
PolyGLoT: A Polyhedral Loop Transformation
Framework for a Graphical Dataflow Language

Somashekaracharya G. Bhaskaracharya1,2 and Uday Bondhugula1

1 Department of Computer Science and Automation, Indian Institute of Science
2 National Instruments, Bangalore, India

Abstract. Polyhedral techniques for program transformation are now used in
several proprietary and open source compilers. However, most of the research on
polyhedral compilation has focused on imperative languages such as C, where the
computation is specified in terms of statements with zero or more nested loops
and other control structures around them. Graphical dataflow languages, where
there is no notion of statements or a schedule specifying their relative execution
order, have so far not been studied using a powerful transformation or optimiza-
tion approach. The execution semantics and referential transparency of dataflow
languages impose a different set of challenges. In this paper, we attempt to bridge
this gap by presenting techniques that can be used to extract polyhedral repre-
sentation from dataflow programs and to synthesize them from their equivalent
polyhedral representation.
We then describe PolyGLoT, a framework for automatic transformation of dataflow
programs which we built using our techniques and other popular research tools
such as Clan and Pluto. For the purpose of experimental evaluation, we used our
tools to compile LabVIEW, one of the most widely used dataflow programming
languages. Results show that dataflow programs transformed using our frame-
work are able to outperform those compiled otherwise by up to a factor of seven-
teen, with a mean speed-up of 2.30× while running on an 8-core Intel system.

1 Introduction and Motivation

Many computationally intensive scientific and engineering applications that employ
stencil computations, linear algebra operations, image processing kernels, etc. lend
themselves to polyhedral compilation techniques [2, 3]. Such computations exhibit cer-
tain properties that can be exploited at compile time to perform parallelization and data
locality optimization.

Typically, the first stage of a polyhedral optimization framework consists of polyhe-
dral extraction. Specific regions of the program that can be represented using the poly-
hedral model, typically affine loop-nests, are analyzed. Such regions have been termed
Static Control Parts (SCoPs) in the literature. Results of the analysis include an abstract
mathematical representation of each statement in the SCoP, in terms of its iteration
domain, schedule, and array accesses. Once dependences are analyzed, an automatic
parallelization and locality optimization tool such as Pluto [16] is used to perform high-
level optimizations. Finally, the transformed loop-nests are synthesized using a loop
generation tool such as CLooG [4].

Regardless of whether an input program is written in an imperative language, a
dataflow language, or using another paradigm, if a programmer does care about per-
formance, it is important for the compiler not to ignore transformations that yield sig-
nificant performance gains on modern architectures. These transformations include, for
example, ones that enhance locality by optimizing for cache hierarchies and exploiting
register reuse or those that lead to effective coarse-grained parallelization on multiple
cores. It is thus highly desirable to have techniques and abstractions that could bring
the benefit of such transformations to all programming paradigms.

There are many compilers, both proprietary and open-source which now use the
polyhedral compiler framework [12, 15, 6, 16]. Research in this area, however, has pre-
dominantly focused on imperative languages such as C, C++, and Fortran. These tools
rely on the fact that the code can be viewed as a sequence of statements executed one
after the other. In contrast, a graphical dataflow program consists of an interconnected
set of nodes that represent specific computations with data flowing along edges that
connect the nodes, from one to another. There is no notion of a statement or a muta-
ble storage allocation in such programs. Conceptually, the computation nodes can be
viewed as consuming data flowing in to produce output data. Nodes become ready to
be ‘fired’ as soon as data is available at all their inputs. The programs are thus inherently
parallel. Furthermore, the transparency with respect to memory referencing allows such
a program to write every output data value produced to a new memory location. Typi-
cally, however, copy avoidance strategies are employed to ensure that the output data is
inplace to input data wherever possible. Such inplaceness decisions can in turn affect
the execution schedule of the nodes.

The polyhedral extraction and code synthesis for dataflow programs, therefore, in-
volves a different set of challenges to those for programs in an imperative language
such as C. In this paper, we propose techniques that address these issues. Furthermore,
to demonstrate their practical relevance, we describe an automatic loop transformation
framework that we built for the LabVIEW graphical dataflow programming language,
which uses all of these techniques. To summarize, our contributions are as follows:

– We provide a specification of parts of a dataflow program that lends itself to the
abstract mathematical representation of the polyhedral model.

– We describe a general approach for extracting the polyhedral representation for
such a dataflow program part and also for the inverse process of code synthesis.

– We present an experimental evaluation of our techniques for LabVIEW and com-
parison with the LabVIEW production compiler.

The rest of the paper is organized as follows. Section 2 provides the necessary back-
ground on LabVIEW, dataflow languages in general, the polyhedral model, and intro-
duces notation used in the rest of the paper. Section 3 deals with extracting a polyhedral
representation from a dataflow program, and Section 4 addresses the inverse process of
code synthesis. Section 5 describes our PolyGLoT framework. Section 6 presents an
experimental evaluation of our techniques. Related work and conclusions are presented
in Section 7 and Section 8 respectively.

Fig. 1. matmul in LabVIEW. LabVIEW for-loops are unit-stride for-loops with zero-based index-
ing. A loop iterator node in the loop body (the [i] node) produces the index value in any iteration.
A special node on the loop boundary (the N node) receives the upper loop bound value. The input
arrays are provided by the nodes a, b and c. The output array is obtained at node c-out. The color
of the wire indicates the type of data flowing along it e.g. blue for integers, orange for floats.
Thicker lines are indicative of arrays.

N

a

b

c

l1

c-out
Fig. 2. DAG of the top-level diagram of matmul. In this abstract model,
the gray nodes are wires. The 4 source nodes (N, a, b, c), the sink node
(c-out) and the outermost loop are represented as the 6 blue nodes.
Directed edges represent the connections from inputs/outputs of com-
putation nodes to the wires, e.g. data from source node N flows over
a wire into two inputs of the loop node. Hence the two directed edges
from the corresponding wire node.

2 Background

2.1 LabVIEW – language and compiler

LabVIEW is a graphical, dataflow programming language from National Instruments
Corporation (NI) that is used by scientists and engineers around the world. Typically,
it is used for implementing control and measurement systems, and embedded applica-
tions. The language itself, due to its graphical nature, is referred to as the G language.
A LabVIEW program called a Virtual Instrument (VI) consists of a front panel (the
graphical user interface) and a block diagram, which is the graphical dataflow diagram.
Instead of textual statements, the program consists of specific computation nodes. The
flow of data is represented by a wire that links the specific output on a source node
to the specific input on a sink node. The block diagram of a LabVIEW VI for matrix
multiplication is shown in Figure 1.

Loop nodes act as special nodes that enclose the dataflow computation that is to be
executed in a loop. Data that is only read inside the loop flows through a special node
on the boundary of the loop structure called the input tunnel. A pair of boundary nodes
called the left and right shift registers are used to represent loop-carried dependence.
Data flowing into the right shift register in one iteration flows out of the left shift register
in the subsequent iteration. The data produced as a result of the entire loop computation
flows out of the right shift register. Additionally, some boundary nodes are also used
for the loop control. In addition to being inherently parallel because of the dataflow
programming paradigm, LabVIEW also has a parallel for loop construct that can be
used to parallelize the iterative computation [7].

The LabVIEW compiler first translates the G program into a Data Flow Interme-
diate Representation (DFIR) [14]. It is a high-level, hierarchical and graph-based rep-
resentation that closely corresponds to the G code. Likewise, we model the dataflow
program as being conceptually organized in a hierarchy of diagrams. It is assumed that
the diagrams are free of dead-code.

2.2 An abstract model of dataflow programs

Suppose N is the set of computation nodes and W is the set of wires in a particular
diagram. Each diagram is associated with a directed acyclic graph (DAG), G = (V, E),
where V = N ∪ W and E = EN ∪ EW . EN ⊆ N ×W and EW ⊆ W×N. Essentially,
EN is the set of edges that connect the output of the computation nodes to the wires that
will carry the output data. Likewise, EW is the set of edges that connect the input of
computation nodes to the wires that propagate the input data. We follow the convention
of using small letters v and w to denote computation nodes and wires respectively. Any
edge (v, w) represents a particular output of node v and any edge (w, v) represents a
particular input of node v. So, the edges correspond to memory locations. The wires
serve as copy nodes, if necessary.

For every n ∈ N that is a loop node, it is associated with a DAG, Gn = (Vn, En)
which corresponds to the dataflow graph describing the loop body. The loop inputs and
outputs are represented as source and sink vertices. The former have no incoming edges,
whereas the latter have no outgoing edges. Let I and O be the set of inputs and outputs.
Furthermore, a loop output vertex may be paired with a loop input vertex to signify
a loop-carried data dependence i.e., data produced at the loop output in one iteration
flows out of the input for the next iteration (Fig 1).

Inplaceness. In accordance with the referential transparency of a dataflow program,
each edge could correspond to a new memory location. Typically, however, a copy-
avoidance strategy may be used to re-use memory locations. For example, consider the
array element write node u in Figure 1, and its input and output wires, w1 and w2. The
output array data flowing along w2 could be stored in the same memory location as the
input array data flowing along w1. The output data can be inplace to the input data. The
can-inplace relation (w1, u) ; (u, w2) is said to hold.

In general, for any two edges (x, y) and (y, z), (x, y) ; (y, z) holds iff the data
inputs or outputs that these edges correspond to can share the same memory location

(regardless of whether a specific copy-avoidance strategy chooses to re-use the mem-
ory location or not). The can-inplace relation is an equivalence relation. A path {x1,
x2,. . . ,xn} in a graph G = (V, E), such that (xi−1, xi) ; (xi, xi+1) for all 2≤i≤n-1, is
said to be a can-inplace path. Note that by definition, the can-inplace relation (w1, v)
; (v, w2) implies that the node v can overwrite the data flowing over w1. And in such a
case, we say that the relation vXw1 holds. However, the can-inplace relation (v1, w) ;
(w, v2) does not necessarily imply such a destructive operation as the purpose of a wire
is to propagate data, not to modify it.

Suppose <s is a binary relation on V which specifies a total ordering of the compu-
tation nodes. The relation <s specifies a valid execution schedule iff (v1 <s v2) implies
that there does not exist a directed path in graph G, from v2 to v1 for any v1, v2 ∈ V
i.e., the schedule respects all dataflow dependences. As we shall see later, the problem
of scheduling the computation nodes is closely related to inplaceness. Memory re-use
due to copy-avoidance can create additional dependences. A conjunction of scheduling
relations

∧
(v1 <s v2) is said to be consistent with a conjunction of can-inplace rela-

tions
∧

((x, y) ; (y, z)), for x, y, z ∈ N ∪ V, iff such a schedule does not violate the
dependences imposed by such an inplaceness choice.

Loop inputs and outputs. Data flowing into and out of a loop is classified as either
loop-invariant input data or loop-carried data. Loop-invariant input data is that which is
only read in every iteration of the loop. Let Inv be the set of loop-invariant data inputs to
the loop. The LabVIEW equivalent for such an input is an input tunnel. In Figure 1, for
the outermost loop l1, Inv = {w, x, y}. Loop-carried data is that which is part of a loop-
carried dependence inducing dataflow. The paired loop inputs and outputs represent
such a dependence. Let ICar, OCar be sets of these loop inputs and outputs. The loop-
carried dependence is represented by the one-to-one mapping lcd : OCar → ICar.
The LabVIEW equivalent for such a pair are the left and right shift registers. In Figure 1,
for loop l1, ICar = {z}, OCar = {z′}, (z, z′) ∈ lcd.

Array accesses. In Figure 1, the array read access is a node that takes in an array and
the access index values to produce the indexed array element value. The array write
access, takes the same set of inputs and the value to be written to produce an array with
the indexed element overwritten. We model the array read and write accesses similarly.
Notice that the output array of an array write, v need not be inplace to the input array
flowing through a wire w1. If it is, then vXw1.

2.3 Overview of the polyhedral model

The polyhedral model provides an abstract mathematical model to reason about pro-
gram transformations. Consider a program part that is a sequence of statements with
zero or more loops surrounding each statement. The loops may be imperfectly nested.
The dynamic instances of a statement S, are represented by the integer points of a poly-
hedron whose dimensions correspond to the enclosing loops. The set of dynamic in-
stances of a statement is called its iteration domain, D. It is represented by the poly-
hedron, defined by a conjunction of affine inequalities that involve the enclosing loop

for(i=1;i<=n;i++){
for(j=1;j<=n;j++){

if (i<=n-j+2){
S1;

}
}

}
+2n

+2n

1

1 2

2

n

n

i

j
i<=n

j>=1

j<=n

i>=1

i<=n−j+2

Iteration domain of S1


1 0
−1 0
0 1
0 −1
−1 −1


(
i
j

)
≥


1
−n

1
−n

−n− 2


Iteration domain of S1

Fig. 3. Polyhedral representation of a loop-nest in geometric and linear algebraic form

for (i=1;i<=n−1;i++)
for (j=i+1;j<=n;j++)

/∗S1∗/ c[i][j]=a[j][i]/ a[i][i];
for (j=i+1;j<=n;j++)

for (k=i+1;k<=n;k++)
/∗S2∗/ a[j][k]−=c[i][j]∗a[i][k];

(a) Original code

θS1 (i, j) = (i, 0, j, 0)

θS2 (i, j, k) = (i, 1, j, k)

(b) Initial schedule
θS1

(i, j) = (i+ j, j, 0)

θS2
(i, j, k) = (i+ j, j, 1, k)

(c) New schedule

for (t1=3;t1<=2∗n−1;t1++)
for (t2=ceild (t1 +1,2); t2<=min(n,t1−1);t2++)

c[t1−t2][t2]=a[t2][t1−t2]/a[t1−t2][t1−t2];
for (t3=t1−t2+1;t3<=n;t3++)

a[t2][t3]−=c[t1−t2][t2]∗a[t1−t2][t3];

(d) Transformed code

Fig. 4. An example showing the input code, the corresponding original schedule, a new schedule
that fuses j loops of both statements while skewing the outermost loop with respect to the second
outermost one, and code generated with the new schedule.

iterators and global parameters. Each dynamic instance is uniquely identified by its it-
eration vector, i.e., the vector iS of enclosing loop iterator values. Figure 3 shows the
polyhedral representation of a loop-nest in its geometric and linear algebraic form.

Schedules. Each statement, or more precisely its domain, has an associated sched-
ule, which is a multi-dimensional affine function mapping each integer point in the
statement’s domain to a unique time point that determines when it is to be executed.
Code generated from the polyhedral representation scans integer points corresponding
to all statements globally in the lexicographic order of the time points they are mapped
to. For example, θS(i, j, k) = (i+ j, j, k) is a schedule for a 3-d loop nest with original
loop indices i, j, k. Changing the schedule to (i+ j, k, j) would interchange the two in-
ner loops. The reader is referred to [3] for more detail on the polyhedral representation.

The initial schedule which is extracted, corresponding to the original execution or-
der, is referred to as an identity schedule, i.e., if it is not modified, code generation will
lead to the same code as the one from which the representation was extracted. A dimen-
sion of the multi-dimensional affine scheduling function is called a scalar dimension if
it is a constant. In Figure 4(b), the second dimension of both statements’ schedules are
scalar dimensions. In Figure 4(c) schedules the third dimension is a scalar one. Polyhe-
dral optimizers have models to pick the right schedule among valid ones. A commonly
used model that minimizes dependence distances in the transformed space [5], thereby
optimizing locality and parallelism simultaneously is implemented in Pluto [16].

3 Extracting the Polyhedral Representation

The polyhedral representation of a SCoP typically consists of an abstract mathematical
description of the iteration domain, schedule and array accesses for each statement.

The array accesses are also classified as either read or write accesses. Each of these are
expressed as affine functions of the enclosing loop iterators and symbolic constants.

3.1 Challenges

As mentioned earlier, a graphical dataflow program has no notion of a statement. The
program is a collection of nodes that represent specific computations, with data flow-
ing along edges that connect one node to another. Referential transparency ensures that
each edge could be associated with its own distinct memory location. Generally, copy-
avoidance strategies are used to maximize inplaceness of output and input data. How-
ever, the exact memory allocation depends on the specific strategy used. Additionally,
the problem of copy-avoidance is closely tied with the problem of scheduling the com-
putation nodes. In the matmul program (Figure 1), consider the array write u and the
array read r that share the same data source (say, v). If no array copy is to be created,
the read must be scheduled ahead of the write, i.e., u <s r is not consistent with (v, w1)
; (w1, u) ∧ (w1, u) ; (u, w2) ∧ (v, w1) ; (w1, r). If the write is scheduled first, the
read must work on a copy of the array as the write is likely to overwrite the array input.
Abu-Mahmeed et al. [1] have looked into the problem of scheduling to maximize the
inplaceness of aggregate data. To summarize, the main challenges in the extraction of
the polyhedral representation for a graphical dataflow program are as follows:

1. A graphical dataflow program cannot be viewed as a sequence of statements exe-
cuted one after the other.

2. While the access expressions could be analyzed just like parse trees, it is difficult
to relate the access to a particular array definition as the exact memory allocation
depends on the specific copy-avoidance strategy used.

3. The actual execution schedule of the computation nodes determined depends on the
copy-avoidance decisions.

A trivial polyhedral representation can be extracted by treating each node of a graph-
ical data flow program as a statement analogue while making the conservative assump-
tion that data is copied over each edge. As most compilers make use of copy-avoidance
strategies, such a polyhedral representation most certainly over-estimates the amount of
data space required. This also results in an over-estimation of the computation e.g. an ar-
ray copy. Therefore, the problem of polyhedral transformation in such a representation
begins with a serious limitation in terms of dataspace and computation over-estimation.
In essence, extraction of a polyhedral representation of a dataflow program part cannot
negate the copy-avoidance optimizations. The inplaceness opportunities in the dataflow
program must be factored into the analysis.

3.2 Static Control Dataflow Diagram (SCoD)

A SCoP is defined as a maximal set of consecutive statements without while loops,
where loop bounds and conditionals may only depend on invariants within this set of
statements. Analogous to this, we now characterize a canonical graphical dataflow pro-
gram, a Static Control Dataflow Diagram (SCoD), which lends itself well to existing

polyhedral techniques for program transformation. The reasoning behind each individ-
ual characteristic is provided later.

1. It is a maximal dataflow diagram without constructs for loops that are not countable,
where the countable loop bounds and conditionals, in any diagram, only depend on
parameters that are invariant for that diagram. Nodes in the SCoD (and its nested
diagrams) must be functional, without causing run-time side-effects or relying on
any run-time state.

2. The only array primitives that feature as nodes in a SCoD and its nested diagrams
are those which read an array element or write to an array element. More impor-
tantly, primitives that output array data that cannot be inplace to an input array data
cannot be present in the diagrams.

3. For an array data source in any diagram, (v1, w), there exists at most one node v2
such that (v1, w) ; (w, v2) ∧ v2Xw.

4. Data flowing into a loop in any diagram is either loop-invariant data or loop-
carried scalar data or loop-carried array data that has an associated can-inplace
path through the loop body, which creates the loop-carried dependence, i.e., loop
input x ∈ I⇒ x ∈ Inv ∨ (x ∈ ICar ∧ (isScalarType(x, wx) ∨ (isArrayType(x, wx) ∧
(x, wx) ; (wy , y)))) where y = lcd−1(x), wx and wy the input and output wires.

5. In any diagram, there is no can-inplace path from a loop-invariant data input to the
loop-carried data input of a inner loop or to the array input of an array element
write node, i.e., in any DAG, G = (N, E) that corresponds to the body of a loop, if
(v1, w1) is the loop invariant input, then there does not exist any edge (w2, v2) such
that (v1, w1) ; (w2, v2) ∧ v2Xw2.

The first characteristic is closely tied with the characterization of a SCoP. The rest
of the characterization specifies a canonical form of dataflow diagram which has can-
inplace relations that facilitate polyhedral extraction. As explained earlier, a naive im-
plementation of a dataflow language could write each new output into a new memory
location. The question of whether a particular wire vertex gets a new memory alloca-
tion or not depends on the actual copy-avoidance strategy employed by the compiler.
The problem of extracting the polyhedral representation of an arbitrary dataflow dia-
gram, therefore depends on the copy-avoidance strategy. In order to make the polyhe-
dral extraction independent of it, we canonicalize the dataflow in a given diagram in
accordance with the above characteristics.

An operation such as appending an element to an input array data is a perfectly
valid dataflow operation. Clearly, the output array cannot be inplace to the input array.
(2) ensures that such array operations are disallowed. Furthermore, it is possible in a
dataflow program to overwrite multiple, distinct copies of the same array data. In such
a case, a copy-avoidance strategy would inplace only one of the copies with the original
data and the rest of them would be separate copies of data. (3) precludes such a scenario.
It is important to note that it however, still allows multiple writes. (4) ensures that loop-
carried dependence involving array data is tied to a single array data source. Assuming
the absence of (5), data flowing from loop-invariant source vertex to a loop-carried input
of an inner loop would necessitate a copy because the source data would have a pending
read in subsequent iterations of the outer loop.

Theorem 1. In any diagram of the SCoD, G = (V, E), there exists a schedule <s of
the computation nodes V, which is consistent with the conjunction of all possible can-
inplace relations,

∧
x, y, z ∈ V ((x, y) ; (y, z)), where isArrayType(x, y) ∧ isArrayType(y,

z) holds.

Proof. Consider an array data source (v, w) in G with v ∈ I. If v1, v2,. . . ,vn are the
nodes that consume the array data, then in accordance with characteristic (3), there is
at most one node vi such that (v, w) ; (w, vi) ∧ viXw. Without any loss of generality,
we can assume that i = n. This implies that any valid schedule <s where v1 <s v2
<s v3 . . . <s vn holds is consistent with

∧n
i=1 ((v, w) ; (w, vi)). Similar scheduling

constraints can be inferred for the nodes that consume the array data produced by vn and
so on, thereby ensuring that all the can-inplace relations are satisfied for array dataflow.
The new constraints inferred cannot contradict an existing constraint as the graph is
acyclic. Therefore, any valid schedule <s where all the inferred scheduling constraints
are satisfied is consistent with maximum array inplaceness in the diagram. ut

Essentially, in a SCoD, it is possible to schedule the computation nodes such that
no new memory allocation need be performed for any array data inside the SCoD,
i.e., all the array data consumed inside the SCoD will then have an inplace source that
ultimately lies outside the SCoD.

Lemma 1. In any diagram of the SCoD, G = (V, E), for any sink vertex t ∈ O, that has
array data flowing into it, a can-inplace path exists from a source vertex s ∈ I to t.

Proof. There must exist a node v1 which produces the array data flowing into t through
wire w. So, (v1, w) ; (w, t) holds. In accordance with the model, v1 can either be an
array write node or a loop. In either case, there must exist a node v2 which produces
the array data flowing into v1 and so on until a source vertex s is encountered. The path
traversed backwards from t to s clearly constitutes a can-inplace path. ut

3.3 A multi-dimensional schedule of compute-dags

A compute-dag, T = (VT , ET) in a diagram G = (V, E), is a sub-graph of G where there
exists a node, r ∈ VT such that for every other x ∈ VT there exists a path from x to r
in T (the node r will hereafter be referred to as the root node). As it is possible to pick
inplace opportunities such that no array data need be copied on any edge in the SCoD,
any diagram in the SCoD can be viewed as a sequence of computations that write on the
incoming array data. Instead of statements, compute-dags, which are essentially dags
of computation nodes can be identified. Consider an array write node or a loop node,
both of which can overwrite an input array. Starting with a dag that is just this node as
the root, the compute-dag can be built recursively by adding nodes which produce data
that flows into any of the nodes in the dag. Such a recursive sweep of the graph stops
on encountering another array write or loop node. However, while identifying compute-
dags in a diagram, it is necessary to account for all the data produced by the nodes in
the diagram.

Theorem 2. In any diagram of the SCoD, G = (V, E), for every edge (x, y) ∈ E where
x is a computation node, there exists a compute-dag Ti = (Vi, Ei) in the set Σ′ = {T1,
T2,. . . ,Tm} of compute-dags rooted at array write or loop nodes, such that x ∈ Vi iff
only array data flows out of every diagram.

Proof. In accordance with Lemma 1, for any sink vertex t ∈ O, with array data flowing
into it, there exists a can-inplace path ps→t = {s,. . . , v, w, t} from a source vertex s to
t. Also, every node x, which is not dead-code, must have a path qx→tj = {x, y, . . . , vj ,
wj , tj} to at least one sink vertex tj ∈ O. If only array data flows into every sink vertex,
consider the first vertex z at which the path qx→tj overlaps with psj→tj . z must either
be a loop-node or an array write node. In either case x must be part of a compute-dag
rooted at z (in the former case, if x 6= z, notice also that the data flowing along (x, y)
must be the intermediate result of a computation that produces the loop-invariant data
for the loop z). On the other hand, if scalar data can flow into a sink vertex t, clearly, the
path from node x to t is not guaranteed to have either an array write node or a loop node.
Consequently, the node x is not guaranteed to be part of any compute-dag. Likewise, if
loops can have scalar loop-carried data since a scalar loop-carried output is represented
as a sink vertex in the loop body DAG. ut

In order to address the consequences of Theorem 2, it is necessary to treat scalar
data flowing out of the diagram as a single-element array. This results in a compute-dag
that accounts for the scalar dataflow. Likewise, loop-carried scalar data must also be
treated as single-element array. The dataflow into the loop-carried input is treated as a
write to the array resulting in a corresponding compute-dag (refer Fig 5(a)). (Hereafter,
we assume in the following discussion, that scalar data flowing out of a diagram and
loop-carried scalar data are treated specially in this way as single-element arrays).

Each diagram in a SCoD is analyzed for compute-dags, starting from the top-level
diagram. Suppose θ is the scheduling function. At each diagram level, d, the set of roots
of the compute-dags in Σ′ = {T1, T2,. . . ,Tm} are ordered as follows:

– If data produced by a root node n1 is consumed by root node n2, then θdn1
≺ θdn2

.
– In accordance with Theorem 1, if there is an array write in a compute-dag rooted

at n1 and an array read in a compute-dag rooted at n2, both of which are dependent
on the same array data source, then θdn1

� θdn2
. Scheduling n1 ahead of n2 in the

polyhedral representation would be unsafe. Such a schedule would only be possible
if n2 were to read a copy of the input array, allowing n1 to overwrite the input array.
The safe schedule ensures that an array copy is not required.

– If neither of the above hold for the two root nodes, either θdn1
� θdn2

or θdn1
≺ θdn2

should hold true.

Each diagram in the diagram hierarchy of the SCoD contributes to a dimension in
the global schedule. Each loop encountered adds an additional dimension. The total
order on the compute-dag roots in any diagram determines the time value at which each
compute-dag can be scheduled in that dimension. The global schedule is obtained by
appending its time value in the owning diagram to the schedule of the owning loop, if
any, together with the loop dimension.

Apart from ensuring that all the data produced by the nodes in a diagram are ac-
counted for, it must also be possible to schedule the compute-dag roots in a total order.

(a) Treating scalar loop-carried data as
single-element array

(b) Scheduling compute-dags rooted at v1
and v2 in total order is not possible

Fig. 5. Single-element arrays and contradiction in schedule of compute-dags

Theorem 3. In any diagram of the SCoD, G = (V, E), it is possible to schedule the set
of roots of the compute-dags in Σ′ = {T1, T2,. . . ,Tm} in a total order if for every path
pv1→v2 between a pair of roots, v1 and v2, there does not exist an array read node, r in
the compute-dag T(v2), such that r and v1 share the same data source (x, w) with v1Xw
and a path qr→v2 exists that does not include v1 on it.

Proof. Consider a pair of root nodes v1 and v2 (refer Fig 5(b)). In accordance with the
scheduling constraints specified above, θdv1 ≺ θdv2 if a path pv1→v2 exists in G. This
scheduling order is contradicted only if for some reason θdv1 � θdv2 must hold, which
can only happen if the compute-dag T(v2) contains a node that must be schedule ahead
of v1, i.e., an array read node that shares the same source as v1. If such a node does not
exist, then the contradiction never arises leading to a total ordering of the compute-dag
roots. Similarly, there is no contradiction in schedule order if a path pv1→v2 does not
exist. ut

In order to address the consequence of Theorem 3, while building compute-dag
rooted at v2, it is also necessary to stop on encountering an array read node r when
there is a node v1 with the same array source, overwriting the incoming array, such that
there exists a path from r to v2 which does not include v1. A separate compute-dag
rooted at such an array read must be identified, thereby breaking the compute-dag that
would have been identified otherwise (rooted at v2) into two different dags.

The set of actual statement analogues is Σ = {T1, T2,. . . ,Tn} such that the root(Ti)
for any Ti ∈ Σ′ is not a loop. Algorithm 1 provides a procedure for identifying the set
of statement analogues in a given dataflow graph G = (V, E) of a particular diagram. It
is possible for two statement analogues to have common sub-expressions. However, the
nodes in a SCoD are functional, making the common sub-expressions also so.

Analysis of iteration domains. We assume that loop normalization has been done,
i.e., all for-loops have a unit stride and a lower bound of zero. Analyzing the iteration
domain of a for loop only involves the analysis of the dataflow computation tree that
computes the upper bound of the for loop. This analysis is very similar to parsing an
expression tree. Symbolic constants are identified as scalar data sources that lie outside
the SCoD. Loop iterators and constant data sources are explicitly represented as nodes
in our model.

Analysis of array accesses. The access expression trees for the array reads and
array writes which are present in the compute-dags of the statement analogues are an-
alyzed to obtain the access functions. The most important problem of tying the array

Algorithm 1 identify-compute-dags(G = (V, E))
Require: Treat scalar data flowing out of diagram as single element arrays
Require: Loop-invariant computations have not been code-motioned out into an

enclosing diagram
1: procedure IDENTIFY-COMPUTE-DAGS(G = (V,E))
2: Σ = ∅
3: for all n ∈ V | isArrayWriter(n) ∧ !isloop(n) do
4: Σ =Σ ∪ build-compute-dag(n, G) . compute-dag from G, with root n
5: for all n ∈ V | root-candidate[n] do
6: Σ = Σ ∪ build-compute-dag(n, G)
7: return Σ

8: procedure BUILD-COMPUTE-DAG(n, G = (V,E))
9: VT = {n}, ET = ∅
10: while (x, y) = get-new-node-for-dag(n, T = (VT , ET), G) do
11: VT = VT ∪ x,ET = ET ∪ {(x, y)}
12: return T = (VT , ET)

13: procedure GET-NEW-NODE-FOR-DAG(n, T = (VT , ET), G = (V,E))
14: for each (x, y) ∈ E do
15: if (x, y) 6∈ ET ∧ y ∈ VT∧ !isArrayWriter(x) ∧ !isloop(x) then
16: if isArrayReader(x) then
17: z = get-array-write-off-same-source-if-any(x)
18: if there exists a path pz→n then
19: root-candidate[x] = true
20: continue
21: return (x, y)
22: return ∅

access to a particular memory allocation is resolved easily. Due to a carefully deter-
mined scheduling order, which schedules array reads ahead of an array write having
the same source, all the accesses can be uniquely associated with array data sources
that lie outside the SCoD. This is regardless of the actual copy-avoidance strategy that
may be used. Additionally, the scalar data produced by an array read that is the root of
its own compute-dag and a node in another compute-dag is treated as a single-element
array, thereby encoding the corresponding dependence in the array accesses of both the
compute-dags. So, each statement analogue has exactly one write access.

4 Code Synthesis

A polyhedral optimizer can be used to perform the required program transformations
on the polyhedral representation of the SCoD. We now consider the problem of synthe-
sizing a SCoD given its equivalent polyhedral representation.

4.1 Input

The input polyhedral representation must capture the iteration domain, access and schedul-
ing information of the statement analogues i.e., the set Σ = {T1, T2, . . . , Tn} of
compute-dags, which are also available as input. Each compute-dag, derived perhaps
from an earlier polyhedral extraction phase, has exactly one array write node, which is
the root of the dag.

The polyhedral representation must have identity schedules. Any polyhedral repre-
sentation with non-identity schedules can be converted to one with identity schedules
by performing code generation and extracting the generated code again into the polyhe-
dral representation. In this manner, scheduling information gets into statement domains

Algorithm 2 Synthesize-SCoD()
1: Convention: If s represents a source vertex, the paired sink is s′

2: procedure SYNTHESIZE-SCOD()
3: Let G0 be the DAG of the top level diagram, G0 = (∅,∅)
4: create-source-vertex-for-each-global-parameter(G0)
5: for each statement analogue, T in global schedule order do
6: Read domain (D), identity schedule (θ) and access (A) matrices
7: l = create-or-get-loop-nest(G0, D, θ) . l, innermost loop
8: add-compute-dag(l, T, G0)
9: for each (variable, read access) pair (v, a) in A do
10: (s0, s

′
0) = create-source-and-sink-vertices-if-none(v, G0)

11: create-or-get-dataflow(s0, s′
0, l, G0, READ)

12: array-read-node-access(a, T, l, G0) . node reads data flowing into
l through loop-invariant input or data flowing into the loop carried output if
it exists. Create array index expression tree using a

13: (v, a) = get-variable-write-access-pair(A)
14: (s0, s′

0) = create-source-and-sink-vertices-if-none(v, G0)
15: create-or-get-dataflow(s0, s′

0, l, G0, WRITE)
16: insert-array-write-node(a, T, l, G0) . node is added to flow

path so that it overwrites the data flowing into the loop-carried output of l.
Create array index expression tree

17: create-dataflow-from-parameters-and-iterators(c, G0)
18: return G0

and the schedule extracted from the generated code is an identity one. Once an equiv-
alent polyhedral representation in this form has been obtained, the approach described
in the rest of this section is used to synthesize a SCoD.

4.2 Synthesizing a dataflow diagram

The pseudocode for synthesizing a dataflow diagram is presented in Algorithms 2 and
3. The statement analogues are processed in their global schedule order (line 2.5). The
iteration domain and scheduling information of a statement analogue are together used
to create the surrounding loop-nest (line 2.7). Lower and upper bounds are inferred
for each loop iterator. In case the for-loop is a normalized for-loop as in our abstract
model, the actual upper bound will be a difference of the minimum and maximum of
the inferred upper and lower bounds plus one. Built-in primitives for various operations
such as max, min, floor, ceil etc. may be used to set up the loop-control. Note that if the
required loop-nest has been created already for a statement analogue scheduled earlier,
it need not be created again. The compute-dag is then added to the dataflow graph of
the enclosing loop (line 2.8).

Inherent parallelism – the factor to consider. Dataflow programs are inherently
parallel. A computation node is ready to be fired for execution as soon as all its inputs
are available. It is essential to exploit this inherent parallelism during code synthesis. In
order to infer such parallelism and exploit it, we reason in terms of coalesced depen-
dences. A coalesced dependence is the same as a regular data dependence except that
two accesses are considered to be in conflict if they even access the same variable (po-
tentially an aggregate data type), as opposed to the same location in the aggregate data.
For example, an array access that writes to odd locations does not conflict with another
that reads from even locations. However, a coalesced dependence exists between the
two. Analogous to regular data dependences, we now also use the terms flow, anti, and
output coalesced dependences.

A unique source-sink vertex pair (s0, s′0) is created in the top-level DAG, G0, of the
top-level diagram for each variable v whose access is described in the access matrices
(lines 2.10, 2.14). A dataflow path is also created from s0 to s′0. The problem of syn-
thesizing a dataflow diagram is essentially a problem of synthesizing the dependences
between the given set Σ = {T1, T2, . . . , Tn} of compute-dags in terms of edges that
will connect them together. Specifically, as all the dependences involve array variables
(may be single-element), these interconnecting edges represent the dataflow between
array read or write nodes in the compute-dags, through intervening loops. Consider set
of array write nodes U = {u1, u2, . . . , un}, which correspond to write accesses on the
same variables in a particular time dimension such that ui is scheduled ahead of uj for
all i < j (i.e., the corresponding compute-dags).

Theorem 4. All coalesced output dependences on a variable in the polyhedral repre-
sentation are satisfied by a synthesized dataflow diagram if in any diagram, all array
write nodes u1, u2, . . . , un corresponding to write accesses to that variable lie on the
same can-inplace path pu1→un .

Proof. Suppose all the nodes in U = {u1, u2, . . . , un} are scheduled in the outermost
diagram. A coalesced output dependence exists between any pair of write nodes sched-
uled in this diagram, thereby defining a total ordering on the set U. Therefore, all the
corresponding array write nodes must be inserted along the can-inplace path ps0→s′0 .
Now consider a write node u scheduled in an inner loop. A coalesced output depen-
dence exists between u and any array write node ui ∈ U. This is ensured by inserting
the inner loop along the path ps0→s′0 , in accordance with its schedule order relative to
the other writes nodes on the path. The incoming and outgoing edges of the loop node
on the can-inplace path must correspond to the loop-carried input and its paired output,
which in turn serve as the source and sink vertices in the DAG of the loop body. ut

Theorem 5. A coalesced flow dependence in the polyhedral representation is satisfied
by a synthesized dataflow diagram if the array write node and read node associated
with the dependence lie on the same can-inplace path.

Proof. Each of the array write nodes u1, u2, . . . , um lies on the can-inplace path
pu1→um

due to Theorem 4. A coalesced flow dependence exists between the the write
access um and read access r. Therefore, there must be a path pum→r, which means that
all of these nodes must lie on the same can-inplace path pu1→r. If a read access r is the
only access to a variable inside an inner loop l, the coalesced flow dependence between
r and any ui scheduled earlier is satisfied by a can-inplace path pu1→l. The incoming
edge to l on this path need only correspond to a loop-invariant input. It acts as a data
source for r in the loop body. ut

Together, from Theorem 4 and Theorem 5, it can be seen that the path pu1→r di-
verges from the path pu1→un

at um i.e., the last write scheduled ahead of r. This enables
the concurrent execution of the array write node um+1 and r, thereby exposing the in-
herent parallelism in a dataflow diagram discussed earlier. There is no coalesced output
or coalesced flow dependence between um+1 and r. Also, just as the output array of
an array write node can be inplace to the input array, loop-carried array outputs of a

loop node can be inplace to the corresponding input. Similarly, a loop-invariant array
input corresponds to the array input of a read node, as they do not have a correspond-
ing output that can be inplace. Due to this symmetric relationship, based on coalesced
dependences, we can infer inherent parallelism in the following scenarios:

– Consider two compute-dags, T1 and T2, scheduled in the same time dimension,
d, such that θdT1

≺ θdT2
with no coalesced output or coalesced flow dependence

between them e.g. the two compute-dags have array accesses on disjoint sets of
arrays. T1 and T2 then constitute two tasks that can executed in parallel in a dataflow
program.

– Consider two loops, lx and ly , scheduled in the same time dimension such that
there is no coalesced output or coalesced flow dependence between compute-dags
in one loop and those of the other e.g. compute-dags in lx only read a particular
array variable, where those in ly only write to it. The two loops can be executed as
parallel tasks. This can be particularly crucial in obtaining good performance.

– Similarly, a loop and a compute-dag scheduled in the same time dimension with
no coalesced output or coalesced flow dependence between the compute-dag and
those in the loop.

Note that coalesced anti-dependences do not inhibit parallelism. The read and write
access on the same variable may share the same data source. The read access can be
performed on a copy of the data, while the write access is performed on the source data.

A dataflow diagram synthesized as described in the proofs for Theorem 4 and 5
is indeed a SCoD. The characteristics (1) and (2) are trivially satisfied. The dataflow
diagram also meets characteristic (3) as all the array write nodes are serialized in ac-
cordance with Theorem 4. Furthermore, the construction described in the proof for
Theorem 4 also ensures that whenever a loop-carried input-output pair is created, the
corresponding source and sink vertices have an associated can-inplace path, thereby en-
suring characteristic (4). Finally, the proof for Theorem 5 also implies a loop-carried
input for a particular variable access is created on a loop only when all the accesses to
a variable inside the loop-nest are read accesses. Therefore, a flow path from a loop-
invariant source vertex to a loop-carried input never exists, ensuring characteristic (6).

Algorithm 2 processes the read accesses of a statement analogue first and then the
write access. Algorithm 3, briefly explained below, describes the creation of the array
dataflow paths for the corresponding read and write nodes in the compute-dag.

Read accesses: Suppose the array read node is scheduled to execute in loop lm.
The closest enclosing loop lc that has an array write node (for a write access on the
same variable) in its body, and therefore, an associated loop-carried input sc is found
(line 3.4). A dataflow through loop-invariant inputs is then created to propagate the
data flowing into the loop-carried output s′c (line 3.12) to the inner loop lm (line 3.14).
This is the data produced by the write node associated with the last write access on the
variable. However, if part of such a flow through loop-invariant inputs already exists for
an intervening loop, it is extended to reach lm (line 3.13).

Write accesses: Suppose the array write node is scheduled in a loop lm. As in the
case of a read access, the loop lc is found (line 3.4). Any flow of data through loop-
invariant inputs of intervening loops, from the source v of the loop-carried output s′c

Algorithm 3 Creation of loop-carried and loop-invariant dataflow
1: procedure CREATE-OR-GET-DATAFLOW(s0, s

′
0, lm, G0, access− type)

2: {l1,...,lm} = get-enclosing-loops(lm) . {G1,...,Gm} be their DAGs
3: sources = get-inflow-if-any(s0, lm, G0)
4: c = max i | i ∈ {0, 1,...,|sources|} and si ∈ ICar[li] for i > 0
5: if access-type == WRITE then
6: if c < m then
7: find v | (v, w), (w, s′

c) ⊂ E|c|
8: create flow path from v to s′

c through loop lm via loop-carried
inputs/outputs (transforming sc+1,...,s|sources| into loop-carried inputs)

9: replace flow path (v, w, s′
c) with this new flow path

10: else if |sources|< m then . must be a read access
11: if c == |sources| then . use data overwritten in outer loop
12: find v | (v, w), (w, s′

c) ⊂ E|c|

13: else v = s|sources| . extend loop-invariant flow
14: create a flow path through loop-invariant inputs from v to lm

15: return

16: procedure GET-INFLOW-IF-ANY(s0, lm, G0)
17: {l1,...,lm} = get-enclosing-loops(lm) . l1 outermost
18: s = s0, H = G, U = V, F = E, sources = ∅
19: for i← 1,m do
20: wi = wire carrying data from s
21: if ∃ w ∈ U | (w, li) ∈ F ∧ (s, wi) ; (w, li) then
22: H = DAG that describes body of loop li

23: s = source vertex in H that corresponds to loop input (w, li)
24: sources = append s to the sources list
25: else break
26: return sources

is transformed to a flow of data through loop-carried inputs to the inner loop lm. The
newly created data flow through loop-carried inputs and outputs replaces the existing
flow path (v, w, s′c) (line 3.7-line 3.9).

Once the dataflow from the variable source vertex is created to the loop enclosing
the access node, it can read or write the data flowing in. The required access compu-
tation trees are created using the access information (usually represented by a matrix).
The data outputs from these trees serve as the index inputs to access node.

Loop iterators and global parameters: Besides the variable accesses, considered
so far, there might still be other nodes whose input dataflow is yet to be created. The
sources of these node inputs are either the loop iterators or global parameters for the
SCoD e.g. consider the compute-dag that corresponds to (b[i] = a[i] + i) , the i in-
put to the add node in the compute-dag still needs an input dataflow. Two mappings,
paramSource and iteratorSource , from the set of node inputs to the sets of global param-
eters and loop iterators, can be used to create the input dataflow from the corresponding
source vertices. In an actual implementation, these mappings have to be derived from
the earlier phases of polyhedral extraction and optimization.

5 The PolyGLoT Auto-transformation Framework

We employed the techniques described so far to build PolyGLoT, a polyhedral auto-
matic transformation framework for LabVIEW. The LabVIEW compiler translates the
source dataflow diagram into a hierarchical, graph-based dataflow intermediate repre-
sentation (DFIR). Several standard compiler optimizations are performed on this inter-
mediate representation. We implemented a separate pass that uses PolyGLoT to perform

Fig. 6. A high-level overview of PolyGLoT

polyhedral extraction, auto-transformation and dataflow diagram synthesis in that order.
The optimized DFIR graph is then translated to the LLVM IR, which is then further op-
timized by the LLVM backend compiler that finally emits the machine code.

PolyGLoT consists of four stages. The first stage extracts the polyhedral represen-
tation from a user-specified SCoD using the techniques described in Section 3. The
translation is performed on DFIR. Glan (named after its C counterpart), a G loop analy-
sis tool, was implemented to serve this purpose. The polyhedral representation extracted
is used as an input to Pluto, an automatic parallelizer and locality optimizer. Pluto then
applies a sequence of program transformations that include loop interchange, skewing,
tiling, fusion, and distribution. Pluto internally calls into CLooG to output the trans-
formed program as C code. Glan was used to produce a representative text (encoding
a compute-dag id and also text describing the array accesses) for each compute-dag.
Thus, we ensured that the transformed C code produced by Pluto included statements
that could be matched with the computed-dags identified during extraction.

Clan was used to extract the polyhedral representation of the transformed C code,
which was finally used as the input for GLoS (G loop synthesis). GLoS is a tool that syn-
thesizes DFIR from the input polyhedral representation as per techniques developed in
Section 4. Pluto was also used to produce scheduling information of loops that it would
parallelize using OpenMP. This information was used by GLoS to parallelize the corre-
sponding loops in the synthesized DFIR using the LabVIEW parallel for loop feature.

6 Experimental Evaluation

For the purpose of experimental evaluation, we implemented many of the benchmarks
in the publicly available Polybench/C 3.2 [17] suite in LabVIEW. The matmul and
ssymm benchmarks from the example test suite in Pluto were also used. Each of these
benchmarks were then compiled using five different configurations.

– lv-noparallel is the configuration that simply uses the LabVIEW production com-
piler. This is the baseline for configurations that do not parallelize loops.

– pg-loc uses the LabVIEW compiler but with our transformation pass enabled to
perform locality optimizations.

– lv-parallel again uses the LabVIEW production compiler, but with loop paralleliza-
tion. The parallel for loop feature in LabVIEW [19, 7] is used to parallelize loops
when possible in the G code.

– pg-par is with our transformation pass enabled to perform auto-parallelization but
without any locality optimizing transformations. In order to realize a parallel loop
identified as parallelizable, Bordelon et al [7]’s solution is used. The parallel loops
in the transformed code are identified using Pluto [16].

Benchmark Problem size Execution time (seq) Speedup Execution time (8 cores) Speedup over lv-par
lv-nopar pg-loc (local) lv-par pg-par pg-loc-par pg-par pg-loc-par

atax NX=4096, NY=4096 0.456s 0.567s 0.80 0.707s 0.642s 0.167s 1.10 4.23
bicg NX=4096, NY=4096 0.409s 0.689s 0.59 0.409s 0.220s 0.093s 1.86 4.40

doitgen NQ=NR=NP=128 7.476s 7.344s 1.02 0.976s 0.999s 0.934s 0.98 1.04
floyd-warshall N=1024 86.06s 91.89s 0.94 82.76s 13.64s 4.909s 6.07 16.9

gemm NI=NJ=NK=1024 60.40s 24.20s 2.50 7.026s 5.473s 3.628s 1.28 1.94
gesummv N=4096 0.488s 0.536s 0.91 0.078s 0.069s 0.074s 1.13 1.05
matmul N=2048 688.5s 196.3s 3.51 89.49s 94.70s 27.44s 0.94 3.26

mvt N=4096 1.248s 0.828s 1.51 0.195s 0.334s 0.105s 0.58 1.86
seidel N=1024, T= 1024 44.82s 44.79s 1.00 45.03s 9.797s 8.364s 4.60 5.38

ssymm N=2048 122.8s 177.4s 0.69 15.03s 55.45s 23.85s 0.27 0.63
syr2k NI=1024, NJ=1024 34.03s 30.86s 1.10 4.190s 4.423s 4.223s 0.95 0.99
syrk NI=1024, NJ=1024 24.44s 22.01s 1.11 2.974s 3.118s 2.793s 0.95 1.06
trmm N=2048 231.7s 64.62s 3.59 41.29s 39.94s 11.42s 1.03 3.62

Table 1. Summary of performance (sequential and parallel execution on an 8-core machine)

– pg-loc-par is with our transformation pass enabled to perform both locality opti-
mizations and auto-parallelization.

The comparisons of the runtime performance with various configurations can be
found in Table 1. The performance numbers were obtained on on a dual-socket Intel
Xeon CPU E5606 (2.13 GHz, 8 MB L3 cache) machine with 8 cores in all, and 24 GB
of RAM. LLVM 2.8 was the final backend compiler used by LabVIEW.

Table 1 shows that the benchmarks gemm, matmul, mvt, syr2k, syrk and trmm ben-
efit from locality-enhancing optimizations, in particular, loop tiling, and in addition,
loop fusion and other unimodular transformations [2, 18]. Table 1 also shows the effect
of locality optimizations in conjunction with loop parallelization. It can be seen that for
floyd-warshall and seidel, loop skewing exposes loop parallelism that could not have
been exploited without it. The benchmarks, atax, bicg, floyd-warshall, gemm, matmul,
mvt, seidel, syrk, trmm benefit from more coarse-grained parallelism, i.e., a reduced
frequency of shared-memory synchronization between cores as a result of loop tiling.
In some cases, we see a slow down with PolyGLoT, often by about 10%. We believe that
this is primarily due to transformed code generated by PolyGLoT not being optimized
by subsequent passes within LabVIEW and the backend compiler (LLVM) as well as
the baseline (lv-noparallel and lv-parallel). This is also partly supported by the fact that
pg-loc itself produces this slow down, for example, for ssymm. Better downstream opti-
mization within LabVIEW and in LLVM after PolyGLoT has been run can address this.
In addition, the loop fusion heuristic used by Pluto can be tailored for LabVIEW code
to obtain better performance. Overall, we see a mean speedup of 2.30× with PolyGLoT
(pg-loc-par) over the state-of-the-art (lv-parallel).

7 Related Work

Much work has been done on using polyhedral techniques in the compilation of impera-
tive languages [9, 11, 5]. Clan is a widely used research tool for extracting a polyhedral
representation from C static control parts [3]. Production compilers with polyhedral
framework implementations include IBM XL [6], RSTREAM [15], and LLVM [12].

Ellmenreich et al. [8] have considered the problem of adapting the polyhedral model
to parallelize a functional program in Haskell. The source program is analyzed to obtain

a set of parallelizable array definitions. Dependence analysis on each array set is then
performed to parallelize all the computations within the set. Johnston et al. [13] review
the advances in dataflow programming over the decades. Ample work has been done
on parallelizing dataflow programs. It includes the work on loop parallelization analy-
sis by Yi et al. [19]. Dependences between array accesses are analyzed using standard
techniques to determine if a given user-specified loop in a graphical dataflow program
can be parallelized. In contrast to these works, the focus of our work is not really on
parallelization but on leveraging existing polyhedral compilation techniques to perform
dataflow program transformations. Parallelism detection is but a small component of
a loop-nest optimization framework. The complete polyhedral representation that we
extract from a given dataflow program part can be used to drive automatic transforma-
tions, many of which can actually aid parallelization. Furthermore, to the best of our
knowledge, no prior art exists that tackles this problem and the problem of dataflow
program part synthesis from an equivalent polyhedral representation by exploiting the
inplaceness opportunities that can be inferred from the dataflow program. The work of
Yi et al. [19] is commercially available as the parallel for loop feature in LabVIEW, and
we compared with it through experiments in Section 6. Given an iterative construct in
a dataflow program that is marked parallel, Bordelon et al. [7] studied the problem of
parallelizing and scheduling it on multiple processing elements. Our system uses it to
eventually realize parallel code from the transformed DFIR.

The interplay between scheduling and maximizing the inplaceness of aggregate data
has been studied by Abu-Mahmeed et al. [1]. Recently, Gerard et al. [10] have built on
this work to provide a solution for inter-procedural inplaceness using language annota-
tions that express inplace modifications. The soundness of such an annotation scheme
is guaranteed by a semi-linear type system, where a value of a semi-linear type can be
read multiple times and then updated once. For any array data source in any diagram
of the SCoD, there is at most one node that can overwrite it. During the polyhedral ex-
traction, by scheduling a write node after all the read nodes which share the same data
source, we in effect choose semi-linear type semantics on the array data in the dataflow
diagram. It also allows us to infer an inplace path of array updates. The inplace path is
used for associating the accesses to an array definition in the polyhedral representation,
which can have multiple write accesses to the same definition.

8 Conclusions

We have addressed the problem of extracting polyhedral representations from graphi-
cal dataflow programs that can be used to perform high-level program transformations
automatically. Additionally, we also studied the problem of synthesizing dataflow dia-
grams from their equivalent polyhedral representation. To the best of our knowledge,
this is the first work which tackles these problems, and does this while exploiting in-
placeness opportunities inherent in a dataflow program. We also demonstrated that our
techniques are of practical relevance by building an automatic transformation frame-
work for the LabVIEW compiler that uses them. In several cases, programs compiled
through our framework outperformed those compiled otherwise by significant margins,
sometimes by a factor as much as seventeen. A mean speed-up of 2.30× was observed
over state-of-the-art.

Acknowledgments

We thank Anand Kodaganur and Praveen Shivananda from National Instruments, Ban-
galore for their support. We are also thankful all anonymous reviewers and Albert Co-
hen (INRIA) for very valuable feedback.

References

[1] S. Abu-Mahmeed, C. McCosh, Z. Budimli, K. Kennedy, K. Ravindran, K. Hogan, P. Austin,
S. Rogers, and J. Kornerup. Scheduling tasks to maximize usage of aggregate variables in
place. In International Conference on Compiler Construction (CC), 2009.

[2] A. V. Aho, R. Sethi, J. D. Ullman, and M. S. Lam. Compilers: Principles, Techniques, and
Tools Second Edition. Prentice Hall, 2006.

[3] C. Bastoul. Clan: The Chunky Loop Analyzer. The Clan User guide.
[4] C. Bastoul. Code generation in the polyhedral model is easier than you think. In PACT,

pages 7–16, Sept. 2004.
[5] U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam, A. Rountev, and P. Sa-

dayappan. Automatic transformations for communication-minimized parallelization and lo-
cality optimization in the polyhedral model. In Compiler Construction, Apr. 2008.

[6] U. Bondhugula, O. Gunluk, S. Dash, and L. Renganarayanan. A model for fusion and code
motion in an automatic parallelizing compiler. In PACT. ACM, 2010.

[7] A. Bordelon, R. Dye, H. Yi, and M. Fletcher. Automatically creating parallel it-
erative program code in a data flow program. (20100306733), December 2010.
http://www.freepatentsonline.com/y2010/0306733.html.

[8] N. Ellmenreich, C. Lengauer, and M. Griebl. Application of the polytope model to functional
programs. In LCPC, pages 219–235, 1999.

[9] P. Feautrier. Some efficient solutions to the affine scheduling problem: Part I, one-
dimensional time. International Journal of Parallel Programming, 21(5):313–348, 1992.

[10] L. Gérard, A. Guatto, C. Pasteur, and M. Pouzet. A modular memory optimization for
synchronous data-flow languages: application to arrays in a lustre compiler. In LCTES,
pages 51–60, 2012.

[11] M. Griebl. Automatic Parallelization of Loop Programs for Distributed Memory Architec-
tures. University of Passau, 2004. Habilitation thesis.

[12] T. Grosser, H. Zheng, R. Aloor, A. Simbrger, A. Grolinger, and L.-N. Pouchet. Polly:
Polyhedral optimization in LLVM. In IMPACT, 2011.

[13] W. M. Johnston, J. R. P. Hanna, and R. J. Millar. Advances in dataflow programming
languages. ACM Comput. Surv., 36(1), Mar. 2004.

[14] NI LabVIEW Compiler: Under the Hood. http://www.ni.com/white-paper/11472/en.
[15] B. Meister, N. Vasilache, D. Wohlford, M. M. Baskaran, A. Leung, and R. Lethin. R-stream

compiler. In Encyclopedia of Parallel Computing, pages 1756–1765. Springer, 2011.
[16] PLUTO: An automatic polyhedral parallelizer and locality optimizer for multicores.

http://pluto-compiler.sourceforge.net.
[17] Polybench. http://polybench.sourceforge.net.
[18] M. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley Long-

man Publishing Co., Inc., Boston, MA, USA, 1995.
[19] H. Yi, M. Fletcher, R. Dye, and A. Bordelon. Loop paralleliza-

tion analyzer for data flow programs. (20100306753), December 2010.
http://www.freepatentsonline.com/y2010/0306753.html.

