
Automatic Distributed-Memory Parallelization and Code
Generation using the Polyhedral Framework

Uday Bondhugula
Department of Computer Science and Automation

Indian Institute of Science, Bangalore 560012

IISc-CSA-TR-2011-3

Sep 2011

Abstract
Compiling for distributed-memory parallel architecturesis considered
very challenging. In spite of the large amount of work done toaddress
this problem, no practical and efficient solution currentlyexists.

We present new techniques for compilation of regular sequential
programs for distributed-memory parallel architectures –typically, a
cluster of multicores interconnected with a high performance inter-
connect. Compilation for distributed memory requires generation of
communication code and its quality is key to scalable performance.
Our framework is implemented as a source-level transformerthat uses
the polyhedral compiler framework, and generates parallelcode with
communication expressed with the Message Passing Interface (MPI)
library. We are able to handle sequences of arbitrarily nested loops
with affine dependences, and generated code is parametric inthe num-
ber of processors and problem sizes. The proposed approach has been
implemented into a tool and we report experimental results on a clus-
ter of multicores demonstrating its effectiveness. Compared to all pre-
vious approaches, ours is a significant advance either (1) with respect
to the generality of input code handled, or (2) efficiency of commu-
nication code, or both. To the best of our knowledge, this is the first
work reporting end-to-end fully automatic distributed-memory paral-
lelization and code generation for input programs and transformation
techniques as general as those we allow.

1. Introduction and Motivation
Shared memory for multiple processing elements is a useful abstrac-
tion for parallel programmers. However, due to limitationsin scaling
shared memory to a large number of processors, the compute power of
shared-memory multiprocessor systems is limited. For example, it is
currently hard to find shared memory systems with more than 32or 48
cores. To get greater processing power, multiple processing nodes are
connected with a high performance interconnect such as InfiniBand or
10 Gigabit Ethernet to form a cluster. Each node has its own memory
space that is not visible to other nodes. The only way to sharedata be-
tween nodes is by sending and receiving messages over the intercon-
nect. The Message Passing Interface (MPI) [24] is the current domi-
nant parallel programming model used to program compute-intensive
applications on such distributed-memory clusters.

Distributed memory makes parallel programming even harder
from many angles. A programmer has to take care of distribution and
movement of data in addition to distribution of computation. Data dis-
tribution and computation distribution are tightly coupled – changing
the data distribution in a simple way often requires a complete rewrite
of compute and communication code. Debugging multiple processes
that send and receive messages to and from each other is also sig-
nificantly more difficult. Parallelizing even simple regular loop nests
for distributed memory can be very error-prone and unproductive. In

addition, whenever pipelined parallelism exists, i.e., not all processors
are active to start with, or when there is a significant amountof dis-
contiguous data to be transferred to multiple nodes, which is often the
case, MPI parallelization can be a nightmare. Hence, a tool that can
automatically parallelize for distributed-memory parallel architectures
can provide a big leap in productivity.

In this paper, we propose techniques and optimizations for auto-
matic translation of regular sequential programs to parallel ones suit-
able for execution on distributed-memory machines: typically, a clus-
ter of multicore processors. We use the polyhedral compilerframe-
work to accomplish this in a portable and efficient manner. Asa result,
we are able to handle sequences of arbitrarily nested loops with regu-
lar (affine) accesses, also known asaffine loop nests. We would like to
emphasize that distributed-memory compilation of even this restricted
class of codes is very challenging and no automatic solutionexists de-
spite decades of research. Codes such as these are common in the
scientific and embedded computing domains. Our contributions over
previous works are at least one or more of the following: (1) handles
imperfect loop nests with affine dependences, (2) significantly lesser
communication in the presence of parametric problem sizes and num-
ber of processors, and (3) fully automatic end-to-end capability for
distributed-memory parallelization. Experiments conducted on a 32-
node InfiniBand cluster demonstrates high speedups.

The problem of distributed memory parallelization requires a solu-
tion to several sub-problems. New techniques presented in this paper
are for efficient communication code generation, i.e., whena trans-
formed parallelized code is given as input. Hence, approaches that de-
termine computation or data partitioning are orthogonal toit. For ex-
perimental evaluation, we coupled our proposed code generation tech-
nique with a computation partitioning-driven polyhedral parallelizer
Pluto [8, 26]. Our framework is thus implemented as a source-level
transformer that generates parallel code using the MPI library as its
communication backend. Code we generate is parametric in the num-
ber of processors and other problem sizes, and provably correct for any
number of MPI processes. Besides parallelizing for distributed mem-
ory, code we generate is also optimized for execution on all cores of
each node, and for locality on each core. Targeting a portable and rel-
atively low-level communication library like MPI allows usto benefit
a wide range of architectures.

The rest of this paper is organized as follows. Section 3 discusses
challenges. Section 2 provides background and notation. Section 4
and Section 5 describe our solution and optimizations. Section 6
provides experimental results. Discussion of related workis presented
in Section 7 and conclusions are presented in Section 8.

1

2. Background and Notation
The polyhedral compiler framework is an abstraction for analysis and
transformation of programs. It captures the execution of a program
in a static setting by representing its instances as integerpoints inside
parametric polyhedra. Most publicly available tools and compilers that
use this framework extract such a representation from C, C++, and
Fortran programs.

Polyhedral representation of programs: Let S1, S2, . . . , Sn be
the statements of the program. Each dynamic instance of a statement,
S, is identified by its iteration vector~i that contains values for indices
of the loops surroundingS, from outermost to innermost. Whenever
the loop bounds are affine functions of outer loop indices andprogram
parameters, the set of iteration vectors belonging to a statement form
a convex polyhedron called itsdomainor index set. Let IS be the
index set ofS and let its dimensionality bemS . Let ~p be the vector of
program parameters. Program parameters are not modified anywhere
in the portion of code we are trying to model.

A function f on a domainIS is called an affine function if it can
be represented in the following form:

f(~i) = [c1 . . . cmS
]
`

~i
´

+ c0, ~i ∈ IS

Regular data accesses in a statement are represented as multi-dimensional
affine functions of domain indices. Codes that satisfy theseconstraints
are also known asaffine loop nests.

Polyhedral dependences: The data dependence graph (DDG) is
a directed multi-graph with each vertex representing a statement, and
an edge,e ∈ E, from nodeSi to Sj representing a polyhedral depen-
dence from an iteration ofSi to an iteration ofSj : it is characterized
by a polyhedron,De, called thedependence polyhedronthat captures
exact dependence information corresponding toe. The dependence
polyhedron is in the sum of the dimensionalities of the source and tar-
get iterations spaces, and the number of program parameters. At least
one of the source and target accesses has to be a write.

for (t=0; t<=T−1; t++)
for (i=1; i<=N−2; i++)

for (j=1; j<=N−2; j++)
a[i][j] = (a[i −1][j−1] + a[i−1][j] + a[i −1][j+1]

+ a[i][j −1] + a[i][j] + a[i][j+1] +
a[i+1][j−1] + a[i+1][j]+ a[i+1][j +1])/9.0;

Figure 1. Seidel-style code

For example, for the code in Figure 1, the dependence between
the write a[i][j] at ~s = (t, i, j) and the read at~t = (t′, i′, j′) at
a[i′−1][j′−1] is given by the dependence polyhedron,De(~s,~t, ~p, 1),
which is a conjunction of the following equalities and inequalities:

i′ = i + 1, j′ = j + 1, t′ = t,

0 ≤ t ≤ T − 1, 1 ≤ i ≤ N − 3, 1 ≤ j ≤ N − 3

3. Problem and Challenges
When compiling for shared memory, synchronization primitives take
care of preserving data dependences when dependent iterations are
mapped to different processors. Shared memory support provided by
hardware takes care of transparently providing data that had been
written to by one processor before a synchronization point,to another
one after it. However, in case of distributed-memory systems, this
movement of data has to be performed in software via communication
over the interconnect.

Unknown number of processors: A number of difficulties arise
due to the fact that the number of processes we are compiling for is
not known at compile time, and has to be treated as a parameter. This
is not an issue with shared-memory auto-parallelization. OpenMP
support takes care of partitioning a parallel loop with a choice of
strategies, and since no software data transfer is performed, the two
steps of generation of parallel code (marking a loop as parallel) and

that of distributing the parallel loop across processors are decoupled.
No matter how the parallel iterations are scheduled across processors,
the hardware would transparently guarantee visibility of correct data
after synchronization points.

Generating code parametric in problem sizes and processorsis also
very important for portability. For proprietary software,a vendor may
not be able provide binaries for each configuration of problem and
system size, and a user would not be able to recompile for it.

Plugging in the number of processors as a parameter in the polyhe-
dral representation does not help since it introduces non-linearity. For
example, a simple loop ofN iterations, when divided acrossnprocs
processors would lead to the following SPMD code (even ifN to be a
multiple ofnprocs below):

for (i=my rank∗N/nprocs; i<= (my rank+1)∗N/nprocs−1; i++)

Thus, there is no turn-key approach to get polyhedral machinery to
directly compute data accessed inside such a loop. In addition, the
number and identity of communication partners as well as communi-
cation data may often depend on the total number of processors as well
as other program symbols, actual values of which will only beknown
at runtime. These are hard problems and we provide a compile-time
solution to these.

4. Distributed memory code generation
In this section, we describe all steps involved in obtainingcommuni-
cation code given the original program and a transformationor com-
putation partitioning for it.

4.1 Dependences and communication

When code is partitioned across multiple processing elements, any
communication required arises out of data dependences. Recall that
there are primarily three types of data dependences: flow (Read-after-
Write or RAW), anti (Write-after-Read or WAR), and output (Write-
after-Write dependences). It is interesting to contrast the effect of
these dependences when compiling for shared-memory versusfor
distributed-memory systems. Anti and output dependences merely
exist because the same memory location is being reused. In case of
shared memory auto-parallelization, anti and output dependences are
still important – this is because when iterations that are dependent
via such a dependence are mapped to different processors, owing
to the same shared memory location they access, synchronization is
needed. However, in case of distributed memory, each processor has
its own address space. This coupled with the fact that there is no flow
of data results in anti and output dependences neither leading to any
communication nor any synchronization.

Note that our goal is to generate a distributed-memory program
that preserves semantics of the original sequential program. Once the
parallelized portion of the input code finishes execution, all results
are to be available at a single process, say, the master process. Thus,
even in the absence of any dependences, communication is needed
to make sure that all results will have been gathered at the master
process by the time all parallel processes have finished executing. We
show that this communication code can be generated efficiently using
output (WAW) dependences.

A loop that can be placed at any position and marked parallel has
no dependence components along it, and is called an outer parallel
or a communication-free parallel loop. Outer parallelism will require
no communication except a gather of results at the master process.
Wherever pure inner parallelism exists, i.e., communication cannot
be avoided via transformation, generating efficient communication
code is crucial. Note that inner parallelism, wavefront parallelism, and
pipelined parallelism can all be converted into inner parallelism, i.e.,
one parallel loop followed by a synchronization call when running
on shared memory, or communication code in case of distributed
memory.

2

4.2 Computing communication sets

In the rest of this section, bytile we refer to the portion of computation
under a given iteration of the parallel dimension, i.e., alldimensions
surrounding it and including itself serve as parameters forthe tile. It
may or not have been obtained as a result of loop tiling. It is the small-
est piece of computation for which we will define communication sets.
It is important to note that constraints that describe a tile’s domain are
affine at compile time. We classify communication data for a tile into
two classes:

1. Writes to locations that are read at another process the next time
the same loop is run in parallel, i.e., for another iterationof the
surrounding (outer) sequential loop if any.

2. All results need to be available at a root node once parallelized
computation has finished executing, i.e., final writes for all data
spaces need to be aggregated.

We show that by computing two sets for each data variable, onefor
each of the above cases, one can determine all that has to be sent out
from a process after it has finished executing a tile. We call these the
flow-outset and thewrite-outset. Each of these sets can be a union of
convex polyhedra. The integer points in these polyhedra yield actual
data elements to be communicated.

Running example: We use the code in Figure 2 as an example to
demonstrate all steps, showing results and code they yield at each step.
This is a typical Jacobi-style stencil with time along the vertical axis
and space along the horizontal. For simplicity, assume thatall dimen-
sions are tiled by a factor of 32. Tiling serves a number of purposes
in our context: increasing granularity of parallelism and reducing the
frequency of communication, improving locality, and bounding buffer
sizes by a factor proportional to tile size where possible.

In the rest of this section, whenever we refer to a set, we meana
union of convex polyhedra with integer points enclosed by them being
of interest to us. Whenever a set of linear equalities and inequalities
are listed, they represent a conjunction of those. Recall notation intro-
duced in Section 2.\ is used as the set difference operator. In addition,
some polyhedral operations are notated as below:

project out(D, p, n): eliminatesn dimensions from setD
starting frompth dimension (p ≥ 1)

Ip(M,D, l) : image of D under a multi-
dimensional affine function M
while treating l outermost dimen-
sions as parameters

pad(D,pos, n) : extend dimensionality ofD by
adding n (unconstrained) dimen-
sions at positionpos (pos ≥ 1)

Algorithms for projection are provided by polyhedral libraries. For
parametric image, the chosen parameters are not projected out of the
image. In particular, if one needs data accessed for a given set of outer
loops through an access functionM , the outer loops are to be treated
as parameters just like other program parameters appearingin loop
bounds, andM is used as the function for the image operation. As an
example, ifD is

1 ≤ i ≤ N − 1, 1 ≤ j ≤ N − 1

32iT ≤ i ≤ 32iT + 31, 0 ≤ j − 32jT ≤ 31

andM = (i − 1, j − 1), l = 1. Then,Ip(M,D, l) is

0 ≤ d0 ≤ N − 2, 32iT ≤ d0 ≤ 32iT + 31

0 ≤ d1 ≤ N − 2

4.2.1 Flow-out set

Theflow-outset of a tile is the set of all values that are written to in-
side the tile, and then next read from outside the tile. Temporary sets
used in the algorithm have the following meanings. Lete be a RAW
dependence fromSi to Sj .
DT

e : dependence polyhedron for edgee in the transformed space
IT

Si
, IT

Sj
: domains ofSi andSj in the transformed space with dimen-

sionalitiesmT
Si

andmT
Sj

respectively
It

e: iterations inside the tile reading data written to in the tile as a result
of dependencee
Ot

e: source iterations of the tile whose writes are read by iterations
outside the tile through dependence edgee
ti
k: kth dimension ofIT

Si

The first step is that of finding the subset of the transformed
dependence polyhedron that has both its source and target iterations
in the same tile. This can be obtained by intersectingDT

e with a set
of equalities equating the firstl dimensions ofIT

Si
to those ofIT

Sj
. Let

El be that set of equalities, i.e.,

El =
n

t
i
1 = t

j
1
∧ t

i
2 = t

j
2
∧ . . . ∧ t

i
l = t

j

l

o

We now obtain the set of all iterations of the tile that write to values
that are (later) read within the same tile through dependence edgee:

C
t
e = D

T
e ∩ El

I
t
e = project out

`

C
t
e, mSi

+ 1, mSj

´

Next, subtractingIt
e from the set of all source dependence iterations

in the tile yields those source dependence iterations whosewrites are
read outside the tile:

O
t
e = project out

“

D
T
e , mSi

+ 1, mSj

”

\ I
t
e

Now, computing the image of the source write access function,
Mw, onOt

e yields the flow-out set for this particular write access and
dependence.

F
x
out = Ip(M

Si
w , O

t
e, l)

Algorithm 1 computes the entire flow-set for a particular variable.
Transformed dependence polyhedra and transformed index sets can be
generated by taking the original ones and augmenting them with trans-
formation functions that map old iterators to new ones, and then pro-
jecting out the old ones. This yields the dependence relation between
iterations in the target spaceDT

e . Since anti and output dependences

Algorithm 1 Computing flow-out set for variablex
INPUT Depth of parallel loop:l; setSw of 〈write access, statement〉 pairs for

variablex
1: F x

out = ∅
2: for each〈Mw, Si〉 ∈ Sw do
3: for each dependencee(Si → Sj) ∈ E do
4: if e is of type RAW and source access ofe is Mw then

5: El =
n

ti
1

= t
j
1

∧ ti
2

= t
j
2

∧ . . . ∧ ti
l
= t

j

l

o

6: Ct
e = DT

e ∩ El

7: It
e = project out

“

Ct
e, mSi

+ 1, mSj

”

8: Ot
e = project out

“

DT
e , mSi

+ 1, mSj

”

\ It
e

9: F x
out = F x

out ∪ Ip(MSi
w , Ot

e, l)
10: end if
11: end for
12: end for
OUTPUT F x

out

are ignored, multiple copies of the same location may exist with dif-
ferent processors. However, when a later read to the same location
happens, the correct written value would end up being transferred due
to the presence of a flow edge between the write and the read.

4.2.2 Write-out set

Thewrite-outset of a tile is the set of all those data elements to which
the last write access across the entire iteration space is performed in
the tile. We compute this by looking for any WAW edges leaving
the tile. If they do, subtracting the sources of those edges from the
set of all points written to in the tile in an iterative manneracross
all WAW deps leaves us with locations that have been “finalized”

3

for (i=1; i<=T−1; i++){
for (j=1; j<=N−1; j++){

u[i][j] = 0.333∗(u[i−1][j−1]
+ u[i−1][j] + u[i −1][j+1]);

}
}

Figure 2. Jacobi-style code

j

i

N

N

b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b

Dependence
rs Tile
rs Flow-out set

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

5

6

Figure 3. Flow-out set for code in Figure 2

by computation in the tile. A union has to be taken across all write
accesses to a given variable in a tile. For edgee associated with
variablex, let:
Ms, Mt: source and target write access functions respectively foredge
e,
It′

e : iterations that write to locations that were written to inside the
tile,
Qt

e: iterations outside the tile that will again write data to locations
that were written to inside the tile, and
W : write-out set due to a given write access, and
W x

out: write-out set forx.
Algorithm 2 computes the write-out set for a variable.

Algorithm 2 Computing write-out set for variablex
INPUT Depth of parallel loop:l; setSw of 〈write access, statement〉 pairs for

variablex
1: W x

out = ∅
2: for each〈Mw, Si〉 ∈ Sw do
3: W = Ip(Mw , IT

Si
, l)

4: for each dependencee(Si → Sj) ∈ E do
5: if e is of type WAW and source access ofe is Mw then
6: LetMt be the target access ofe

7: IT ′

Sj
= pad

“

IT
Sj

, mSi
+ 1, mSj

”

8: It
e = DT

e ∩ IT ′

Sj

9: It′

e = project out
`

It
e, l + 1, mSi

´

10: Qt
e = It′

e \ IT
Sj

11: W = W \ Ip(Mt, Q
t
e, l)

12: end if
13: end for
14: W x

out = W x
out ∪ W

15: end for
OUTPUT W x

out

4.2.3 Example

For the code in Figure 2, Figure 3 shows the flow-out set. It is obtained
as a union of the following two polyhedra:

1 ≤ i ≤ T − 2, 1 ≤ j ≤ N − 2

32iT + 30 ≤ d0 + d1 ≤ 32iT + 31

32iT ≤ d0 ≤ 32iT + 31

i = 32 ∗ iT + 31, 1 ≤ i ≤ T − 2

1 ≤ j ≤ N − 1, 32iT ≤ d0 + d1 ≤ 32iT + 31

The second one corresponds to the horizontal line, while thefirst to
the two oblique lines.d0 andd1 will index the array dimensions in

the copy-out code. Note that for simplicity, the above constraints are
expressed in terms of source iterators. They are actually computed
in the space of transformed iterators, i.e., in terms of(t1, t2) where
t1 = i, t2 = i + j, since tiling has been performed here after a
skewing of the space dimension. As for the write-out set, allwrites
that occur in a tile here are last writes, and they all need to be sent out.

4.3 Packing and unpacking communication sets

With MPI, it is easy to transfer data from, and receive into, contiguous
buffers. However, in nearly all cases, we require discontiguous data to
be sent and copied back on the receiver side. Hence, after theabove
communication sets are computed, one has to, (1) pack data tobe
sent in a contiguous buffer, (2) map to communication library calls,
(3) unpack data at receiver side, and (4) determine send and receive
buffer sizes for allocation. We construct additional statements to add
to the polyhedral representation of the source program for the copy-
out, copy-back. The flow-out and write-out sets serve as the domains
for the copy statements.

Reasonably tight upper bounds on send and receive buffer sizes
can be determined from tile constraints; we do not present details on it
here due to space constraints. Write-out sets are gathered at the master
process – in our case, this can be chosen to be the MPI process with
rank 0.

A naive approach: A naive approach that works is to send the
flow-out set to all processors, i.e., each processor sends its flow-out
set to all processors. This means that all of the data to be sent is sent,
but not just to the processors that need them. Hence, a processor may
receive more data than necessary, and a processor that need not re-
ceive any data may receive some; the latter is a matter of greater con-
cern. However, this approach provides a very clean way to generate
communication code. Two of MPI’s collectives,MPI Allgatherv
(all-to-all broadcast) andMPI Gatherv perfectly fit. Allgather can
be used to broadcast flow-out sets to all processors. The Gather call
with process 0 as root is used to collect write-out sets.

5. Optimizing communication code
Recall that communication sets were defined per ‘tile’, for which we
have affine constraints at compile time. This allowed us to use polyhe-
dral machinery to compute them in the first place. Multiple such tiles
may get mapped to a single physical processor and communication is
done only after all of these tiles have been executed, for every iteration
of immediately surrounding sequential loop, if any.

5.1 Precise determination of communication partners

The naive scheme described in the previous section broadcasts flow-
out sets to all processors. In cases, where we have inner parallelism,
depending on communication latencies and bandwidth, this will likely
lead to a bottleneck. Recall again that the problem in determining

4

communication partners was that the allocation of tiles to processors
is not known at compile time. Consider the simple scenario when
the number of communication partners itself depends on the total
number of processors. Long dependences may traverse any number
of processors. However, in many cases such as in the presenceof
uniform dependences, only near-neighbor communication isneeded.
Even in these cases, if iteration spaces are shaped peculiarly, one
cannot predict near-neighbor communication just based on depen-
dence distances. Hence, even for uniform dependences, the number
and identity of communication partners cannot be determined at com-
pile time.

We describe a solution below that achieves the following: the flow-
out set is not sent to processors that do not need any value from this
flow-out set. More precisely, we guarantee the following:

1. Every element in the flow-out set sent by a processor is needed by
at least one other processor

2. Only processors that expect to receive at least one value from
another processor receive the flow-out set

We define two functions as part of the output code for each
data variable,x, that can be a multidimensional array or a scalar.
If t1, . . . , tl is the set of sequential dimensions surrounding parallel
dimensiontp, the functions are:

1. π(t1, t2, . . . , tl, tp): rank of processor that executes (t1, t2, . . . ,
tl, tp)

2. σx(t1, t2, . . . , tl, tp): set of processors that need the flow-out set
for data variablex from the processor calling this function

Generating π and σ: Code forπ andσ functions is meant to be
generated and added to output code. Constructingπ is straightforward.
It only requires the lower and upper bound expressions fortp, and
the number of processors.π is also used in computingσx. σx can be
expressed as follows.

σx(t1, t2, . . . , tl, tp) = {π(t′1, t
′

2, . . . , t
′

l, t
′

p) | ∃e ∈ E on x,

D
T
e (t1, .., tp, .., t

′

1, .., t
′

p, .., ~p, 1)}

σ can be constructed as follows for each variablex. For each rele-
vant RAW dependence polyhedron in the transformed space, weelim-
inate all dimensions that are inner totp. We then scan the dependence
polyhedron to generate loops for the target iterators whiletreating
source iterators as parameters, i.e., running the generated loop nest at
run-time will enumerate all dependent tiles,(t′1, t

′

2, ..., t
′

l, t
′

p), given
the coordinates of the source tile. However, our goal is not to enumer-
ate dependent tiles, but to determine processors they are mapped to.
Hence,σ makes use ofπ to aggregate a set of distinct values corre-
sponding to processor ranks that the target tiles were mapped to. The
overhead of evaluatingσ at runtime is minimal since a call to it is
made only once per all computation for a giventp.

Send-synchronous scheme: With σ andπ functions, generating
more accurate communication code for a parametric number ofpro-
cessors now becomes possible. Processes send out data to theset of
processor ranks returned byσ, and receivers areforced to receive
them. The receivers will use received data in one or more future it-
erations. Hence, sends and receives are posted in a synchronous man-
ner, relatively speaking. Non-blocking sends and receivesare used so
that simultaneous progress is made on all sends across all data vari-
ables when possible. We wait for their completion (MPI Waitall)
and copy-back received data to the right place before the next iteration
of the sequential loop outer to the parallel one starts. Communication
code can now either be expressed with point-to-point sends and re-
ceives to processor ranks obtained fromσ.

An arbitrary allocation: A powerful feature of this scheme is that
an arbitraryπ function can be used. So far, we have only alluded to a
block scheduling of the parallel loop. However,π can be generated to
achieve a block-cyclic scheduling, or any other model-driven or even
dynamic scheduling. In addition, it is easy to use a multidimensionalπ
whenever we have more than one parallel dimension. Such mappings

to higher dimensional processor spaces achieve better computation to
communication ratios, for a given number of processors and problem
size.

5.2 Transitivity in dependences

We know that dependences that lead to communication of flow-out
sets are RAW dependences. If RAW dependences are transitively
covered by other dependences, one would end up communicating
from several sources instead of just the last one, i.e., the one that writes
last to the location as per the original program. We use a dependence
tester that can compute such last writers or the exact data flow so that
RAW dependence polyhedra do not contain any redundancy.

Interestingly, one observes the converse of the above effect when
dealing with write-out sets. Note that transitivity can be eliminated
from write-after-write dependences as well. A WAW dependence can
be covered by other WAW dependences as well as through a combina-
tion of RAW and WAR dependences. If transitivity is eliminated for
WAW dependences and with Algorithm 2 only looking at WAW deps,
one would miss writes that happen outside the tile and to the same
locations written to in a tile. This leads to a write-out set much larger
than the actual one, often, almost the entire set of locations written
to. Hence, Algorithm 2 will only be exact if all transitivelycovered
WAW dependences are preserved. In summary, one has to rely onthe
right dependence testing and analysis techniques. ISL [16]provides
functions to compute last writers as desired as part of its dependence
testing interface and we use it.

In spite of the above, with our scheme, the amount of data com-
municated is not optimal when different parts of the flow-outset have
different σs, i.e., different lists of receiving processors. An optimal
decomposition of flow-out sets if at all possible at compile time is left
for future research.

5.3 Putting all communication code together

We compute domains, schedules for the additional copy-out,copy-
back, and communication statements, and they have all components
in the polyhedral representation just like the original compute state-
ments. The new program comprising these added statements isgiven
to the code generator, to generate final code in one pass.

Implementation: Our framework is implemented as part of the
publicly available source-to-source polyhedral tool chain. Clan [7],
ISL [16], Pluto [26], and Cloog-isl [11] are used to perform poly-
hedral extraction, dependence testing, automatic transformation, and
code generation, respectively. The Pluto scheduling algorithm [8, 9] is
first used to determine a parallelizing transformation, i.e., a computa-
tion partitioning. To implement polyhedral operations forall compu-
tations in Section 4 and Section 5, Polylib [27] was used. A powerful
feature of our framework is that it will work with any other algo-
rithm for transformation and detection of parallelism. As aresult of
using the polyhedral representation as both the input and output of
our scheme, code can be generated after any sequence of validtrans-
formations have been applied. Nothing prevents our communication
code generation scheme to be used in a system that specifies data and
computation distributions in a different way as long as these mappings
can be expressed as affine functions.

Data distribution free: The distributed memory parallelization tool
chain as described above is computation driven. Data moves from pro-
cessor to another in a manner completely determined by the compu-
tation partitioning and data dependences. An initial data distribution
can be specified, but it would only affect communication at the start.
There exists no owning processor for data. However, last write com-
munication can be modified easily to gather last writes at theright
processors based on a user-supplied distribution. At the moment, no
pragmas, directives, or distributions are provided to our system, i.e., it
is fully automatic. Also, generated code is SPMD. We choose to gather
all results at process ‘0’ only to provide exactly the same behavior as
the unmodified sequential input program.

5

5.4 Data allocation

We do not address the issue of data allocation in this paper. We assume
that each processor has the entire data space for a variable before it
starts executing the portion of the program that was parallelized. It
would however only work on portions of the data space it needsto
– based on the computation partitioning. Though this is a problem
on a very large distributed memory machine, it is not a limitation
of the code generation scheme itself, i.e., the problem can easily be
addressed in an incremental manner. Keeping a view of the entire
space was a natural first choice since our input is an unmodified
sequential program. [31] is a recent work that addresses this issue
while performing distributed memory parallelization for restricted
input, those with uniform dependences. We plan to incorporate such a
scheme in the future.

5.5 Improvement over previous schemes

In this section, we describe in detail how our scheme improves over
existing ones for communication code generation. We consider three
past works that subsume others in the literature. These are that of
Amarasinghe and Lam [2], Adve and Mellor-Crummey [1], and
Classen and Griebl [10]. The above schemes have the following limi-
tations that we have overcome partly or fully:

1. All three approaches used a virtual processor to physicalprocessor
mapping to deal with symbolic problem sizes and number of pro-
cessors. Communication finally occurs between virtual processors
that do not map to the same physical processor. In spite of this, if
multiple receiving virtual processors map to the same physical pro-
cessor and data being sent to two or more of these is not disjoint,
the receiving physical processor ends up receiving necessary data
multiple times. For example, if a virtual processorVi is mapped
to physical processorPi and two other virtual processorsVj1 and
Vj2 are both mapped to physical processorPj (Pi 6= Pj), and
Vi(Pi) sends the same data or a large portion of the same data to
bothVj1(Pj) andVj2(Pj). Avoiding it is not trivial since one has
to look for commonality in data being sent out across a set of re-
ceiving virtual processors as well as determine the list of receivers
– these are only known at runtime if the number of processors and
problem sizes are parametric. The sigma function-based solution
presented in this section provided an efficient solution to this prob-
lem.

2. [2, 1] determine communication sets by directly looking at read
and write accesses as opposed to data dependences. Communica-
tion is only needed between the last write before a read and the
read, and algorithms presented in those works do not appear to
consider this issue. Since our approach relies on dependences, this
requirement is easily captured in the lastwriter property of flow
dependences.

Note that the second limitation also compounds redundancy cre-
ated due to the first. Not eliminating transitive relations leads to more
one-to-many patterns and such one-to-many patterns that inturn leads
to greater redundant communication with a simple virtual tophysi-
cal processor model. The approach of Classen and Griebl [10]does
not suffer from the second limitation since it is based on depen-
dences like ours. However, their work was preliminary and concep-
tual, and reported very limited implementation and experimental eval-
uation. Communication polytopes are constructed foreachflow de-
pendence, and so communication code is generated dependence-wise.
Since communication sets for multiple dependences may often refer to
the same values, a new source of redundant communication is added.

6. Experimental evaluation
Setup: We conducted experiments on a 32-node InfiniBand cluster
of dual-SMP Xeon servers. Each node comprises two quad-coreIn-
tel Xeon E5430 2.66 GHz processors with a 12 MB L2 cache and
16 GB of main memory. The InfiniBand host adapter is a Mellanox
MT25204. All run Linux 2.6.18 64-bit. MVAPICH2-1.4 [25] (MPI

Benchmark Problem size
strmm 10000
tmm 8000

dsyr2k 4096
covcol N = 8192
seidel N = 10000, T = 600
jac-2d N = 10000, T = 1000
fdtd-2d N = 6000, T = 256
2d-heat N = 10000, T = 1000

Table 1. Problem sizes used

over InfiniBand) is the MPI implementation used. On this cluster, it
provides a point-to-point latency of 3.36µs, unidirectional and bidi-
rectional bandwidths of 1.5 GB/s and 2.56 GB/s respectively. All
codes were compiled with Intel C/C++ compiler (ICC) version11.1
with option -fast (implies ‘-O3 -ipo -static’ on 64-bit Linux). Portland
Group’s compiler pghpf 12.1 (with -O4 -Mmpi) was used where a
comparison with HPF was performed – it was the only publicly avail-
able HPF compiler we could find.

Input sequential code without any modification is taken in byour
system and compilable MPI code is generated fully automatically in
all cases. The entire framework runs fast and the increase insource-
to-source transformation time due to distributed memory compilation
is less than 1.5s in all cases. We thus did not pay particular attention
to optimize compilation time at this point.

Benchmarks: We evaluate performance on selected commonly
used routines and applications from dense linear algebra and stencil
computations. All of these can be found in the Polybench suite [30].
Heat-2D is available with the Pochoir suite [29]. All computations
use double-precision floating point operations. Problem sizes used are
given in Table 1. All results are with strong scaling.

Comparison: Regarding experimental comparison with previous
approaches, we were unable to find a publicly available system that
could perform such code generation. A number of techniques from
the literature only a address part of the problem, and rebuilding an
end-to-end system with them is infeasible. We believe that the detailed
discussion provided in Section 5.5 and related work demonstrates our
contributions. Comparison is thus provided with manually parallelized
MPI versions of these codes, and with HPF where possible.

Though each node has eight cores and our tool is able to generate
MPI+OpenMP code, in order to focus on the distributed-memory part,
we run only one OpenMP thread per process, and one MPI process
per node. In these figures,our-commopt refers to our tool with the
optimization described in Section 5.our-allgather refers to the
basic all-to-all broadcast-based communication scheme described in
Section 4.3.manual-mpi refers to hand-parallelized MPI version
of the code we developed.seq refers to original code compiled with
icc with flags mentioned earlier.

For the first four codes that exhibit outer parallelism, the only
communication that occurs is that of write-out sets. We see close
to ideal speedup for these. Results withour-allgather and
manual-mpi are not shown since they would yield the same perfor-
mance. Due to all of these codes involving non-rectangular iteration
spaces, manual parallelization still involves significanteffort. pghpf
was unable to correctly compile HPF versions of these – further ex-
perimentation revealed that non-rectangularity was the most likely
cause.

Figure 4 show GFLOPs performance and scalability on the clus-
ter for codes that do incur flow-out communication as well. All x-
axes are on a logarithmic scale. Table 2 shows the actual execution
times and reports speedup factors. Forseidel, the original loop nest
has no parallel loops. Our approach includes automatic application of
such a transformation and then performing distributed memory code
generation. With approaches such as HPF, this code cannot bepar-
allelized unless the programmer manually transforms it first before
providing additional directives. Performing manual MPI paralleliza-
tion for it is extremely cumbersome, even without tiling thetime loop.

6

 0

 5

 10

 15

 20

1x1 2x1 4x1 8x1 16x1 32x1

G
F

LO
P

s

Number of nodes (1 core per node)

our -commopt
our -allgather
manual mpi

(a) Seidel

 0

 5

 10

 15

 20

 25

1x1 2x1 4x1 8x1 16x1 32x1

G
F

LO
P

s

Number of nodes (1 core per node)

our -commopt
our -allgather
manual mpi

pghpf
pluto-seq

seq

(b) Jac-2d

 0

 5

 10

 15

 20

1x1 2x1 4x1 8x1 16x1 32x1

G
F

LO
P

s

Number of nodes (1 core per node)

our -commopt
our -allgather

manual mpi
pghpf

pluto-seq
seq

(c) FDTD-2d

 0

 20

 40

 60

 80

 100

1x1 2x1 4x1 8x1 16x1 32x1

G
F

LO
P

s

Number of nodes (1 core per node)

our -commopt
our -allgather

pluto-seq
seq

(d) 2d-heat

Figure 4. Performance of parallelized code on a 32-node cluster

Benchmark seq pluto-seq Execution time forour-commopt (number of procs) Speedup:our-commopt-32 over
(icc) 1 2 4 8 16 32 seq our-commopt-1

strmm 30.4m 247s 240s 124.6 63.5s 33.6 17.3 9.4s 194 26.3
tmm 35.5m 91.8s 96.4s 51.3s 27.4s 15.28s 7.14s 3.74s570 24.5

dsyr2k 127s 39s 38.8s 22.4s 13.5s 6.8s 3.8s 1.57s80.8 24.7
covcol 462s 30.9s 30.7s 16.7s 8.8s 4.6s 2.48 1.3s 355 23.8
seidel 17.3m 643.5s 692s 338.7s 174.34s 94s 65.58s 33.03s31 20.8
jac-2d 21.9m 206.7s 218s 111.2s 62.27s 40.73s 29.3s 21.45s61.3 9.6
fdtd-2d 139s 129.7s 95.2s 70.7s 40.26 25.3s 16.8s 11.68s11.9 11
2d-heat 19m 266s 280s 157s 81s 52s 33s 24s 47.5 11.7

Table 2. Summary of performance

As can be seen, automatically generated code performs much better as
a result of it being fully tiled (both space and time dimensions) which
in turn leads to better locality and a reduced frequency of commu-
nication. It realizes a pipelined parallelization of 3-d tiles. The same
is also true forjac-2d as well asfdtd-2d, improved locality and
reduced frequency of communication leads to a better solution. This
explanation is also supported by the fact that ‘manual-mpi’exhibits
super-ideal improvement when going from 16 to 32 processors(for
fdtd-2d), and in general performs relatively better with higher num-
ber of processors – a decrease in working set size hides poor locality
for ‘manual-mpi’. Manually parallelized code forjac-2d performs
significantly poorer due to lesser computation per communication call
when compared tofdtd-2d for example. Our code shows uniformly
good scalability throughout. Being able to perform distributed mem-

ory code generation in conjunction with complex transformations is
thus a key strength of our tool.

Figure 5 shows the split between compute time and other overhead,
i.e., time spent in communication and in packing to and unpacking
from communication buffers. Results from our fully optimized codes
(‘our-commopt’) were used for this plot.

7. Related work
Several attempts have been made at achieving distributed memory par-
allelization. Most works [4, 2, 3, 5, 14] addressed the problem in a
limited way with the following limitations: (1) applicableto restricted
input such as perfectly nested loops with uniform dependences, (2)
address only a few steps of the actual parallelization and code gener-

7

 0

 0.2

 0.4

 0.6

 0.8

 1

4 32 4 32 4 32 4 32 4 32 4 32 4 32 4 32 4 32

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

compute+pack
communication

unpack

heat-2dfdtd-2djac2dseidelssymmcovcoldsyr2kstrmmtmm

Figure 5. Breakdown of compute, communication, and pack/unpack
times while running code generated by our scheme on 4 and 32
processors

ation problem, (3) lead to excessive communication with a symbolic
number of processors or problem sizes.

Researchers have looked at the steps of data decomposition and
computation decomposition while addressing distributed memory
compilation [28, 3, 17]. Computation transformation approaches
in the polyhedral framework have themselves undergone advances
through [13, 21, 20, 8] that result in better parallelization for shared
memory. Note that the affine partitioning works related to SUIF [21,
20] do not address distributed-memory code generation – they are
transformation and parallelization algorithms. The Plutoschedul-
ing algorithm has been shown to be a significant improvement on
those [8, 9], and we use it to apply parallelizing and locality enhancing
transformations before communication code generation techniques
described in this paper are applied. As we have shown, generating
efficient communication code on top of any auto-transformation al-
gorithm involves a number of non-trivial problems. Withouta good
scheme, even the best computation partitioning is unlikelyto provide
good parallel speedup.

Since the primary contributions of this paper are related tocommu-
nication code generation as opposed to computation or data transfor-
mations, the closely related works from literature are those of Amaras-
inghe and Lam [2], Adve and Mellor-Crummey [1], and Classen and
Griebl [10]. [2] handled only perfectly nested loops, while[1] and [10]
are based on the polyhedral framework. As explained in Section 5.5,
all of these works result in a significantly large amount of redundant
communication than ours, in particular with parametric problem sizes
and number of processors. However, dHPF [23] implements a number
of optimizations (such as multipartitioning [12]) that areuseful for any
distributed-memory compilation system. Our system does not imple-
ment such an allocation scheme yet, but can do so. The discussion at
the end of Section 5.1 makes this evident.

Griebl [15] provides a discussion on distributed-memory auto-
parallelization using the polyhedral framework. The work proposes
a technique for scheduling and allocation keeping distributed memory
architectures in mind. However, communication code generation is not
discussed.

Works that translate OpenMP to MPI address a subset of problems
that we addressed. The latest among them is [19]. Unlike our work, it
is restricted to a subset of affine loop nests that transfer the same set
of data every invocation of the parallel loop, and communication set
construction is primarily done at runtime. In addition, with OpenMP to
MPI approaches, one may have to provide an optimized/transformed
OpenMP code to get good performance, adding significant complexity
to input taken in by such systems. A future comparison with itif
available will be interesting.

Baskaran et al. [6] presented a compiler-assisted dynamic schedul-
ing scheme that constructs and schedules the inter-tile dependence
graph on a multicore. Our communication code optimization scheme
in Section 5.1 can be viewed as a compiler-assisted scheme tode-
termine communication partners at runtime. Kim et al. [18] present
automatic pipelined parallelization for distributed memory with spec-
ulation. Their scheme is completely orthogonal to ours in the kind of
codes it is applicable to and beneficial for, and the way parallelism
is extracted. The RSTREAM compiler provides some support for dis-
tributed memory execution [22]. However, due to its reliance on PGAS
as its target instead of a message passing one, it does not have to deal
with communication code generation. One would expect this to result
in higher communication overhead – a comparison would have never-
theless been interesting if it was available.

8. Conclusions
We presented techniques and optimizations for translationof sequen-
tial affine loop nests to code suitable for execution on distributed-
memory parallel architectures. Communication code generation and
optimizations to minimize associated overhead were the keyproblems
addressed. The scheme we proposed constructs communication sets
while completely relying on data dependences. Helper routines gener-
ated by the compiler by scanning dependence relations and evaluation
of those routines at runtime provided an efficient way to determine
communication partners in the presence of symbolic problemsizes or
number of processors, and for arbitrary allocations. Thesetechniques
were developed within a polyhedral abstraction of the inputprogram
allowing sequences of complex transformations to be automatically
applied before code is generated. We have implemented them in a
source-to-source transformation tool for an end-to-end fully automatic
application. Experiments conducted on a 32-node InfiniBandcluster
demonstrated good results.

Given how difficult manual parallelization for distributedmem-
ory is, we believe our tool will be very useful. Directly targeting a
widely implemented message-passing communication backend like
MPI makes our system very portable and in a position to transparently
benefit from advances in message passing hardware and software. It
will be publicly available shortly.

References
[1] V. S. Adve and J. M. Mellor-Crummey. Using integer sets for data-

parallel program analysis and optimization. InPLDI, pages 186–198,
1998.

[2] S. P. Amarasinghe and M. S. Lam. Communication optimization and
code generation for distributed memory machines. InPLDI, pages
126–138, 1993.

[3] J. Anderson, S. Amarasinghe, and M. Lam. Data and Computation
Transformations for Multiprocessors. InACM SIGPLAN PPoPP, pages
166–178, July 1995.

[4] J. M. Anderson and M. S. Lam. Global optimizations for parallelism and
locality on scalable parallel machines. InPLDI, pages 112–125, 1993.

[5] P. Banerjee, J. A. Chandy, M. Gupta, J. G. Holm, A. Lain, D.J. Palermo,
S. Ramaswamy, and E. Su. The paradigm compiler for distributed-
memory multicomputers.IEEE Computer, 28(10):37–47, 1995.

[6] M. Baskaran, N. Vydyanathan, U. Bondhugula, J. Ramanujam, A. Roun-
tev, and P. Sadayappan. Compiler-assisted dynamic scheduling for
effective parallelization of loop nests on multicore processors. InACM
SIGPLAN PPoPP, pages 219–228, 2009.

[7] C. Bastoul. Clan: The Chunky Loop Analyzer.

[8] U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan. Automatic transformations for
communication-minimized parallelization and locality optimization in
the polyhedral model. InETAPS CC, Apr. 2008.

[9] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A
practical automatic polyhedral program optimization system. InPLDI,
June 2008.

8

[10] M. Classen and M. Griebl. Automatic code generation fordistributed
memory architectures in the polytope model. InIEEE IPDPS, Apr. 2006.

[11] CLooG: The Chunky Loop Generator. http://www.cloog.org.

[12] A. Darte, J. Mellor-Crummey, R. Fowler, and D. Chavarr´ıa-Miranda.
Generalized multipartitioning of multi-dimensional arrays for paralleliz-
ing line-sweep computations.JPDC, 63:887–911, Sep 2003.

[13] P. Feautrier. Some efficient solutions to the affine scheduling problem:
Part I, one-dimensional time.IJPP, 21(5):313–348, 1992.

[14] G. I. Goumas, N. Drosinos, M. Athanasaki, and N. Koziris. Message-
passing code generation for non-rectangular tiling transformations.
Parallel Computing, 32(10):711–732, 2006.

[15] M. Griebl. Automatic Parallelization of Loop Programs for Distributed
Memory Architectures. University of Passau, 2004. Habilitation thesis.

[16] Integer Set Library. Sven Verdoolaege, An Integer Set Library for
Program Analysis.

[17] K. Kennedy and U. Kremer. Automatic data layout for distributed-
memory machines.ACM TOPLAS, 20(4):869–916, 1998.

[18] H. Kim, A. Raman, F. Liu, J. W. Lee, and D. I. August. Scalable
speculative parallelization on commodity clusters. InMICRO, pages
3–14, 2010.

[19] O. Kwon, F. Jubair, R. Eigenmann, and S. Midkiff. A hybrid approach
of openmp for clusters. InACM SIGPLAN PPoPP, pages 75–84, 2012.

[20] A. Lim, G. I. Cheong, and M. S. Lam. An affine partitioningalgorithm
to maximize parallelism and minimize communication. InACM ICS,
pages 228–237, 1999.

[21] A. Lim and M. S. Lam. Maximizing parallelism and minimizing
synchronization with affine partitions.Parallel Computing, 24(3-4):445–
475, 1998.

[22] B. Meister, A. Leung, N. Vasilache, D. Wohlford, C. Bastoul, and
R. Lethin. Productivity via automatic code generation for pgas platforms
with the r-stream compiler. InWorkshop on Asynchrony in the PGAS
Programming Model, 2009.

[23] J. Mellor-Crummey, V. Adve, B. Broom, D. Chavarria-Miranda,
R. Fowler, G. Jin, K. Kennedy, and Q. Yi. Advanced optimization
strategies in the Rice dHPF compiler.Concurrency: Practice and
Experience, pages 741–767, 2002.

[24] MPI: A Message-Passing Interface Standard - version 2.2. http://www.mpi-
forum.org/docs/.

[25] MVAPICH: MPI over InfiniBand, 10 GigE/iWARP and RoCE.
http://mvapich.cse.ohio-state.edu.

[26] PLUTO: A polyhedral automatic parallelizer and locality optimizer for
multicores. http://pluto-compiler.sourceforge.net.

[27] PolyLib - A library of polyhedral functions.
http://icps.u-strasbg.fr/polylib/.

[28] J. Ramanujam and P. Sadayappan. Compile-time techniques for data
distribution in distributed memory machines.Parallel and Distributed
Systems, IEEE Transactions on, 2(4):472–482, 1991.

[29] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E.
Leiserson. The pochoir stencil compiler. InSPAA, pages 117–128, 2011.

[30] Polybench. http://polybench.sourceforge.net.

[31] T. Yuki and S. Rajopadhye. Canonic multi-projection: memory allocation
for distributed memory parallelization. Number CS11-106,Sept. 2011.

9

if ((N >= 3) && (T >= 1)) {
for (t1=−1;t1<=floord(N+2∗T−4,32);t1++){

lb dist =max(ceild(t1 ,2), ceild (32∗t1−T+1,32)); ub dist =min(min(floord(N+T−3,32),floord(32∗t1+N+29,64)),t1);
polyrt loop dist (lb dist , ub dist , nprocs , myrank, &my start, &my end);

lb1=my start ; ub1=myend;
#pragma omp parallelfor shared(t1 , t2 , lb1 ,ub1) private (ubv,lbv , t3 , t4 , t5 , t6 , t7, t8)

for (t3=lb1; t3<=ub1; t3++)
for (t5=max(ceild(64∗t3−N−28,32),t1);t5<= [..]; t5++)

for (t6=max(max(max(32∗t1−32∗t3,32∗t3−N+2),16∗t5−N+2),−32∗t3+32∗t5−N−29);t6<=[...];t6++)
for (t7=max(max(32∗t3,t6+1),32∗t5−t6−N+2);t7<=min(min(32∗t3+31,32∗t5−t6+30),t6+N−2);t7++)

for (t8=max(32∗t5,t6+t7+1); t8<=min(32∗t5+31,t6+t7+N−2); t8++)
a[−t6+t7][−t6−t7+t8]=(a[−t6+t7−1][−t6−t7+t8−1]+a[−t6+t7−1][−t6−t7+t8]+a[−t6+t7−1][−t6−t7+t8+1]+a[−t6+t7][−t6−t7+t8−1]
+a[−t6+t7][−t6−t7+t8]+a[−t6+t7][−t6−t7+t8+1]+a[−t6+t7+1][−t6−t7+t8−1]+a[−t6+t7+1][−t6−t7+t8]+a[−t6+t7+1][−t6−t7+t8+1])/9.0;

lb dist =max(ceild(t1 ,2), ceild (32∗t1−T+1,32)); ub dist =min(min(floord(N+T−3,32),floord(32∗t1+N+29,64)),t1);
polyrt loop dist (lb dist , ub dist , nprocs , myrank, &my start, &my end);

for (t3=my start ; t3<=my end; t3++){
clear senderreceiverlists (nprocs); sigmaa(t1 , t3 , myrank, N, T, nprocs); if (! needto send (nprocs))continue;

for (t5=max(max(1,ceild(480∗t1+32∗t3−31∗T+527,16)),−32∗t1+64∗t3−31);t5<=min(min(N−2,−32∗t1+64∗t3+31),−32∗t1+2∗N+2∗T−39);t5++){
if ((t1 >= ceild(64∗t3−t5,32)) && (t3 <= min(floord(N+T−35,32),floord(t5+T−32,32))))

for (t6=1;t6<=N−2;t6++)
sendbuf a [sendcount a++] = a[t5][t6];

if (t1 <= min(floord(32∗t3+T−33,32),floord(64∗t3−t5−1,32)))
for (t6=1;t6<=N−2;t6++)

sendbuf a [sendcount a++] = a[t5][t6];
}

}
for (t3=my start ; t3<=my end; t3++)

if (t1 >= ceild(32∗t3+T−32,32))
for (t5=max(1,32∗t3−T+1);t5<=min(N−2,32∗t3−T+32);t5++)

for (t6=1;t6<=N−2;t6++)
lw buf a [lw count a++] = a[t5][t6];

clear senderreceiverlists (nprocs);
lb dist =max(ceild(t1 ,2), ceild (32∗t1−T+1,32)); ub dist =min(min(floord(N+T−3,32),floord(32∗t1+N+29,64)),t1);
polyrt loop dist (lb dist , ub dist , nprocs , myrank, &my start, &my end);

for (t3=my start ; t3<=my end; t3++)
sigmaa(t1 , t3 , myrank, N, T, nprocs);

for (p=0; p<nprocs; p++) { sendcountsa [p] = receiverlist [p]? sendcount a : 0; } MPI Alltoall (sendcountsa , 1, MPI INT, recv countsa ,
1, MPI INT, MPI COMM WORLD); req count=0;for (p=0; p<nprocs; p++) { if(sendcountsa[p] >= 1) { MPI Isend(sendbuf a , sendcount a ,
MPI DOUBLE, p, 123, MPICOMM WORLD, &reqs[reqcount++]);}}for (p=0; p<nprocs; p++) { if(recv countsa[p] >= 1) {

MPI Irecv(recvbuf a+ displsa [p], recv countsa [p],
MPI DOUBLE, p, 123, MPICOMM WORLD, &reqs[reqcount++]);}} MPI Waitall(req count, reqs, stats); sendcount a = 0; prevproc =−1;

MPI Gather(&lw count a, 1, MPI INT, lw recv countsa , 1, MPI INT, 0, MPI COMM WORLD);MPI Gatherv(lwbuf a, lw count a, MPI DOUBLE,
lw recv buf a , lw recv countsa , displslw a , MPI DOUBLE, 0, MPI COMM WORLD); lw count a = 0; lw prev proc=−1;

for (t3=max(ceild(t1 ,2), ceild (32∗t1−T+1,32)); t3<=min(min(floord(N+T−3,32),floord(32∗t1+N+29,64)),t1); t3++){
proc = pi (t1 , t3 , myrank, N, T, nprocs); myrank = proc; clearsenderreceiverlists (nprocs);
sigmaa(t1 , t3 , myrank, N, T, nprocs);
if (proc != prevproc) {prev proc = proc; count=0;} if (recv countsa [proc] == 0 || ! needto send (nprocs))continue;
for (t5=max(max(1,ceild(480∗t1+32∗t3−31∗T+527,16)),−32∗t1+64∗t3−31);t5<=min(min(N−2,−32∗t1+64∗t3+31),−32∗t1+2∗N+2∗T−39);t5++){

if ((t1 >= ceild(64∗t3−t5,32)) && (t3 <= min(floord(N+T−35,32),floord(t5+T−32,32)))){
for (t6=1;t6<=N−2;t6++){

if (t3 <= floord(t5+T−33,32))
a[t5][t6] = recv buf a [displsa [proc]+ count++];

if (32∗t3 == t5+T−32)
a[32∗t3−T+32][t6] = recv buf a [displsa [proc]+ count++];

}
}
if (t1 <= min(floord(32∗t3+T−33,32),floord(64∗t3−t5−1,32))){

for (t6=1;t6<=N−2;t6++)
a[t5][t6] = recv buf a [displsa [proc]+ count++];

}
}

}
if (my rank == 0) {

lb=max(ceild(t1 ,2), ceild (32∗t1−T+1,32)); ub=min(min(floord(N+T−3,32),floord(32∗t1+N+29,64)),t1);
for (t3=lb; t3<=ub; t3++){

proc = pi (t1 , t3 , myrank, N, T, nprocs); if (proc != lw prev proc) {lw prev proc = proc; count=0;}
if (lw recv countsa [proc] == 0) continue;
if (t1 >= ceild(32∗t3+T−32,32))

for (t5=max(1,32∗t3−T+1);t5<=min(N−2,32∗t3−T+32);t5++)
for (t6=1;t6<=N−2;t6++)

a[t5][t6] = lw recv buf a [displs lw a [proc]+ count++];
}

}
}

} Figure 6. Automatically generated MPI code for 2-d seidel-style stencil

10

