.net.

[31] T. Yukiand S. Rajopadhye. Canonic multi-projectioremmory allocation
for distributed memory parallelization. Number CS11-186pt. 2011.



if (N>=3)&& (T >=1)){
for (t1=—1;tl<=floord(N+2«T—4,32);t1++){
_Ib_dist =max(ceild(t1 ,2), ceild (321—T+1,32)); _ub_dist =min(min(floord (N+F3,32),floord(32t1+N+29,64)),t1);
polyrt_loop_dist ( _Ib_dist , _ub_dist, nprocs, myank, &my._start, &myend);
Ibl=my_start; ubl=myend;
#pragma omp parallelfor shared(tl1,t2,Ibl,ubl) private (ubv,lbv,t3,t4,t5,1t6,t8)
for (t3=Ibl; t3<=ubl; t3++)
for (t5=max(ceild(64t3—N—28,32),t1);t5<= [..]; t5++)
for (t6=max(max(max(321—32xt3,32t3—N+2),16xt5—N+2),—32xt3+32:t5—N—29);t6<=[...];t6++)
for (t7=max(max(32t3,t6+1),32t5—t6—N+2);t7<=min(min(32«t3+31,32t5—16+30),t6+N-2);t7++)
for (t8=max(32t5,t6+t7+1); t8<=min(32¢t5+31,t6+t7+N-2); t8++)
a[—t6+t7][—t6—t7+t8]=(a[-t6+t7—1][ —t6—t7+t8—1]+a[—t6+t7— 1][ —t6—t7+t8]+a[-t6+t7— 1][ - t6—t7+t8+1]+a[-t6+t7][ - t6—t7+t8—1]
+a[—t6+t7][—t6—t7+t8]+a[—t6+t7][—t6—t7+t8+1]+af-t6+t7+1][—t6—t7+t8—1]+a[—t6+t7+1][— t6—t7+t8]+a[-t6+t7+1][— t6—t7+t8+1])/9.0;
_Ib_dist =max(ceild(t1 ,2), ceild (321—T+1,32)); _ub_dist =min(min(floord (N+F3,32),floord(32t1+N+29,64)),t1);
polyrt_loop_dist ( _Ib_dist , _ub_dist, nprocs, myank, &my._start, &myend);
for (t3=my_start; t3<=my_end; t3++){
clearsenderreceiverlists (nprocs); sigma(tl, t3, myrank, N, T, nprocs);if (! needto_send (nprocs))continue;
for (t5=max(max(1,ceild(4881+32:t3—31+T+527,16));- 32+t1+64«t3—31);t5<=min(Min(N—2,— 32t1+64«t3+31) — 32+t1+2xN+2xT—39);t5++) {
if ((t1 >= ceild(64«t3—15,32)) && (t3 <= min(floord(N+T—35,32),floord(t5+F32,32))))
for (t6=1;t6<=N—2;t6++)
sendbuf_a[sendcounta++] = a[t5 ][t6 ];
if (t1 <= min(floord(32:t3+T—33,32),floord(64t3—t5—1,32)))
for (t6=1;t6<=N—2;t6++)
sendbuf_a[sendcounta++] = a[t5 ][t6 ];

}

}
for (t3=my_start;t3<=my_end; t3++)
if (t1 >=ceild(32t3+T—32,32))
for (t5=max(1,32t3—T+1);t5<=min(N—2,32:t3—T+32);t5++)
for (t6=1;t6<=N—2;t6++)
lw_buf_a[lw_counta++] = a[t5][t6 ];
clearsenderreceiverlists (nprocs);
_Ib_dist =max(ceild(t1 ,2), ceild (321—T+1,32)); _ub_dist =min(min(floord (N+F3,32),floord(32t1+N+29,64)),t1);
polyrt_loop_dist ( _Ib_dist , _ub.dist, nprocs, myank, &my_start, &myend);
for (t3=my_start;t3<=my_end; t3++)
sigmaa(tl, t3, myrank, N, T, nprocs);
for (-_p=0; __p<nprocs;__p++) { sendcountsa[__p] = receiverlist [__p]? sendcounta: 0; } MPI_Alltoall (sendcountsa, 1, MPLINT, recv.countsa,
1, MPLINT, MPI_.COMM_WORLD); req.count=0;for (__p=0; __p<nprocs;__p++) { if(sendcountsal__p] >= 1) { MPI_Isend(sendbuf_a, sendcounta,
MPI_DOUBLE, __p, 123, MPLCOMM_WORLD, &regs[reqgcount++]);} }for (__p=0; __p<nprocs;__p++) { if(recv.countsal__p] >=1){
MPI_Irecv(recvbuf_a+displsa[__p], recv.countsa[_p],
MPI_DOUBLE, __p, 123, MPLCOMM_WORLD, &reqgs[reqgcount++])}} MPI_Waitall(req.count, regs, stats); semunta = 0; prevproc =—1;
MPI_Gather(&w.counta, 1, MPLINT, lw_recv.countsa, 1, MPLINT, 0, MPI.COMM_WORLD);MPI_Gatherv(lwbuf_a, lw_counta, MPLDOUBLE,
lw_recv.bufa, Iw_recv.countsa, displsiw_a, MPLDOUBLE, 0, MPLCOMM_WORLD); lw_counta = O; Iw_prev_proc=1;
for (t3=max(ceild(t1 ,2), ceild (3&1—T+1,32)); t3<=min(min(floord(N+T-3,32),floord(32t1+N+29,64)),t1); t3++}
proc = pi(tl, t3, myrank, N, T, nprocs); myank = proc; cleassenderreceiverlists (nprocs);
sigmaa(tl, t3, myrank, N, T, nprocs);
if (proc != prevproc) {prev.proc = proc; count=Q; if (recv.countsa[proc] ==0|| !needto_send (nprocs))continue;
for (t5=max(max(1,ceild(4881+32:t3—31+T+527,16));- 32+t1+64«t3—31);t5<=min(Min(N—2,— 32t1+64«t3+31) — 32+t1+2xN+2xT—39);t5++) {
if ((t1 >= ceild(64«t3—1t5,32)) && (t3 <= min(floord(N+T—35,32),floord(t5+F32,32)))){
for (t6=1;t6<=N—2;t6++){
if (t3 <=floord(t5+T—33,32))
a[t5][t6] = recvbufa [ displsa [proc]+ count++];
if (32¢t3 == t5+T—32)
a[32¢t3—T+32][t6] = recv.buf_a[ displsa [proc]+ count++];
}

}
if (t1 <=min(floord(32:t3+T—33,32),floord(64t3—t5—1,32))){
for (t6=1;t6<=N—2;t6++)
a[t5][t6] = recvbufa[ displsa [proc]+ count++];

}

}
if (my_rank ==0) {
Ib=max(ceild(t1 ,2), ceild (321—T+1,32)); ub=min(min(floord(N+¥3,32),floord(32t1+N+29,64)),t1);
for (t3=lb;t3<=ub; t3++){
proc = pi(tl, t3, myrank, N, T, nprocs);if (proc != lw_prev.proc) {lw_prev.proc = proc; count=(;
if (lw_recv.countsa[proc] == 0) continue;
if (t1 >=ceild(32t3+T—32,32))
for (t5=max(1,32t3—T+1);t5<=min(N—2,32:t3—T+32);t5++)
for (t6=1;t6<=N—2;t6++)
a[t5][t6] = lw_recv.buf_a[ displsiw_a [proc]+ count++];

} Figure6. Automatically generated MPI code for 2-d seidel-style silen

10



