Automatic Data
Allocation, Buffer
Management and Data
movement for Multi-GPU
Machines

Thejas Ramashekar

MSc Engg (Thesis Defence)
Advisor: Dr. Uday Bondhugula
Indian Institute of Science

A Typical HPC Setup

- North Bridge I I DDR RAM

eR CPU
[z / Gz]
[GPUN | [GPUN |

Network
CPU CPU
[z]
[GPUN |

Multi-GPU Machine

%

%

CPU

GPU1

— GPU2

GPUN

‘'R

Multi-GPU Setup - Key properties

e Distributed memory architecture

Multi-GPU Setup - Key properties

e Distributed memory architecture
e Limited GPU memory (512 MB to 6 GB)

Multi-GPU Setup - Key properties

e Distributed memory architecture
e Limited GPU memory (512 MB to 6 GB)
e Limited PClex bandwidth (Max 8 GB/s)

Affine loop nests

e Loop nests which have affine bounds and
the array access functions in the
computation statements are affine functions
of outer loop iterators and program
parameters

Affine loop nests

e Loop nests which have affine bounds and
the array access functions in the
computation statements are affine functions
of outer loop iterators and program
parameters

e egQ: stencils, linear-algebra kernels, dynamic
programming codes, data mining
applications

Affine loop nests

e Loop nests which have affine bounds and the
array access functions in the computation
statements are affine functions of outer loop
iterators and program parameters

e eg: stencils, linear-algebra kernels, dynamic
programming codes, data mining applications

e e(g: Floyd-Warshall

affine bounds affine access function

for (k=0; ; k++) /*= outer serial loop */
for (i=0; i<N; i /# outer most parallel loop =
for (j=0; j<N; j++)

path[i][jl=((path[i][k]+path[k][j])<path[i][j])?path[i][k]+path[k][j]:path[i][]j];

Running an affine loop nest on
multi-GPU machine

Serial C program B 1N
containing one or

more affine loop o _
nests Distribute tiles : Allocate data for : Perform : Perform inter-GPU
among the GPUs : each Tile : computations - coherency
. : : eoeooOo0C
- - cecnanooce
Extra.ct parallelism - : S—
- cecmaocc
and tile . 20000000
- ocumaocc
@io3cozo - aocodaoc
@i03c0zo - eocuyoce
R) . R L N B
TR R . ::::::::
parallel & : @ =il
dimensign @ ceacozeca : vvoooovew
coacozcCo - vveowvweve
, ceo9scconceo - LR R
[——— PovOoOoOVvVLQo Ao OGan
Wiwerwew a [:v.°°'°‘ k...go...
LU L LU B V) asaosoccecer
. LEL N RS B) 99000 ccCn
Serlal\ a0 ean6a proooouy
dimension el

Next serial iterétion

Structure of an affine loop nest for
multi-GPU machine

OO0 Tt WhN =

void gpu-mgmt_thread(Device * gpu)
{

for(tid=gpu— >stile;tid <=gpu—>etile;tid++) {
allocate_data(gpu, tid);
launch kernel(gpu, tid);
perform_coherency(gpu, tid);
}
}

int main()

for(ser=0; ser < NUM_ITER; ser++) {
for(i=0;i<NUM_GPUS;i++) {
distribute_parallel loop(i,&gpulil.stile,&gpuli] etile
spawn_thread(&gpulil, gpu-mgmt_thread);

}
synchronize_mgmt_threads();
aggregate _results();

/ | more affine loop nests can follow with the same structure

}

GPU 1

Distribute a

parallel loop
tiles among the @ GPU 2

GPUs SLPz g

Tile 1

Tile 2

Allocate data ¢ .

required by

: &
each tille a

GPU TO

seses222 Coherency
data

Perform from Tlle 1

inter-gpu
coherency @

GPU COPY
(flow-in)

The need for a multi-GPU memory
manager

e Manual programming of multi-GPU systems
IS tedious, error-prone and time consuming

The need for a multi-GPU memory
manager

e Manual programming of multi-GPU systems
Is tedious, error-prone and time consuming

e EXxisting works are either:
o Manual application specific techniques

or

o Have inefficiencies in terms of data allocation sizes,
reuse exploitation, inter-GPU coherency etc

Design goals for a multi-GPU
memory manager

e [he desired abilities for a multi-GPU
memory manager are:

Design goals for a multi-GPU
memory manager

e [he desired abilities for a multi-GPU

memory manager are.
o To identify and minimize data allocation sizes

Design goals for a multi-GPU
memory manager

e [he desired abilities for a multi-GPU

memory manager are:
o To identify and minimize data allocation sizes
o To reuse data already present on the GPU

Design goals for a multi-GPU
memory manager

e [he desired abilities for a multi-GPU

memory manager are:

o To identify and minimize data allocation sizes
o To reuse data already present on the GPU

o To keep data transfers minimal and efficient

Design goals for a multi-GPU
memory manager

e [he desired abilities for a multi-GPU

memory manager are:

o To identify and minimize data allocation sizes

o To reuse data already present on the GPU

o To keep data transfers minimal and efficient

o To achieve all the above with minimal overhead

Bounding Boxes

e Bounding box of an access function, is the
smallest hyper-rectangle that encapsulates
all the array elements accessed by it

Bounding Boxes

e Bounding box of an access function, is the
smallest hyper-rectangle that encapsulates
all the array elements accessed by it

for (k=0; k<N; k++) /* outer serial loop #*/
for (i=0; i<N; i++) /* outer most parallel loop =/

for (j=0; j<N; j++)

path[i][j]=((path[i][k]+path[k][jD<path[i][j])?path[i][k]+path[k][j]:path[1][]];

[1 Computation Tile [Exact Accessed Region [] Bounding Box

tile size=4x 8

i

(a) Iteration space of
a tile (size: 4 x 8, k=T7)

path[i]1[j1 path[i] [k]

0O0OO0OO0OO0OOO(O
O00O0OO0OO0OO0OOO
0000OO0O0OO|O

|©00000O0\0
i

00000000
00000000

0O 00O0O0O0O0 Opath
©@o0o000 00 0 lkllj]

i

(b) Exact array regions
accessed by the tile

path[i] [j]1 path[i] [k]
0000O0OO0OO|0
00000O0OO|O
00000O0O0|0
000000O0|0
00000000

00000000

00000 OO0 O0path
[0 00000 0 olk][j]

J
(c) bounding boxes

Bounding Boxes

e Bounding box of an access function, is the
smallest hyper-rectangle that encapsulates
all the array elements accessed by it

for (k=0; k<N; k++) /* outer serial loop #*/
for (i=0; i<N; i++) /* outer most parallel loop =/
for (j=0; j<N; j++)
path[i][j]=((path[i][k]l+path[k][jl)<path[i][j])?path[i][k]+path[k][j]:path[i][]j];

[Comp i 1 Exact Accessed Region [] Bounding Box

tile size=4x 8

path[i]1[j]1 path[i] [k path[il[j] path[i] [k]
ooooooD 0000O0O0O0|0

00000O0O0O|O 0000O0O0O0O|O
0000OO0O0OO|O 000O0OO0OOO0O|O
O0000O0O0\0 ||©00000O0|0

oooooooaon 000O0O0OO0OO0ODOO 000O0OO0OOODOO
oooooooaon 000000O0O0 000000O0O0
OOoOooOoooaon O 00O0O0O0 O O0path O 00O0O0O0O0 O0path
oooooooao ©@ 00000 0 0 lkllj] [0 0000 0 0 o]k][j]
J J J
(a) Iteration space of (b) Exact array regions (c) bounding boxes

a tile (size: 4 x 8, k=7) accessed by the tile

Bounding Boxes

e Bounding box of an access function, is the
smallest hyper-rectangle that encapsulates
all the array elements accessed by it

for (k=0; k<N; k++) /* outer serial loop #*/
for (i=0; i<N; i++) /* outer most parallel loop =/
for (j=0; j<N; j++)
path[i][j]=((path[i][k]l+path[k][j])<path[i][j])?path[i][k]+path[k][j]:path[i][]j];

[1 Computation Tile

tile size=4x 8 ath[i] [k]

000O0OO0O
0000O0O0O0O|O
0000O0O0O0O|O
0O000OO0O0OO0O|O

0o000O0O0

i

(a) Iteration space of
a tile (size: 4 x 8, k=T7)

00000000
0O 00O0O0O0O0 Opath
©@o0o000 00 0 lkllj]

i

(b) Exact array regions
accessed by the tile

00000000
00000000
00000 OO0 O0path
[0 00000 0 olk][j]

J
(c) bounding boxes

Bounding Boxes

e Bounding box of an access function, is the
smallest hyper-rectangle that encapsulates
all the array elements accessed by it

for (k=0; k<N; k++) /* outer serial loop #*/
for (i=0; i<N; i++) /* outer most parallel loop =/
for (j=0; j<N; j++)
path[i][j]=((path[i][k]l+path[k][j])<path[i][j])?path[i][k]+path[k][j]:path[i][]j];

tile size =4 x 8 path[i][j] path[i] [k] pat i1 path[{] k]

ODooooooao [:»ooooooﬂ yﬁoooooo

Dooooooan O0O000O0OO|O0
oDoooooooan O0O000O0OO|O
oooooooaon

000O0OO0O0OO

|©00000O0\0 ||©O 000000

o
o
ooooooog

oOoooooooaon 'OOOOOOOO

oOoooooooan 00000O0O0 00000O00O0
Dooooooao 0 0000 0o path 0 00O0O0O0 O0 O path
oooooooao ©@ 00000 0 0 lkllj] [0 0000 0 0 o]k][j]

i Vi J
(a) Iteration space of (b) Exact array regions (c) bounding boxes
a tile (size: 4 x 8, k=7) accessed by the tile

Key insights on bounding boxes

e Two key insights:

Key insights on bounding boxes

e Two key insights:
o Bounding boxes can be subjected to standard set
operations at runtime with negligible overhead

Key insights on bounding boxes

e Two key insights:
o Bounding boxes can be subjected to standard set
operations at runtime with negligible overhead
o GPUs have architectural support for fast rectangular
copies

Set Operations on Bounding Boxes

bb convex union(BB1,BB2) = BB3
BB1 BB3

BB2

Set Operations on Bounding Boxes

bb convex union(BB1,BB2) = BB3
BB1 BB3

BB2

bb simple union(BB1,BB2) = BB1 + BB2
BB1 BB2 BB1

BB2

Set Operations on Bounding Boxes

bb convex union(BB1,BB2) = BB3
BB1 BB3

BB2

bb simple union(BB1,BB2) = BB1 + BB2
BB1 BB2 BB1

BB2

bb_intersection(BB1,BB2) = BB3
BB1 BB3

BB2

Set Operations on Bounding Boxes

bb convex union(BB1,BB2) = BB3 bb_subtract(BB1,BB2) = BB3
BB1 BB3 BB1 BB3

bb simple union(BB1,BB2) = BB1 + BB2
BB1 BB2 BB1

BB2

bb_intersection(BB1,BB2) = BB3
BB1 BB3

BB2

Set Operations on Bounding Boxes

bb convex union(BB1,BB2) = BB3 bb_subtract(BB1,BB2) = BB3
BB1 BB3 BB1 BB3

BB2 BB2
bb simple union(BB1,BB2) = BB1 + BB2 bb is subset bb is subset
BB1 BB2 BB1 (BB1,BB2)=No (BB1,BB2)=Yes
BB1 BB1

BB2

BB2

bb_intersection(BB1,BB2) = BB3
BB1 BB3

BB2

Set Operations on Bounding Boxes

bb convex union(BB1,BB2) = BB3 bb_subtract(BB1,BB2) = BB3
BB1 BB3 BB1 BB3

BB2 BB2
bb simple union(BB1,BB2) = BB1 + BB2 bb is subset bb is subset
BB1 BB2 BB1 (BB1,BB2)=No (BB1,BB2)=Yes
BB1 BB1

BB2

BB2

bb_intersection(BB1,BB2) = BB3
BB1 BB3

Negligible runtime overhead

BB2

Architectural support for rectangular
transfers

e Architectural support for T comisuous bte rad N XN By ——
) _IK)I]-OOI] 1guous (st 're anguiarread - X yies e !
reCtangL‘IIar tranSfe s on - lower m'angularelgﬁzgﬁ:?l!eﬂglj]fwf(lﬁdl V; g::ﬁ:
GPU 12 r
e Support from
programming models such

as OpenCL and CUDA

eg: clEnqueueReadBufferRect() 04
and clEnqueueWriteBufferRect() °*

Numbers tqken on NVIDIA Tesla ¢2050

08

Time (seconds)

06

0
512

The Bounding Box based memory
manager (BBMM)

e Compiler-assisted runtime scheme

The Bounding Box based memory
manager (BBMM)

e Compiler-assisted runtime scheme

e Compile-time uses static analysis to identify
regions of data accessed by a loop nest in
terms of bounding boxes

The Bounding Box based memory
manager (BBMM)

e Compiler-assisted runtime scheme

e Compile-time uses static analysis to identify
regions of data accessed by a loop nest in
terms of bounding boxes

e Runtime refines these initial bounding boxes
iInto a set of disjoint bounding boxes

The Bounding Box based memory
manager (BBMM)

Compiler-assisted runtime scheme
Compile-time uses static analysis to identify
regions of data accessed by a loop nest in
terms of bounding boxes

Runtime refines these initial bounding boxes
iInto a set of disjoint bounding boxes

All data transfers are done in terms of
bounding boxes

Overview of BBMM

c é“ O RN L
LU UL wle
— # —_—— e e e oo dele
L =le
mmmoodale
| | | emsssasa
Sequential C Pluto Tiled and
code with affine parallelizer Parallelized
loop nest code
©@o0000000 c0000000
cococoooo0o0 cococooocoo o suct: o)
oco0ococoo0O0o Seseeee e [ETU TS EE R
©00000DO00 ©c0oo00o0000 e
cocococoooo0 c0000000 F
©oo0ooco0oo0oo00o0 coo0oo0o000O0
0000000 ©o0oo0oo0o000O0
©o0000000C ©o0000000Q —_—
Initial bounding box flow-out (coherency) parameterized
extraction bounding box extraction kernel generation
\ ?MM compile-time component /

¥

GPU kernel code

. Host code generated PR I
in terms of parameterized i
bounding boxes and BBMM
runtime library calls

BBMM runtime library

CO0Q0 000 eooocecsaa
roaroano ooo0o0o0o0900
CO090 0900 cQooeocsaa
EEX-X N X-XN-X- ©@ooo0o000
coacease cascesaa
coacoarcao 9oocccoc000
cooco000 eoooeaaa
woAaLcOaLT Doocecoao
Generated Disjomt Buffi Inter u
host bounding box UL 9P
licati computation Management coherency
appacation OpenCL kemel
parameterized
T T for BBMM
Buffer Data
managerment movement
functions functions
Execute Execute

on the host (Set Operations on hyper-rectangles) on GPUs
CPU

Data allocation scheme

for (k=0; k<N; k++) /#* outer serial loop =*/
for (i=0; i<N; i++) /#* outer most parallel loop =*/
for (j=0; j<N; j++)
path[i][j]=((path[i][k]l+path[k][jD<path[i][j])?path[i][k]+path[k][j]:path[i][j];

Computation Tile\ [Exaqgt Accessed Region [_] Bounding Box

tile size =4 x 8 path[il[j] pghlil[x] path(il [j1 path[il (k] BBO
DCooooooaon ocooooo0o0|o coooo0o0o0O0
cooooooan ocoooo0o0o0|o ©co0o0o0o0000
ooooooaoan cooo0oo0o0o0|o coo0o0o0o00o0
|l oooooaa i |loooooo0olo |loooo0oo0o0o0o0
‘"aeoooooa ! ‘f oo oco0oo0o0o0o0 ‘llooooo0oo0o0o
ooooooaoan coo0o0o0o0o0o0 coo0o0o0o00o0
oooooooan © 0000 OO0 Opath co0o0o0o000O0
ODooooooao [x][3] [0 000000 o]k][j] 00000000
(a) Iteration space of (b) Exact array regions (c) Initial bounding boxes (d) Convex bounding
a tile (size: 4 x 8, k=T7) accessed by the tile box
BBO path array
path 500 F
900600000 i, coo0oo0o0o0o00 700}
©o0o0o0o0o0o0o0 ©co0o0o0o0000 00 . oo
Oo0o0o00o0O0O0 path /o o000 o000 .]
|loeeoo 00000l T, | ©o0000000 E 2 o}
co0co0o0o0o000 coo0o0o0o000 r .
© 000000 O0path coco0o0o0o00o0 @ 2
©0 0000 o0 o o [k][j] ocoo0oo0o0o0o00 100 |
[o o o000 o0 0|lBB1 ocoo0oo0oo0o0o0O0
Array Exact Convex Disjoint N Exact Block—Coherency BEMM
J J Data Allocation Schemes Coherence Schemes
(e) Disjoint bounding (f) flow-out (g) Per-tile data (h) Per-iteration
boxes (coherency) bounding allocation size coherency volume

box (N=8,k=1) comparison comparison

Buffer Management

e Two lists per GPU
o inuse list
o unused list

e Each bounding box has
an associated usage
count

e Flags to indicate read-
only/read-write etc

Device list (global) Inuse list (per array)

GPU 1

arrl

GPU 2

GPU 3

arr2 arr3

arrN

O O O

BB0

BB1

BB2

BB0

BB1

+dimension
+bounds in each dim
-—usage count

+ flags(read—write—cleanup)
-+next

> BB3 [BB }T>| BB5 |

Unused list (one for all arrays)

Important features of the Buffer
Manager

e Inter-tile data reuse
o Reuse data already present on the GPU

e Box-in/box-out

o Ability to make space on the GPU when it runs out of
memory

Inter-GPU coherency

e Based on our previous work:
Roshan Dathathri, Chandan Reddy, Thejas Ramashekar, and Uday

Bondhugula. Generating Efficient Data Movement Code for
Heterogeneous Architectures with Distributed Memory. In ACM PACT

2013.

Inter-GPU coherency

e Based on our previous work:
Roshan Dathathri, Chandan Reddy, Thejas Ramashekar, and Uday

Bondhugula. Generating Efficient Data Movement Code for
Heterogeneous Architectures with Distributed Memory. In ACM PACT

2013.
e I|dentify the data to be communicated from a source tile

due to flow (RAW) dependences called the Flow-out set

Inter-GPU coherency

e Based on our previous work:

Roshan Dathathri, Chandan Reddy, Thejas Ramashekar, and Uday
Bondhugula. Generating Efficient Data Movement Code for
Heterogeneous Architectures with Distributed Memory. In ACM PACT
2013.
e I|dentify the data to be communicated from a source tile
due to flow (RAW) dependences called the Flow-out set
e Further refine the Flow-out set using a technique called

source-distinct-partitioning

Inter-GPU coherency

e Based on our previous work:

Roshan Dathathri, Chandan Reddy, Thejas Ramashekar, and Uday
Bondhugula. Generating Efficient Data Movement Code for
Heterogeneous Architectures with Distributed Memory. In ACM PACT
2013.

e I|dentify the data to be communicated from a source tile
due to flow (RAW) dependences called the Flow-out set

e Further refine the Flow-out set using a technique called
source-distinct-partitioning

e Eliminates both unnecessary and duplicate data
transfers

Inter-GPU coherency

e Based on our previous work:

Roshan Dathathri, Chandan Reddy, Thejas Ramashekar, and Uday
Bondhugula. Generating Efficient Data Movement Code for
Heterogeneous Architectures with Distributed Memory. In ACM PACT
2013.
e I|dentify the data to be communicated from a source tile
due to flow (RAW) dependences called the Flow-out set
e Further refine the Flow-out set using a technique called
source-distinct-partitioning
e Eliminates both unnecessary and duplicate data

transfers
e [he scheme has been demonstrated to work well on

both distributed memory and heterogeneous systems

Inter-GPU coherency (cont)

Data for Tile1

e BBMM extracts the flow-out coccscsy

. 0 0 0 0 0 0 0 o] communication
sets as flow-out bounding 0000000 0| ot for k=1
boxes N=8, k=1

0000OO0OO0OO0OO
0000O0OO0OO0OO
00000OO0OO0O
0o000OO0OO0OO0O

CPU,SCOpy Ooooooon .

. o oooaoaoaoea Tilelexecuted
000O0O0OO0OO0OO oOooooooan
©0000000O oooooaooa ONGPU1
0000O0OO0OO0OO % - - - OB - - B -

O OO0 OO0 O O O ™ay, OOoOOoooooaon
000O0O0OO0OOO0OO (- T - - - I - N - - -]
000000O0O0 oo OoGoOoGOooan
0000O0OO0OO0OO
0000OO0OO0OO0OO
0000O0O0OO0OO
[c0oo0oo00o0o00
0000O00O0OO0
00000000 Datafor
©000000 0| Tile2in k=1
0000O0OO0OO0OO
00000O0O0O
000000O00O0
O o oo o ooao
O oo ooooaon H
O o oo oo oo
mooo2 822 executed
O Oooooooao onGPU2
O o oooooao
O o oo oooao

Inter-GPU coherency (cont)

Data for Tile1
e BBMM extracts the flow-out Soesooay

. 0 0 0 0 0 0 0 o] communication
sets as flow-out bounding 0000000 0| ot for k=1
boxes N=8, k=1

0000O0OO0OO0O

0000O0OO0OO0OO
00000OO0OO0O
0o000OO0OO0OO0O

e The flow-out bounding box of 7% . TEEETEEY mied oxeaues

a tile is copied out from the :seess0e LS
source GPU onto the host
CPU S esceoes

0000O0OO0OO0O

o0o0o0o000o0o0 Datafor
000000009 Tje2ink=1

00O0O0O
000O0O
000O0O
00O0O0O
00O0O0O
000O0O
000O0O
000O0O

0000OO0OO0OO0OO
0000O0OO0OO0OO
00000OO0OO0O

2I25225% Tie2
nnnnnnnn executed

uuuuuuuu on GPU2

Inter-GPU coherency (cont)

e BBMM extracts the flow-out
sets as flow-out bounding
boxes

The flow-out bounding box of
a tile is copied out from the
source GPU onto the host
CPU

If any other GPU contains
the same bounding box, it is
updated with a flow-in
transfer

If no GPU currently has that
bounding box, the updated
data is retained on the CPU

N=8, k=

CPU’s copy

0000000 O)|

0000O0O0OO0OO0O
000000O00O
0000O0OO0OO0OO0O
00000O0O0O
0000O0OO0OO0O
0000O0OO0OO0OO
00000OO0OO0O
0o000OO0OO0OO0O

1

00000000
[0co0oo00o00o0O0

0000O0OO0OO0O
000000O0O0
0000O0OO0OO0OO
0000OO0OO0OO0OO
0000O0OO0OO0OO
00000OO0OO0O

Data for Tile1
in k=1

communication
set for k=1

Tile1 executed
on GPU1

Data for
Tile2 in k=1

Tile2
executed
on GPU2

Implementation

e The compile-time component integrated into polyhedral
source-to-source transformer - Pluto

Implementation

e The compile-time component integrated into polyhedral
source-to-source transformer - Pluto

e The input to the compile-time is the sequential C code
containing a set of affine loop nests

Implementation

e The compile-time component integrated into polyhedral
source-to-source transformer - Pluto

e The input to the compile-time is the sequential C code
containing a set of affine loop nests

e Pluto creates a tiled and parallelized version of the input
code

Implementation

The compile-time component integrated into polyhedral
source-to-source transformer - Pluto

The input to the compile-time is the sequential C code
containing a set of affine loop nests

Pluto creates a tiled and parallelized version of the input
code

BBMM'’s compile-time component takes this tiled and
parallelized code as input and generates the following:
o A set of initial and flow-out bounding boxes

o The code similar to the host code structure shown in
Algorithm 4.

Implementation

e The compile-time component integrated into polyhedral
source-to-source transformer - Pluto

e The input to the compile-time is the sequential C code
containing a set of affine loop nests

e Pluto creates a tiled and parallelized version of the input
code

e BBMM'’s compile-time component takes this tiled and
parallelized code as input and generates the following:
o A set of initial and flow-out bounding boxes

o The code similar to the host code structure shown
earlier

e The runtime component is implemented as stand-alone
C library.

Evaluation and Results

Evaluation and Results

o Setup
o A multi-GPU machine consisting of 3 NVIDIA Tesla

c2050 (fermi) GPUs and 1 NVIDIA Tesla K20 (Kepler)

with 2.5 GB of memory each
o A 12-core CPU system as the host

Evaluation and Results

o Setup

o A multi-GPU machine consisting of 3 NVIDIA Tesla
c2050 (fermi) GPUs and 1 NVIDIA Tesla K20 (Kepler)

with 2.5 GB of memory each
o A 12-core CPU system as the host

e Benchmarks

Program | Source Dep pattern | A | B Arlx?;;zaszl:: on 18?21?3?GB) D| E F

floyd Polybench | non-uniform 1 2 16384 x 16384 2.0 2 | yes| 0.05%
heat2d Pochoir uniform 2 2 12288 x 12288 2.25 4 | yes| 0.10%
fdtd2d Polybench uniform 3 2 | 10240 x 10240 2.4 2 | yes| 0.06%
heat3d Pochoir uniform 2 3 512x512x512 2.0 4 | yes| 0.04%
lu Polybench | non-uniform 1 2 16384 x 16384 2.0 3| yes| 0.07%
adi Polybench uniform 3 2 8192 x 8192 1.5 2 | yes| 0.01%
mvt Polybench EP 3 2 | 20480 x 10240 1.5 1| no | 0.01%
bscholes | NVIDIA EP 3 1 67,108,864 1.5 1| no | 0.01%

A: number of arrays. B: maximum dimensionality of arrays C: bounding box
type chosen by our algorithm D: maximum number of bounding boxes for any array
E: subsumed bounding boxes present? F: BBMM runtime overhead as a percentage of

overall execution time

Evaluation Parameters

Evaluation Parameters

e Overhead of the runtime library

Evaluation Parameters

e Overhead of the runtime library
e Comparison of data allocation sizes

Evaluation Parameters

e Overhead of the runtime library
e Comparison of data allocation sizes
e Performance with data scaling

Evaluation Parameters

Overhead of the runtime library
Comparison of data allocation sizes
Performance with data scaling
Comparison with manually written code

Evaluation Parameters

Overhead of the runtime library
Comparison of data allocation sizes
Performance with data scaling
Comparison with manually written code
Performance with box-in/box-out

Evaluation Parameters

Overhead of the runtime library
Comparison of data allocation sizes
Performance with data scaling
Comparison with manually written code
Performance with box-in/box-out
Benefits of inter-tile data reuse

Evaluation Parameters

Overhead of the runtime library
Comparison of data allocation sizes
Performance with data scaling
Comparison with manually written code
Performance with box-in/box-out
Benefits of inter-tile data reuse
Performance with access function split

Overhead of runtime library

total execution_time = memory _mgmt _time + compute_time + flowout time
+ flowin_time + writeout _time

overhead percentage = (memory_mgmt_time / total _execution _time) * 100
e For all programs, the runtime overhead was less than

0.1% of the total execution time of the program
(hence insignificant)

Comparison of data allocation sizes

100%

e Up to 75% reduction on
a 4-GPU machine
compared to convex
bounding box scheme

e Equal to the exact data
sizes required (manually
computed) for all cases

80% -

[] Exact data size required
60% F------- M Size of convex bounding box
B Size of disjoint bounding boxes

40% -

20% -

Maximum allocation sizes on each GPU

0%

floyd heat2d/3d,fdtd2d adi

Benchmarks

Performance with data scaling

e Data scaling similar to weak 3
scaling but with emphasis on 25 e T T -
data size (memory utilization) 2L B 4 GPUS_ dX datastze oo |
rather than on problem size
(computation)

e Hence we consider the per-
iteration speedup

e The per-iteration time includes ¥ THoyd heat2d fdid2d heat3d ln adi _ mvt bscholes mean
all overhead: data allocation Benchmarks
time, compute time, flow-out
time, flow-in time and write-out
time

e BBMM affects all the above
except compute time

e Mean speedup of 0.94
indicating near-ideal speedup

Per—iteration speedup

Comparison with manually written

code

1.2

e Manual code has following
optimizations:

o Optimized to have
theoretically minimum data
allocation sizes and
coherency volume

Speedup over manual OpenCL code

o Reuse exploitation was 0
theoretical maximum

e BBMM at least 88% as N

efficient as manual 5 s

OpenCL code T,

e Outperforms the manual T s

OpenACC code -

B 2 GPUs — 2X data size
[l 4 GPUs — 4X data size

floyd heat2d bscholes

Benchmarks

26.7 26.6

[l 2 GPUs - 2X data size
[4 GPUs — 4X data size

floyd heat2d bscholes

Benchmarks

Benefit of box-in/box-out

e Significant performance
iImprovements with tiles
that have sufficient
compute-to-copy ratio

e Without it, significant
performance degradation

e With right tiling strategy,
the feature can allow
applications to work with
data sizes significantly
larger than available GPU
memory

Speedup over a 12—core system

Total execution time (seconds)

12

10 |ovveemeeneee

[0 1 GPU 6GB data size (>2X)
B 2 GPUs 12 GB data size (>4X)

.|l 4 GPUs 24GB data size (>8X)
1 GPU memory size (X) = 2.5 GB

0
blackscholes matmul floyd
Benchmarks

10

8 W SwPULOS |
@ BBMM

6 ..
4 ...
2 ..
L ommm [

0.8GB 1.6GB 3.2GB 6.4GB 12.8GB

Data size

Compute-Copy Overlap

With

compute-co

overlap

Without

compute-co|

overlap

v mer mes mes

py

Hide the data movement
overhead within
computation time

Split the computation
allocated to a GPU into
multiple tiles

Register a callback to be
called at the completion of
each tile

In the callback perform the
CopyOut() and CopylIn()
Copyin() does not conflict
because we work on a
distributed parallel loop

Maximizing Compute-Copy Overlap

i - 1IN ® Sort the tiles based on size
ey R R of the CopyOut data

Without

comptecp ® Schedule them in the
> Time sorted order (largest
-kernel execution - copyout - copyin CO pyo ut S ize fi rSt)
Data Movement Overhead Comparison Chart
With -\ COPYOUT FROM o W e

. . overlap

110 Wio Tile

§ reordering
i S [CC overlap
Without @ with Tile
) . @ 80 -
Tile reordering ES reordering
@
E
. ~
—p Time 50

-kernel execution - copyout - copyin

1 32 64 128

Tile Sizes

Related Work

Framework Allocation granular- Memory mgmt scheme Manual / Auto #devices
ity

[Kim et al. 2011] convex bounding box virtual CPU buffer automatic multiple
[Augonnet et al. 2009] user-provided MSI-based coherency manual multiple
[Jablin et al. 2011] entire array modified runtime libraries automatic single
[Jablin et al. 2012] entire array modified runtime libraries automatic single
[Lee and Eigenmann 2010] entire array live variable analysis user-annotated single
[Pai et al. 2012] x10CUDA Rail compiler inserted checks automatic single
[Baskaran et al. 2010] entire array none automatic single
[Verdoolaege et al. 2013] entire array none automatic single
[OpenACC 2012] entire array none user-annotated single
BBMM (our) disjoint bounding boxes =~ Runtime memory manager Automatic multiple

Conclusion

e We presented a fully automatic data allocation and memory management
framework for affine loop nests on multi-GPU machines

e Data allocation, buffer management, inter-GPU coherency were all done at
the granularity of bounding boxes

Conclusion

e We presented a fully automatic data allocation and memory management
framework for affine loop nests on multi-GPU machines

e Data allocation, buffer management, inter-GPU coherency were all done at
the granularity of bounding boxes

e On a 4-GPU machine our scheme was able to:
o Achieve allocation size reductions of 75% compared existing schemes
o Comparison to manual OpenCL and OpenACC code showed:

m Our code yielded a performance of at least 88% of manual OpenCL
code

m Outperformed OpenACC code in all the cases
o Achieve excellent data scaling

Conclusion

e We presented a fully automatic data allocation and memory management
framework for affine loop nests on multi-GPU machines
e Data allocation, buffer management, inter-GPU coherency were all done at
the granularity of bounding boxes
e On a 4-GPU machine our scheme was able to:
o Achieve allocation size reductions of 75% compared existing schemes
o Comparison to manual OpenCL and OpenACC code showed:
m Our code yielded a performance of at least 88% of manual OpenCL
code
m Outperformed OpenACC code in all the cases
o Achieve excellent data scaling
e All the above achieved with an insignificant runtime overhead of 0.1%

Conclusion

e We presented a fully automatic data allocation and memory management
framework for affine loop nests on multi-GPU machines
e Data allocation, buffer management, inter-GPU coherency were all done at
the granularity of bounding boxes
e On a 4-GPU machine our scheme was able to:
o Achieve allocation size reductions of 75% compared existing schemes
o Comparison to manual OpenCL and OpenACC code showed:
m Our code yielded a performance of at least 88% of manual OpenCL
code
m Outperformed OpenACC code in all the cases
o Achieve excellent data scaling
e All the above achieved with an insignificant runtime overhead of 0.1%
e Our work is suited to any compiler/runtime system targeting GPUs
e Can bridge the data allocation gap that exists in programming these systems

Publications based on this work

1. Automatic Data Allocation and Buffer Management for Multi-GPU
Machines

Thejas Ramashekar, Uday Bondhugula, In the ACM Transactions on
Architecture and Code Optimization, Vol. 10, No. 4, Article 60, Publication
date: December 2013 . Selected for presentation at HIPEAC '14, Jan 2014,
Vienna, Austria.

2. Generating Efficient Data Movement Code for Heterogeneous
Architectures with Distributed-Memory

Roshan Dathathri, Chandan Reddy, Thejas Ramashekar, and Uday
Bondhugula, Proceedings of the 22nd International Conference on Parallel
Architectures and Compilation Techniques (PACT), September 2013.

References

Muthu Manikandan Baskaran, J. Ramanujam, and P. Sadayappan. 2010. Automatic C-to-CUDA code gen-
eration for affine programs. In CC 2010.

Cédric Bastoul. 2005. Clan: The Chunky Loop Analyzer. (2005).

Uday Bondhugula. 2013. Compiling Affine Loop Nests for Distributed-Memory Parallel Architectures. In
ACM /IEEE Supercomputing (SC ’13). ACM, Denver, Colorado, USA.

Uday Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. 2008. A Practical Automatic Polyhedral
Program Optimization System. In ACM SIGPLAN PLDI.

Daniel Chavarria-Miranda and John Mellor-Crummey. 2005. Effective communication coalescing for data-
parallel applications. In ACM SIGPLAN PPoPP.

M. Classen and M. Griebl. 2006. Automatic code generation for distributed memory architectures in the
polytope model. In IEEE IPDPS.

CUDA 2011. NVIDIA CUDA. (2011). http:/developer.nvidia.com/object/cuda.html

Roshan Dathathri, Chandan Reddy, Thejas Ramashekar, and Uday Bondhugula. 2013. Generating Efficient
Data Movement Code for Heterogeneous Architectures with Distributed Memory. In PACT 2013.

Armin GroBlinger. 2009. Precise Management of Scratchpad Memories for Localising Array Accesses in
Scientific Codes. In Compiler Construction. 236-250.

ISL 2012. Integer Set Library. (2012). Sven Verdoolaege, An Integer Set Library for Program Analysis.

Thomas B. Jablin, James A. Jablin, Prakash Prabhu, Feng Liu, and David I. August. 2012. Dynamically
Managed Data for CPU-GPU Architectures. In CGO.

Thomas B. Jablin, Prakash Prabhu, James A. Jablin, Nick P. Johnson, Stephen R. Beard, and David 1.
August. 2011. Automatic CPU-GPU Communication Management and Optimization. In ACM PLDI.

Jungwon Kim, Honggyu Kim, Joo Hwan Lee, and Jaejin Lee. 2011. Achieving a Single Compute Device
Image in OpenCL for Multiple GPUs. In ACM SIGPLAN PPoPP.

Okwan Kwon, Fahed Jubair, Rudolf Eigenmann, and Samuel Midkiff. 2012. A Hybrid Approach of OpenMP
for Clusters. In PPoPP. http://engineering.purdue.edu/paramnt/publications/ppoppl2.pdf

Seyong Lee and Rudolf Eigenmann. 2010. OpenMPC: Extended OpenMP Programming and Tuning for
GPUs. In SC 2010.

Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. 2009. OpenMP to GPGPU: a compiler framework for
automatic translation and optimization. In ACM SIGPLAN PPoPP.

NVIDIA GPU Computing SDK 2010. NVIDIA GPU Computing SDK. (2010). https://developer.nvidia.com/
gpu-computing-sdk

OpenACC 2012. OpenACC Application Programming Interface. (2012). http://www.openacc-standard.org/

OpenCL 2011. OpenCL. (2011). http://www.khronos.org/opencl/

Sreepathi Pai, R. Govindarajan, and Matthew J. Thazhuthaveetil. 2012. Fast and efficient automatic mem-
ory management for GPUs using compiler-assisted runtime coherence scheme. In ACM PACT.

References

Vikram S. Adve and John M. Mellor-Crummey. 1998. Using Integer Sets for Data-Parallel Program Analysis
and Optimization. In ACM SIGPLAN PLDI. 186-198.

Saman P. Amarasinghe and Monica S. Lam. 1993. Communication optimization and code generation for
distributed memory machines. In PLDI. 126-138.

C. Augonnet, S. Thibault, R. Namyst, and P.A. Wacrenier. 2009. StarPU: A Unified Platform for Task

Scheduling on Heterogeneous Multicore Architectures. In Concurrency and Computation: Practice and
Experience.

M. Baskaran, Uday Bondhugula, Sriram Krishnamoorthy, J. Ramanujam, A. Rountev, and P. Sadayappan.
2008. Automatic Data Movement and Computation Mapping for Multi-level Parallel Architectures with
Explicitly Managed Memories. In ACM SIGPLAN PPoPP.

Backup Slides

Data Allocation Scheme Algorithms

Algorithm 1: extract.initial bounding boxes()

Input: Computation tile £, Array a
1 S;ilnz't = ¢
2 for each read or write access function f! do
3 dp?, = get_data_polyhedron(f?)
4 bb:, = get_bounding_box(dp?)
5 add bb}, to Sinit
6 Output: Si™'t the set of initial bounding boxes

Algorithm 2: get_disjoint_bounding boxes ()

Input: S:™*" - Set of initial bounding boxes for tile and array a
1 Sgisjoint = d)

2 for each bounding box bb."*" in S."** do

3 bbT ™ = bb ™t

4 for each bounding box bblisd jp gdisjoint do

5 bb'fl'"te""s“t = bb_intersection(bb ™", bbg”J)

6 bb" ™ = bb_subtract(bb7 ", bbimieTsect)

7 add bb,“™" to SgeI ot

8

Output: S7 79" the set of disjoint bounding boxes for array a

Structure of the generated host code

Algorithm 4: Structure of generated host code for a single affine loop nest

1 for each iteration of the outer serial loop i do

2 distribute the parallel tiles of i, among the GPUs
/* below code is executed in the context of a host worker thread that manages the GPU
3 for each parallel tile t of i, allocated to GPU dev do
4 [kS =¢
5 for each array a accessed in t do
6 S, = get_disjoint_bounding_ boxes(,a)
7 for each bounding box bb in S, do
8 if /bb_present(dev, a, bb) then
9 bb_alloc(dev, a, bb)
10 bb_readin(dev, a, bb)
11 increment_usage_count(bb)
12 | S=SUS,
13 compute(t, dev, S)
14 gpu_to_cpu_flowout(t, S)
15 cpu_to_gpu_flowin(, S)
16 gpu_to_cpu-writeout(t, S)
17 for each bounding box bb in S do
18 [_ decrement_usage_count(bb)
19 bb_cleanup(dev, i)

- W

0 3O Ot

Structure of the generated kernel
code

void ComputeKernelO(int splitO, DATA_TYPE * bufO, int bufO_1bO, int bufO_ubO, int bufO_1lbl, int bufO_ubil,

{

int splitl, DATA_TYPE * bufl, int bufi_1b0, int bufl_ubO, int bufl_1bl, int bufl_ubl,)

DATA_TYPE * var_wacc_O = KERNELO_var_WACC(splitO, bufO, bufO_1bO, bufO_ubO, bufO_lbi, bufO_ubl, idxO0,
idx1);

DATA_TYPE var_racc_0 = KERNELO_var_RACC(splitl, bufl, bufil_1b0, bufl_ubO, bufi_lbl, bufi_ubl, idxO,
idx1);

// do the computation using values obtained above.
*var_wacc_0 = var_racc_0 + ...

Performance with inter-tile reuse

e compared to
performance of the
same code without
reuse

e mean speedup of
9.4x with maximum
speedup of upto
85x

without-reuse

Speedup over

[J 2 GPUs with reuse
B 3 GPUs with reuse
B 4 GPUs with reuse

10 10 10 CFE

floyd heat2d heat3d fdtd2d 1lu adi mvt bscholes mean

Benchmarks

Performance with access function

split

e compared to performance >
of code without splits

e stencils did not undergo
performance degradation

e floyd in the worst case,
suffered 40%
performance loss. But still
much better compared to
CPU execution times

Speedup over without—split

heat2d

H 1 GPU - 1X data size
[J 2 GPUs - 2X data size
[3 GPUs — 3X data size
B 4 GPUs — 4X data size
[1CPU - 4X data size

heat3d fdtd2d floyd(forced—split)

Benchmarks

Table of contents

HPC Setup

Multi-GPU Machines
Running a program on
multi-GPU machines
Role of Data allocation
and memory
management

Need for an automatic
memory manager
Design goals
Bounding boxes
Overview of BBMM
Data allocation scheme
Buffer Management

Inter-GPU coherency
Structure of the
generated code
Experimental setup
Evaluation and Results
Related Work
Conclusion and Future
work

Distributed memory paradigm

CPU

—|_GPU1
——|_GPU2

[[GPUN]

NODE

DDR RAM

=l

GPU

GLOBAL MEMORY

LOCAL
MEM

LOCAL

MEM

LOCAL
MEM

PE

PE

PE

