Automatic Data
Allocation, Buffer
Management and Data
movement for Multi-GPU
Machines

Thejas Ramashekar

MSc Engg ( Thesis Defence )
Advisor: Dr. Uday Bondhugula
Indian Institute of Science



A Typical HPC Setup

- North Bridge I I DDR RAM

eR CPU
[z / Gz ]
[GPUN | [GPUN |

Network
CPU CPU
[z ]
[GPUN |




Multi-GPU Machine

%

%

CPU

GPU1

— GPU2

GPUN

‘'R



Multi-GPU Setup - Key properties

e Distributed memory architecture



Multi-GPU Setup - Key properties

e Distributed memory architecture
e Limited GPU memory (512 MB to 6 GB)



Multi-GPU Setup - Key properties

e Distributed memory architecture
e Limited GPU memory (512 MB to 6 GB)
e Limited PClex bandwidth (Max 8 GB/s)
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Affine loop nests

e Loop nests which have affine bounds and the
array access functions in the computation
statements are affine functions of outer loop
iterators and program parameters

e eg: stencils, linear-algebra kernels, dynamic
programming codes, data mining applications

e e(g: Floyd-Warshall

affine bounds affine access function

for (k=0; ; k++) /*= outer serial loop */
for (i=0; i<N; i /# outer most parallel loop =
for (j=0; j<N; j++)

path[i][jl=((path[i][k]+path[k][j])<path[i][j])?path[i][k]+path[k][j]:path[i][]j];




Running an affine loop nest on
multi-GPU machine
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Structure of an affine loop nest for
multi-GPU machine

OO0 Tt WhN =

void gpu-mgmt_thread(Device * gpu)
{

for(tid=gpu— >stile;tid <=gpu—>etile;tid++) {
allocate_data(gpu, tid);
launch kernel(gpu, tid);
perform_coherency(gpu, tid);
}
}

int main()

for(ser=0; ser < NUM_ITER; ser++) {
for(i=0;i<NUM_GPUS;i++) {
distribute_parallel loop(i,&gpulil.stile,&gpuli] etile
spawn_thread(&gpulil, gpu-mgmt_thread);

}
synchronize_mgmt_threads();
aggregate _results();

/ | more affine loop nests can follow with the same structure

}

GPU 1

Distribute a

parallel loop
tiles among the @ GPU 2

GPUs SLPz g

Tile 1

Tile 2

Allocate data ¢ .

required by

: &
each tille a

GPU TO

seses222 Coherency
data

Perform from Tlle 1

inter-gpu
coherency @

GPU COPY
(flow-in)




The need for a multi-GPU memory
manager
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The need for a multi-GPU memory
manager

e Manual programming of multi-GPU systems
Is tedious, error-prone and time consuming

e EXxisting works are either:
o Manual application specific techniques

or

o Have inefficiencies in terms of data allocation sizes,
reuse exploitation, inter-GPU coherency etc
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Design goals for a multi-GPU
memory manager

e [he desired abilities for a multi-GPU

memory manager are:

o To identify and minimize data allocation sizes

o To reuse data already present on the GPU

o To keep data transfers minimal and efficient

o To achieve all the above with minimal overhead
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Bounding Boxes

e Bounding box of an access function, is the
smallest hyper-rectangle that encapsulates
all the array elements accessed by it

for (k=0; k<N; k++) /* outer serial loop #*/
for (i=0; i<N; i++) /* outer most parallel loop =/

for (j=0; j<N; j++)

path[i][j]=((path[i][k]+path[k][jD<path[i][j])?path[i][k]+path[k][j]:path[1][]];
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Bounding Boxes

e Bounding box of an access function, is the
smallest hyper-rectangle that encapsulates
all the array elements accessed by it

for (k=0; k<N; k++) /* outer serial loop #*/
for (i=0; i<N; i++) /* outer most parallel loop =/
for (j=0; j<N; j++)
path[i][j]=((path[i][k]l+path[k][jl)<path[i][j])?path[i][k]+path[k][j]:path[i][]j];
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Bounding Boxes

e Bounding box of an access function, is the
smallest hyper-rectangle that encapsulates
all the array elements accessed by it

for (k=0; k<N; k++) /* outer serial loop #*/
for (i=0; i<N; i++) /* outer most parallel loop =/
for (j=0; j<N; j++)
path[i][j]=((path[i][k]l+path[k][j])<path[i][j])?path[i][k]+path[k][j]:path[i][]j];
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Bounding Boxes

e Bounding box of an access function, is the
smallest hyper-rectangle that encapsulates
all the array elements accessed by it

for (k=0; k<N; k++) /* outer serial loop #*/
for (i=0; i<N; i++) /* outer most parallel loop =/
for (j=0; j<N; j++)
path[i][j]=((path[i][k]l+path[k][j])<path[i][j])?path[i][k]+path[k][j]:path[i][]j];
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Key insights on bounding boxes

e Two key insights:
o Bounding boxes can be subjected to standard set
operations at runtime with negligible overhead
o GPUs have architectural support for fast rectangular
copies
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Set Operations on Bounding Boxes

bb convex union(BB1,BB2) = BB3 bb_subtract(BB1,BB2) = BB3
BB1 BB3 BB1 BB3

BB2 BB2
bb simple union(BB1,BB2) = BB1 + BB2 bb is subset bb is subset
BB1 BB2 BB1 (BB1,BB2)=No (BB1,BB2)=Yes
BB1 BB1

BB2

BB2

bb_intersection(BB1,BB2) = BB3
BB1 BB3

Negligible runtime overhead

BB2



Architectural support for rectangular
transfers
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The Bounding Box based memory
manager (BBMM)

Compiler-assisted runtime scheme
Compile-time uses static analysis to identify
regions of data accessed by a loop nest in
terms of bounding boxes

Runtime refines these initial bounding boxes
iInto a set of disjoint bounding boxes

All data transfers are done in terms of
bounding boxes



Overview of BBMM
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Data allocation scheme

for (k=0; k<N; k++) /#* outer serial loop =*/
for (i=0; i<N; i++) /#* outer most parallel loop =*/
for (j=0; j<N; j++)
path[i][j]=((path[i][k]l+path[k][jD<path[i][j])?path[i][k]+path[k][j]:path[i][j];

Computation Tile\ [ Exaqgt Accessed Region [_] Bounding Box

tile size =4 x 8 path[il[j] pghlil[x] path(il [j1 path[il (k] BBO
DCooooooaon ocooooo0o0|o coooo0o0o0O0
cooooooan ocoooo0o0o0|o ©co0o0o0o0000
ooooooaoan cooo0oo0o0o0|o coo0o0o0o00o0
|l oooooaa i |loooooo0olo |loooo0oo0o0o0o0
‘"aeoooooa ! ‘f oo oco0oo0o0o0o0 ‘llooooo0oo0o0o
ooooooaoan coo0o0o0o0o0o0 coo0o0o0o00o0
oooooooan © 0000 OO0 Opath co0o0o0o000O0
ODooooooao [x][3] [0 000000 o]k][j] 00000000
(a) Iteration space of (b) Exact array regions (c) Initial bounding boxes (d) Convex bounding
a tile (size: 4 x 8, k=T7) accessed by the tile box
BBO path array
path 500 F
900600000 i, coo0oo0o0o0o00 700}
©o0o0o0o0o0o0o0 ©co0o0o0o0000 00 . oo
Oo0o0o00o0O0O0 path /o o000 o000 . ]
|loeeoo 00000l T, | ©o0000000 E 2 o}
co0co0o0o0o000 coo0o0o0o000 r .
© 000000 O0path coco0o0o0o00o0 @ 2
©0 0000 o0 o o [k][j] ocoo0oo0o0o0o00 100 |
[o o o000 o0 0|lBB1 ocoo0oo0oo0o0o0O0
Array Exact  Convex Disjoint N Exact Block—Coherency BEMM
J J Data Allocation Schemes Coherence Schemes
(e) Disjoint bounding (f) flow-out (g) Per-tile data (h) Per-iteration
boxes (coherency) bounding allocation size coherency volume

box (N=8,k=1) comparison comparison




Buffer Management

e Two lists per GPU
o inuse list
o unused list

e Each bounding box has
an associated usage
count

e Flags to indicate read-
only/read-write etc

Device list (global) Inuse list (per array)

GPU 1

arrl

GPU 2

GPU 3

arr2 arr3

arrN

O O O

BB0

BB1

BB2

BB0

BB1

+dimension
+bounds in each dim
-—usage count

+ flags(read—write—cleanup)
-+next

> BB3 [ BB }T>| BB5 |

Unused list (one for all arrays)



Important features of the Buffer
Manager

e Inter-tile data reuse
o Reuse data already present on the GPU

e Box-in/box-out

o Ability to make space on the GPU when it runs out of
memory
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Inter-GPU coherency

e Based on our previous work:

Roshan Dathathri, Chandan Reddy, Thejas Ramashekar, and Uday
Bondhugula. Generating Efficient Data Movement Code for
Heterogeneous Architectures with Distributed Memory. In ACM PACT
2013.
e I|dentify the data to be communicated from a source tile
due to flow (RAW) dependences called the Flow-out set
e Further refine the Flow-out set using a technique called
source-distinct-partitioning
e Eliminates both unnecessary and duplicate data

transfers
e [he scheme has been demonstrated to work well on

both distributed memory and heterogeneous systems



Inter-GPU coherency (cont)
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Inter-GPU coherency (cont)

Data for Tile1
e BBMM extracts the flow-out Soesooay
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Inter-GPU coherency (cont)

e BBMM extracts the flow-out
sets as flow-out bounding
boxes

The flow-out bounding box of
a tile is copied out from the
source GPU onto the host
CPU

If any other GPU contains
the same bounding box, it is
updated with a flow-in
transfer

If no GPU currently has that
bounding box, the updated
data is retained on the CPU

N=8, k=

CPU’s copy

0000000 O)|

0000O0O0OO0OO0O
000000O00O
0000O0OO0OO0OO0O
00000O0O0O
0000O0OO0OO0O
0000O0OO0OO0OO
00000OO0OO0O
0o000OO0OO0OO0O

1

00000000
[0co0oo00o00o0O0

0000O0OO0OO0O
000000O0O0
0000O0OO0OO0OO
0000OO0OO0OO0OO
0000O0OO0OO0OO
00000OO0OO0O

Data for Tile1
in k=1

communication
set for k=1

Tile1 executed
on GPU1

Data for
Tile2 in k=1

Tile2
executed
on GPU2



Implementation

e The compile-time component integrated into polyhedral
source-to-source transformer - Pluto



Implementation

e The compile-time component integrated into polyhedral
source-to-source transformer - Pluto

e The input to the compile-time is the sequential C code
containing a set of affine loop nests



Implementation

e The compile-time component integrated into polyhedral
source-to-source transformer - Pluto

e The input to the compile-time is the sequential C code
containing a set of affine loop nests

e Pluto creates a tiled and parallelized version of the input
code



Implementation

The compile-time component integrated into polyhedral
source-to-source transformer - Pluto

The input to the compile-time is the sequential C code
containing a set of affine loop nests

Pluto creates a tiled and parallelized version of the input
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parallelized code as input and generates the following:
o A set of initial and flow-out bounding boxes

o The code similar to the host code structure shown in
Algorithm 4.



Implementation

e The compile-time component integrated into polyhedral
source-to-source transformer - Pluto

e The input to the compile-time is the sequential C code
containing a set of affine loop nests

e Pluto creates a tiled and parallelized version of the input
code

e BBMM'’s compile-time component takes this tiled and
parallelized code as input and generates the following:
o A set of initial and flow-out bounding boxes

o The code similar to the host code structure shown
earlier

e The runtime component is implemented as stand-alone
C library.
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Evaluation and Results

o Setup

o A multi-GPU machine consisting of 3 NVIDIA Tesla
c2050 (fermi) GPUs and 1 NVIDIA Tesla K20 (Kepler)

with 2.5 GB of memory each
o A 12-core CPU system as the host

e Benchmarks

Program | Source Dep pattern | A | B Arlx?;;zaszl:: on 18?21?3?GB) D| E F

floyd Polybench | non-uniform 1 2 16384 x 16384 2.0 2 | yes| 0.05%
heat2d Pochoir uniform 2 2 12288 x 12288 2.25 4 | yes| 0.10%
fdtd2d Polybench uniform 3 2 | 10240 x 10240 2.4 2 | yes| 0.06%
heat3d Pochoir uniform 2 3 512x512x512 2.0 4 | yes| 0.04%
lu Polybench | non-uniform 1 2 16384 x 16384 2.0 3| yes| 0.07%
adi Polybench uniform 3 2 8192 x 8192 1.5 2 | yes| 0.01%
mvt Polybench EP 3 2 | 20480 x 10240 1.5 1| no | 0.01%
bscholes | NVIDIA EP 3 1 67,108,864 1.5 1| no | 0.01%

A: number of arrays. B: maximum dimensionality of arrays C: bounding box
type chosen by our algorithm D: maximum number of bounding boxes for any array
E: subsumed bounding boxes present? F: BBMM runtime overhead as a percentage of

overall execution time
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Overhead of runtime library

total execution_time = memory _mgmt _time + compute_time + flowout time
+ flowin_time + writeout _time

overhead percentage = (memory_mgmt_time / total _execution _time) * 100
e For all programs, the runtime overhead was less than

0.1% of the total execution time of the program
(hence insignificant)



Comparison of data allocation sizes

100%

e Up to 75% reduction on
a 4-GPU machine
compared to convex
bounding box scheme

e Equal to the exact data
sizes required (manually
computed) for all cases

80% -

[] Exact data size required
60% F------- M Size of convex bounding box
B Size of disjoint bounding boxes

40% -

20% -

Maximum allocation sizes on each GPU

0%

floyd heat2d/3d,fdtd2d adi

Benchmarks



Performance with data scaling

e Data scaling similar to weak 3
scaling but with emphasis on 25 e T T -
data size (memory utilization) 2L B 4 GPUS_ dX datastze oo |
rather than on problem size
(computation)

e Hence we consider the per-
iteration speedup

e The per-iteration time includes ¥ THoyd heat2d fdid2d heat3d ln adi _ mvt bscholes mean
all overhead: data allocation Benchmarks
time, compute time, flow-out
time, flow-in time and write-out
time

e BBMM affects all the above
except compute time

e Mean speedup of 0.94
indicating near-ideal speedup

Per—iteration speedup




Comparison with manually written

code

1.2

e Manual code has following
optimizations:

o Optimized to have
theoretically minimum data
allocation sizes and
coherency volume

Speedup over manual OpenCL code

o Reuse exploitation was 0
theoretical maximum

e BBMM at least 88% as N

efficient as manual 5 s

OpenCL code T,

e Outperforms the manual T s

OpenACC code -

B 2 GPUs — 2X data size
[l 4 GPUs — 4X data size

floyd heat2d bscholes

Benchmarks

26.7 26.6

[l 2 GPUs - 2X data size
[ 4 GPUs — 4X data size

floyd heat2d bscholes

Benchmarks



Benefit of box-in/box-out

e Significant performance
iImprovements with tiles
that have sufficient
compute-to-copy ratio

e Without it, significant
performance degradation

e With right tiling strategy,
the feature can allow
applications to work with
data sizes significantly
larger than available GPU
memory

Speedup over a 12—core system

Total execution time (seconds)

12

10 |ovveemeeneee

[0 1 GPU 6GB data size (>2X)
B 2 GPUs 12 GB data size (>4X)

.|l 4 GPUs 24GB data size (>8X)
1 GPU memory size (X) = 2.5 GB

0
blackscholes matmul floyd
Benchmarks

10

8 W SwPULOS |
@ BBMM

6 ............................................................
4 .......................................................
2 ..................................................
L ommm [

0.8GB 1.6GB 3.2GB 6.4GB 12.8GB

Data size



Compute-Copy Overlap

With

compute-co

overlap

Without

compute-co|

overlap

v mer  mes  mes

py

Hide the data movement
overhead within
computation time

Split the computation
allocated to a GPU into
multiple tiles

Register a callback to be
called at the completion of
each tile

In the callback perform the
CopyOut() and CopylIn()
Copyin() does not conflict
because we work on a
distributed parallel loop



Maximizing Compute-Copy Overlap

i - 1IN ® Sort the tiles based on size
ey R R of the CopyOut data

Without

comptecp ® Schedule them in the
> Time sorted order (largest
-kernel execution - copyout - copyin CO pyo ut S ize fi rSt)
Data Movement Overhead Comparison Chart
With -\ COPYOUT FROM o W e

. . overlap

110 Wio Tile

§ reordering
i S [ CC overlap
Without @ with Tile
) . @ 80 -
Tile reordering ES reordering
@
E
. ~
—p Time 50

-kernel execution - copyout - copyin

1 32 64 128

Tile Sizes



Related Work

Framework Allocation granular- Memory mgmt scheme Manual / Auto #devices
ity

[Kim et al. 2011] convex bounding box virtual CPU buffer automatic multiple
[Augonnet et al. 2009] user-provided MSI-based coherency manual multiple
[Jablin et al. 2011] entire array modified runtime libraries automatic single
[Jablin et al. 2012] entire array modified runtime libraries automatic single
[Lee and Eigenmann 2010] entire array live variable analysis user-annotated  single
[Pai et al. 2012] x10CUDA Rail compiler inserted checks automatic single
[Baskaran et al. 2010] entire array none automatic single
[Verdoolaege et al. 2013] entire array none automatic single
[OpenACC 2012] entire array none user-annotated  single
BBMM (our) disjoint bounding boxes =~ Runtime memory manager Automatic multiple
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Conclusion

e We presented a fully automatic data allocation and memory management
framework for affine loop nests on multi-GPU machines
e Data allocation, buffer management, inter-GPU coherency were all done at
the granularity of bounding boxes
e On a 4-GPU machine our scheme was able to:
o Achieve allocation size reductions of 75% compared existing schemes
o Comparison to manual OpenCL and OpenACC code showed:
m Our code yielded a performance of at least 88% of manual OpenCL
code
m Outperformed OpenACC code in all the cases
o Achieve excellent data scaling
e All the above achieved with an insignificant runtime overhead of 0.1%
e Our work is suited to any compiler/runtime system targeting GPUs
e Can bridge the data allocation gap that exists in programming these systems
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Machines

Thejas Ramashekar, Uday Bondhugula, In the ACM Transactions on
Architecture and Code Optimization, Vol. 10, No. 4, Article 60, Publication
date: December 2013 . Selected for presentation at HIPEAC '14, Jan 2014,
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2. Generating Efficient Data Movement Code for Heterogeneous
Architectures with Distributed-Memory

Roshan Dathathri, Chandan Reddy, Thejas Ramashekar, and Uday
Bondhugula, Proceedings of the 22nd International Conference on Parallel
Architectures and Compilation Techniques (PACT), September 2013.
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Data Allocation Scheme Algorithms

Algorithm 1: extract.initial bounding boxes()

Input: Computation tile £, Array a
1 S;ilnz't = ¢
2 for each read or write access function f! do
3 dp?, = get_data_polyhedron(f?)
4 bb:, = get_bounding_box(dp?)
5 add bb}, to Sinit
6 Output: Si™'t the set of initial bounding boxes

Algorithm 2: get_disjoint_bounding boxes ()

Input: S:™*" - Set of initial bounding boxes for tile  and array a
1 Sgisjoint = d)

2 for each bounding box bb."*" in S."** do

3 bbT ™ = bb ™t

4 for each bounding box bblisd jp gdisjoint do

5 bb'fl'"te""s“t = bb_intersection(bb ™", bbg”J)

6 bb" ™ = bb_subtract(bb7 ", bbimieTsect)

7 add bb,“™" to SgeI ot

8

Output: S7 79" the set of disjoint bounding boxes for array a




Structure of the generated host code

Algorithm 4: Structure of generated host code for a single affine loop nest

1 for each iteration of the outer serial loop i do

2 distribute the parallel tiles of i, among the GPUs
/* below code is executed in the context of a host worker thread that manages the GPU
3 for each parallel tile t of i, allocated to GPU dev do
4 [kS =¢
5 for each array a accessed in t do
6 S, = get_disjoint_bounding_ boxes(,a)
7 for each bounding box bb in S, do
8 if /bb_present(dev, a, bb) then
9 bb_alloc(dev, a, bb)
10 bb_readin(dev, a, bb)
11 increment_usage_count(bb)
12 | S=SUS,
13 compute(t, dev, S)
14 gpu_to_cpu_flowout(t, S)
15 cpu_to_gpu_flowin(, S)
16 gpu_to_cpu-writeout(t, S)
17 for each bounding box bb in S do
18 [_ decrement_usage_count(bb)
19 bb_cleanup(dev, i)
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Structure of the generated kernel
code

void ComputeKernelO(int splitO, DATA_TYPE * bufO, int bufO_1bO, int bufO_ubO, int bufO_1lbl, int bufO_ubil,

{

int splitl, DATA_TYPE * bufl, int bufi_1b0, int bufl_ubO, int bufl_1bl, int bufl_ubl, ....)

DATA_TYPE * var_wacc_O = KERNELO_var_WACC(splitO, bufO, bufO_1bO, bufO_ubO, bufO_lbi, bufO_ubl, idxO0,
idx1);

DATA_TYPE var_racc_0 = KERNELO_var_RACC(splitl, bufl, bufil_1b0, bufl_ubO, bufi_lbl, bufi_ubl, idxO,
idx1);

// do the computation using values obtained above.
*var_wacc_0 = var_racc_0 + ...




Performance with inter-tile reuse

e compared to
performance of the
same code without
reuse

e mean speedup of
9.4x with maximum
speedup of upto
85x

without-reuse

Speedup over

[J 2 GPUs with reuse
B 3 GPUs with reuse
B 4 GPUs with reuse

10 10 10 CFE

floyd heat2d heat3d fdtd2d 1lu adi  mvt bscholes mean

Benchmarks



Performance with access function

split

e compared to performance >
of code without splits

e stencils did not undergo
performance degradation

e floyd in the worst case,
suffered 40%
performance loss. But still
much better compared to
CPU execution times

Speedup over without—split

heat2d

H 1 GPU - 1X data size
[J 2 GPUs - 2X data size
[ 3 GPUs — 3X data size
B 4 GPUs — 4X data size
[ 1CPU - 4X data size

heat3d fdtd2d  floyd(forced—split)

Benchmarks
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Distributed memory paradigm
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