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● Distributed memory architecture
● Limited GPU memory (512 MB to 6 GB)
● Limited PCIex bandwidth (Max 8 GB/s)
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Affine loop nests

● Loop nests which have affine bounds and the 
array access functions in the computation 
statements are affine functions of outer loop 
iterators and program parameters

● eg: stencils, linear-algebra kernels, dynamic 
programming codes, data mining applications

● eg: Floyd-Warshall
affine bounds affine access function



Running an affine loop nest on 
multi-GPU machine

Extract parallelism 
and tile

Distribute tiles 
among the GPUs

Perform 
computations

Allocate data for 
each Tile

Perform inter-GPU
coherency

serial
dimension

parallel
dimension

Next serial iteration

Serial C program 
containing one or 
more affine loop
 nests



Structure of an affine loop nest for 
multi-GPU machine
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manager
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The need for a multi-GPU memory 
manager

● Manual programming of multi-GPU systems 
is tedious, error-prone and time consuming

● Existing works are either:
○ Manual application specific techniques

           or
○ Have inefficiencies in terms of data allocation sizes, 

reuse exploitation, inter-GPU coherency etc
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Design goals for a multi-GPU 
memory manager

● The desired abilities for a multi-GPU 
memory manager are:
○ To identify and minimize data allocation sizes
○ To reuse data already present on the GPU
○ To keep data transfers minimal and efficient
○ To achieve all the above with minimal overhead
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Key insights on bounding boxes

● Two key insights:
○ Bounding boxes can be subjected to standard set 

operations at runtime with negligible overhead
○ GPUs have architectural support for fast rectangular 

copies
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Set Operations on Bounding Boxes

Negligible runtime overhead



Architectural support for rectangular 
transfers

● Architectural support for 
rectangular transfers on 
GPU

● Support from 
programming models such 
as OpenCL and CUDA

       eg: clEnqueueReadBufferRect()
       and clEnqueueWriteBufferRect()
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The Bounding Box based memory 
manager (BBMM)

● Compiler-assisted runtime scheme
● Compile-time uses static analysis to identify 

regions of data accessed by a loop nest in 
terms of bounding boxes

● Runtime refines these initial bounding boxes 
into a set of disjoint bounding boxes

● All data transfers are done in terms of 
bounding boxes



Overview of BBMM



Data allocation scheme



Buffer Management

● Two lists per GPU
○ inuse list
○ unused list

● Each bounding box has 
an associated usage 
count

● Flags to indicate read-
only/read-write etc



Important features of the Buffer 
Manager

● Inter-tile data reuse
○ Reuse data already present on the GPU

● Box-in/box-out
○ Ability to make space on the GPU when it runs out of 

memory
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Inter-GPU coherency
● Based on our previous work:
       Roshan Dathathri, Chandan Reddy, Thejas Ramashekar, and Uday
         Bondhugula. Generating Efficient Data Movement Code for  
         Heterogeneous Architectures with Distributed Memory. In ACM PACT
         2013.

● Identify the data to be communicated from a source tile 
due to flow (RAW) dependences called the Flow-out set

● Further refine the Flow-out set using a technique called 
source-distinct-partitioning

● Eliminates both unnecessary and duplicate data 
transfers

● The scheme has been demonstrated to work well on 
both distributed memory and heterogeneous systems



Inter-GPU coherency (cont)

N=8, k=1
CPU’s copy

communication 
set for k=1

Tile1 executed 
on GPU1

Tile2 
executed 
on GPU2

Data for 
Tile2 in k=1

Data for Tile1 
in k=1● BBMM extracts the flow-out 

sets as flow-out bounding 
boxes



Inter-GPU coherency (cont)
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Inter-GPU coherency (cont)

N=8, k=1
CPU’s copy

communication 
set for k=1

Tile1 executed 
on GPU1

Tile2 
executed 
on GPU2

Data for 
Tile2 in k=1

Data for Tile1 
in k=1● BBMM extracts the flow-out 

sets as flow-out bounding 
boxes

● The flow-out bounding box of 
a tile is copied out from the 
source GPU onto the host 
CPU

● If any other GPU contains 
the same bounding box, it is 
updated with a flow-in 
transfer

● If no GPU currently has that 
bounding box, the updated 
data is retained on the CPU
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Implementation

● The compile-time component integrated into polyhedral 
source-to-source transformer - Pluto

● The input to the compile-time is the sequential C code 
containing a set of affine loop nests

● Pluto creates a tiled and parallelized version of the input 
code

● BBMM’s compile-time component takes this tiled and 
parallelized code as input and generates the following:
○ A set of initial and flow-out bounding boxes
○ The code similar to the host code structure shown 

earlier
● The runtime component is implemented as stand-alone
      C library.
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Evaluation and Results

● Setup
○ A multi-GPU machine consisting of 3 NVIDIA Tesla 

c2050 (fermi) GPUs and 1 NVIDIA Tesla K20 (Kepler) 
with 2.5 GB of memory each

○ A 12-core CPU system as the host
● Benchmarks
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Evaluation Parameters

● Overhead of the runtime library
● Comparison of data allocation sizes
● Performance with data scaling
● Comparison with manually written code
● Performance with box-in/box-out
● Benefits of inter-tile data reuse
● Performance with access function split



Overhead of runtime library

total_execution_time = memory_mgmt_time + compute_time + flowout_time 
                                  + flowin_time + writeout_time

overhead_percentage = (memory_mgmt_time / total_execution_time) * 100

● For all programs, the runtime overhead was less than 
0.1% of the total execution time of the program 
(hence insignificant) 



Comparison of data allocation sizes

● Up to 75% reduction on 
a 4-GPU machine 
compared to convex 
bounding box scheme

● Equal to the exact data 
sizes required (manually 
computed) for all cases



Performance with data scaling
● Data scaling similar to weak 

scaling but with emphasis on 
data size (memory utilization) 
rather than on problem size 
(computation)

● Hence we consider the per-
iteration speedup

● The per-iteration time includes 
all overhead: data allocation 
time, compute time, flow-out 
time, flow-in time and write-out 
time

● BBMM affects all the above 
except compute time

● Mean speedup of 0.94 
indicating near-ideal speedup



Comparison with manually written 
code

● Manual code has following 
optimizations:
○ Optimized to have 

theoretically minimum data 
allocation sizes and 
coherency volume

○ Reuse exploitation was 
theoretical maximum

● BBMM at least 88% as 
efficient as manual 
OpenCL code

● Outperforms the manual 
OpenACC code



Benefit of box-in/box-out

● Significant performance 
improvements with tiles 
that have sufficient 
compute-to-copy ratio

● Without it, significant 
performance degradation

● With right tiling strategy, 
the feature can allow 
applications to work with 
data sizes significantly 
larger than available GPU 
memory



Compute-Copy Overlap

● Hide the data movement 
overhead within 
computation time

● Split the computation 
allocated to a GPU into 
multiple tiles

● Register a callback to be 
called at the completion of 
each tile

● In the callback perform the 
CopyOut() and CopyIn()

● CopyIn() does not conflict 
because we work on a 
distributed parallel loop

Time

Without
compute-copy
overlap

With
compute-copy
overlap

kernel execution copyout copyin

SINGLE LARGE TILE

TILE 1 TILE 2 TILE 3



Maximizing Compute-Copy Overlap

Time

Without
compute-copy
overlap

With
compute-copy
overlap

kernel execution copyout copyin

SINGLE LARGE TILE

TILE 1 TILE 2 TILE 3

Time

Without
Tile reordering

With
Tile reordering

kernel execution copyout copyin

TILE 1 TILE 2 TILE 3

TILE 2 TILE 3TILE 1

COPYOUT FROM
TILE 2

● Sort the tiles based on size 
of the CopyOut data

● Schedule them in the 
sorted order (largest 
copyout size first)
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Conclusion
● We presented a fully automatic data allocation and memory management 

framework for affine loop nests on multi-GPU machines
● Data allocation, buffer management, inter-GPU coherency were all done at 

the granularity of bounding boxes
● On a 4-GPU machine our scheme was able to:

○ Achieve allocation size reductions of 75% compared existing schemes
○ Comparison to manual OpenCL and OpenACC code showed:

■ Our code yielded a performance of at least 88% of manual OpenCL 
code

■ Outperformed OpenACC code in all the cases
○ Achieve excellent data scaling 

● All the above achieved with an insignificant runtime overhead of 0.1%
● Our work is suited to any compiler/runtime system targeting GPUs 
● Can bridge the data allocation gap that exists in programming these systems
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Structure of the generated host code



Structure of the generated kernel 
code



Performance with inter-tile reuse 

● compared to 
performance of the 
same code without 
reuse

● mean speedup of 
5.4x with maximum 
speedup of upto 
85x



Performance with access function 
split

● compared to performance 
of code without splits

● stencils did not undergo 
performance degradation

● floyd in the worst case, 
suffered 40% 
performance loss. But still 
much better compared to 
CPU execution times
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