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Parallelizing code for distributed-memory architectures

OpenMP code for shared-memory systems: MPI code for distributed-memory systems:

for ( i =1; i<=N; i++) {
#pragma omp parallel for
for ( j =1; j<=N; j++) {
<computation>

}
}

for ( i =1; i<=N; i++) {
set_of_j_s = dist (1, N, processor_id );
for each j in set_of_j_s {
<computation>

}
<communication>

}

Explicit communication is required between:

devices in a heterogeneous system with CPUs and multiple GPUs.

nodes in a distributed-memory cluster.

Hence, tedious to program.
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AXne loop nests

Arbitrarily nested loops with aXne bounds and aXne accesses.
Form the compute-intensive core of scientiVc computations like:

stencil style computations,
linear algebra kernels,
alternating direction implicit (ADI) integrations.

Can be analyzed by the polyhedral model.
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Example iteration space
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Example iteration space
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Automatic Data Movement

For aXne loop nests:
Statically determine data to be transferred between computes devices.

with a goal to move only those values that need to be moved to preserve
program semantics.

Generate data movement code that is:
parametric in problem size symbols and number of compute devices.
valid for any computation placement.
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Communication is parameterized on a tile

Tile represents an iteration of the innermost distributed loop.

May or may not be the result of loop tiling.

A tile is executed atomically by a compute device.
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Existing Wow-out (FO) scheme

i

j

Dependence (1,0)
Dependence (0,1)
Dependence (1,1)

Tiles Flow-out set

Flow-out set:

The values that need to be
communicated to other tiles.

Union of per-dependence
Wow-out sets of all RAW
dependences.
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Existing Wow-out (FO) scheme

i

j

Dependence (1,0)
Dependence (0,1)
Dependence (1,1)

Tiles Flow-out set

Receiving tiles:

The set of tiles that require
the Wow-out set.
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Existing Wow-out (FO) scheme

i

j

Dependence (1,0)
Dependence (0,1)
Dependence (1,1)

Tiles Flow-out set
Communcation

All elements in the Wow-out
set might not be required by
all its receiving tiles.

Only ensures that the receiver
requires at least one element
in the communicated set.

Could transfer unnecessary
elements.
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Our Vrst scheme

Motivation:

All elements in the data communicated should be required by the
receiver.

Key idea:

Determine data that needs to be sent from one tile to another,
parameterized on a sending tile and a receiving tile.
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Flow-in (FI) set

i

j

Dependence (1,0)
Dependence (0,1)
Dependence (1,1)

Tiles Flow-in set

Flow-in set:

The values that need to be
received from other tiles.

Union of per-dependence
Wow-in sets of all RAW
dependences.
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Flow-out intersection Wow-in (FOIFI) scheme

i

j

Dependence (1,0)
Dependence (0,1)
Dependence (1,1)

Tiles Flow set

Flow set:

Parameterized on two tiles.

The values that need to be
communicated from a
sending tile to a receiving tile.

Intersection of the Wow-out
set of the sending tile and the
Wow-in set of the receiving
tile.
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Flow-out intersection Wow-in (FOIFI) scheme

i

j

Dependence (1,0)
Dependence (0,1)
Dependence (1,1)

Tiles Flow set
Communcation

Precise communication when
each receiving tile is executed
by a diUerent compute device.

Could lead to huge
duplication when multiple
receiving tiles are executed
by the same compute device.
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Comparison with virtual processor based schemes

Some existing schemes use a virtual processor to physical mapping to
handle symbolic problem sizes and number of compute devices.

Tiles can be considered as virtual processors in FOIFI.
Lesser redundant communication in FOIFI than prior works that use
virtual processors since it:

uses exact-dataWow information.
combines data to be moved due to multiple dependences.

Multicore Computing Lab (CSA, IISc) Automatic Data Movement September 11, 2013 18 / 61



Our main scheme

Motivation:

Partitioning the communication set such that all elements within each
partition is required by all receivers of that partition.

Key idea:

Partition the dependences in a particular way, and determine
communication sets and their receivers based on those partitions.
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Flow-out partitioning (FOP) scheme

i

j

Dependence (1,0)
Dependence (0,1)
Dependence (1,1)

Tiles Flow-out partitions

Source-distinct partitioning of
dependences - partitions depen-
dences such that:

all dependences in a partition
communicate the same set of
values.

any two dependences in
diUerent partitions
communicate disjoint set of
values.

Determine communication set and
receiving tiles for each partition.
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Flow-out partitioning (FOP) scheme

i

j

Dependence (1,0)
Dependence (0,1)
Dependence (1,1)

Tiles Flow-out partitions

Communication sets of
diUerent partitions are
disjoint.

Union of communication sets
of all partitions yields the
Wow-out set.

Hence, the Wow-out set of a tile is
partitioned.
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Source-distinct partitioning of dependences

i

j

Dependence (1,1)

Tiles

Partitions of dependences

Initially, each dependence is:

restricted to those constraints
which are inter-tile, and

put in a separate partition.
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Source-distinct partitioning of dependences

i

j

Dependence (1,0)

Dependence (1,1)

Tiles

Partitions of dependences

For all pairs of dependences in two
partitions:

Find the source iterations that
access the same region of
data - source-identical.

Get new dependences by
restricting the original
dependences to the
source-identical iterations.

Subtract out the new
dependences from the
original dependences.

The set of new dependences
formed is a new partition.
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Source-distinct partitioning of dependences

i

j

Dependence (1,0)
Dependence (0,1)
Dependence (1,1)

Tiles

Partitions of dependences

Stop when no new partitions can
be formed.
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Flow-out partitioning (FOP) scheme: at runtime

i

j

Dependence (1,0)
Dependence (0,1)
Dependence (1,1)

Tiles Flow-out partitions For each partition and tile exe-
cuted, one of these is chosen:

multicast-pack: the
partioned communication set
from this tile is copied to the
buUer of its receivers.

unicast-pack: the
partioned communication set
from this tile to a receiving
tile is copied to the buUer of
that receiver.

unicast-pack is chosen only if
each receiving tile is executed by a
diUerent receiver.
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Flow-out partitioning (FOP) scheme

i

j

Dependence (1,0)
Dependence (0,1)
Dependence (1,1)

Tiles Flow-out partitions

Communcation

Reduces granularity at which
receivers are determined.

Reduces granularity at which
the conditions to choose
between multicast-pack

and unicast-pack are
applied.

Minimizes communication of
both duplicate and
unnecessary elements.
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Another example - dependences

i

j
k

j=k+1

Dependence1
Dependence2 Let:

(k, i, j) - source iteration
(k′, i′, j′) - target iteration

Dependence1:
k′ = k+ 1

i′ = i
j′ = j

Dependence2:
k′ = k+ 1

i′ = i
j = k+ 1

Multicore Computing Lab (CSA, IISc) Automatic Data Movement September 11, 2013 34 / 61



Another example - FO scheme
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j=k+1

Dependence1
Dependence2

Tiles Flow-out set
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Another example - FOIFI scheme
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Another example - FOIFI scheme
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Tiles Flow set
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Another example - FOP scheme
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Another example - FOP scheme
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Dependence1 Tiles Flow-out partition
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Implementation

As part of the PLUTO framework.

Input is sequential C code which is tiled and parallelized using the
PLUTO algorithm.

Data movement code is automatically generated using our scheme.
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Implementation - distributed-memory systems

Code for distributed-memory systems using existing techniques is
automatically generated.

Asynchronous MPI primitives are used to communicate between nodes
in a distributed-memory system.
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Implementation - heterogeneous systems

For heterogeneous systems, the host CPU acts both as a compute device
and as the orchestrator of data movement between compute devices,
while the GPU acts only as a compute device.

OpenCL functions clEnqueueReadBuUerRect() and
clEnqueueWriteBuUerRect() are used for data movement in
heterogeneous systems.
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Experimental evaluation: distributed-memory cluster

32-node InVniBand cluster.

Each node consists of two quad-core Intel Xeon E5430 2.66 GHz
processors.

The cluster uses MVAPICH2-1.8 as the MPI implementation.
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Benchmarks

Floyd Warshall (Woyd).

LU Decomposition (lu).

Alternating Direction Implicit solver (adi).

2-D Finite DiUerent Time Domain Kernel (fdtd-2d).

Heat 2D equation (heat-2d).

Heat 3D equation (heat-3d).

The Vrst 4 are from Polybench/C 3.2 suite, while heat-2d and heat-3d are
widely used stencil computations.
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Comparison of FOP, FOIFI and FO

Same parallelizing transformation -> same frequency of communication.

DiUer only in the communcation volume.

Comparing execution times directly compares their eXciency.
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Comparison of FOP with FO

Communication volume reduced by a factor of 1.4× to 63.5×.

Communication volume reduction translates to signiVcant speedup,
except for heat-2d.

Speedup of upto 15.9×.

Mean speedup of 1.55×.
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Comparison of FOP with FOIFI

Similar behavior for stencil-style codes.
For Woyd and lu:

Communcation volume reduced by a factor of 1.5× to 31.8×.
Speedup of upto 1.84×.

Mean speedup of 1.11×.
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OMPD - OpenMP to MPI

Takes OpenMP code as input and generates MPI code.

Primarily a runtime dataWow analysis technique.
Handles only those aXne loop nests which have a repetitive
communication pattern.

Communication should not vary based on the outer sequential loop.

Cannot handle Woyd, lu and time-tiled (outer sequential dimension tiled)
stencil style codes.
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Comparison of FOP with OMPD

For heat-2d and heat-3d, signiVcant speedup over OMPD.
The computation time is much lesser.
Better load balance and locality due to advanced transformations.
OMPD cannot handle such transformed code.

For adi: signiVcant speedup over OMPD.
Same volume of communication.
Better performance due to loop tiling.
Lesser runtime overhead.

Mean speedup of 3.06×.
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UniVed Parallel C (UPC)

UniVed programming model for both shared-memory and
distributed-memory systems.
All benchmarks were manually ported to UPC.

Sharing data only if it may be accessed remotely.
UPC-speciVc optimizations like localized array accesses, block copy,
one-sided communication.
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Comparison of FOP with UPC

For lu, heat-2d and heat-3d, signiVcant speedup over UPC.
Better load balance and locality due to advanced transformations.
DiXcult to manually write such transformed code.
UPC model is not suitable when the same data element could be written
by diUerent nodes in diUerent parallel phases.
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Results: distributed-memory cluster
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Figure: FOP – strong scaling on
distributed-memory cluster
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Figure: floyd – speedup of FOP,
FOIFI, FO and hand-optimized UPC
code over seq on distributed-memory
cluster

For the transformations and computation placement chosen:
FOP achieves the minimum communication volume.
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Experimental evaluation: heterogeneous systems

Intel-NVIDIA system:

Intel Xeon multicore server consisting of 12 Xeon E5645 cores.

4 NVIDIA Tesla C2050 graphics processors connected on the PCI express
bus.

NVIDIA driver version 304.64 supporting OpenCL 1.1.

Multicore Computing Lab (CSA, IISc) Automatic Data Movement September 11, 2013 54 / 61



Comparison of FOP with FO

Communication volume reduced by a factor of 11× to 83×.

Communication volume reduction translates to signiVcant speedup.

Speedup of upto 3.47×.

Mean speedup of 1.53×.
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Results: heterogeneous systems
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Figure: FOP – strong scaling on the Intel-NVIDIA system

For the transformations and computation placement chosen:
FOP achieves the minimum communication volume.
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Conclusions

The framework we propose frees programmers from the burden of
moving data.

Partitioning of dependences enables precise determination of data to be
moved.

Our tool is the Vrst one to parallelize aXne loop nests for a combination
of CPUs and GPUs while providing precision of data movement at the
granularity of array elements.

Our techniques will be able to provide OpenMP-like programmer
productivity for distributed-memory and heterogeneous architectures if
implemented in compilers.

Publicly available: http://pluto-compiler.sourceforge.net/
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Results: distributed-memory cluster

Mean speedup of FOP over FO is 1.55x

Mean speedup of FOP over OMPD is 3.06x

Mean speedup of FOP over UPC is 2.19x
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Results: heterogeneous systems

Mean speedup of FOP over FO is 1.53x
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Results: heterogeneous systems
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