
Automatic Data
Allocation, Buffer
Management and Data
movement for Multi-GPU
Machines

Thejas Ramashekar
MSc Engg (Thesis Defence)
Advisor: Dr. Uday Bondhugula
Indian Institute of Science

CPU GPU1

GPU2

Network

GPU N

CPU GPU1

GPU2

GPU N

CPU GPU1

GPU2

GPU N

CPU GPU1

GPU2

GPU N

North Bridge DDR RAM

A Typical HPC Setup

Multi-GPU Machine

North
Bridge DDR RAM

CPU
GPU1

GPU2

GPU N

Multi-GPU Setup - Key properties

● Distributed memory architecture

Multi-GPU Setup - Key properties

● Distributed memory architecture
● Limited GPU memory (512 MB to 6 GB)

Multi-GPU Setup - Key properties

● Distributed memory architecture
● Limited GPU memory (512 MB to 6 GB)
● Limited PCIex bandwidth (Max 8 GB/s)

Affine loop nests

● Loop nests which have affine bounds and
the array access functions in the
computation statements are affine functions
of outer loop iterators and program
parameters

Affine loop nests

● Loop nests which have affine bounds and
the array access functions in the
computation statements are affine functions
of outer loop iterators and program
parameters

● eg: stencils, linear-algebra kernels, dynamic
programming codes, data mining
applications

Affine loop nests

● Loop nests which have affine bounds and the
array access functions in the computation
statements are affine functions of outer loop
iterators and program parameters

● eg: stencils, linear-algebra kernels, dynamic
programming codes, data mining applications

● eg: Floyd-Warshall
affine bounds affine access function

Running an affine loop nest on
multi-GPU machine

Extract parallelism
and tile

Distribute tiles
among the GPUs

Perform
computations

Allocate data for
each Tile

Perform inter-GPU
coherency

serial
dimension

parallel
dimension

Next serial iteration

Serial C program
containing one or
more affine loop
 nests

Structure of an affine loop nest for
multi-GPU machine

The need for a multi-GPU memory
manager

● Manual programming of multi-GPU systems
is tedious, error-prone and time consuming

The need for a multi-GPU memory
manager

● Manual programming of multi-GPU systems
is tedious, error-prone and time consuming

● Existing works are either:
○ Manual application specific techniques

 or
○ Have inefficiencies in terms of data allocation sizes,

reuse exploitation, inter-GPU coherency etc

Design goals for a multi-GPU
memory manager

● The desired abilities for a multi-GPU
memory manager are:

Design goals for a multi-GPU
memory manager

● The desired abilities for a multi-GPU
memory manager are:
○ To identify and minimize data allocation sizes

Design goals for a multi-GPU
memory manager

● The desired abilities for a multi-GPU
memory manager are:
○ To identify and minimize data allocation sizes
○ To reuse data already present on the GPU

Design goals for a multi-GPU
memory manager

● The desired abilities for a multi-GPU
memory manager are:
○ To identify and minimize data allocation sizes
○ To reuse data already present on the GPU
○ To keep data transfers minimal and efficient

Design goals for a multi-GPU
memory manager

● The desired abilities for a multi-GPU
memory manager are:
○ To identify and minimize data allocation sizes
○ To reuse data already present on the GPU
○ To keep data transfers minimal and efficient
○ To achieve all the above with minimal overhead

Bounding Boxes

● Bounding box of an access function, is the
smallest hyper-rectangle that encapsulates
all the array elements accessed by it

Bounding Boxes

● Bounding box of an access function, is the
smallest hyper-rectangle that encapsulates
all the array elements accessed by it

Bounding Boxes

● Bounding box of an access function, is the
smallest hyper-rectangle that encapsulates
all the array elements accessed by it

Bounding Boxes

● Bounding box of an access function, is the
smallest hyper-rectangle that encapsulates
all the array elements accessed by it

Bounding Boxes

● Bounding box of an access function, is the
smallest hyper-rectangle that encapsulates
all the array elements accessed by it

Key insights on bounding boxes

● Two key insights:

Key insights on bounding boxes

● Two key insights:
○ Bounding boxes can be subjected to standard set

operations at runtime with negligible overhead

Key insights on bounding boxes

● Two key insights:
○ Bounding boxes can be subjected to standard set

operations at runtime with negligible overhead
○ GPUs have architectural support for fast rectangular

copies

Set Operations on Bounding Boxes

Set Operations on Bounding Boxes

Set Operations on Bounding Boxes

Set Operations on Bounding Boxes

Set Operations on Bounding Boxes

Set Operations on Bounding Boxes

Negligible runtime overhead

Architectural support for rectangular
transfers

● Architectural support for
rectangular transfers on
GPU

● Support from
programming models such
as OpenCL and CUDA

 eg: clEnqueueReadBufferRect()
 and clEnqueueWriteBufferRect()

The Bounding Box based memory
manager (BBMM)

● Compiler-assisted runtime scheme

The Bounding Box based memory
manager (BBMM)

● Compiler-assisted runtime scheme
● Compile-time uses static analysis to identify

regions of data accessed by a loop nest in
terms of bounding boxes

The Bounding Box based memory
manager (BBMM)

● Compiler-assisted runtime scheme
● Compile-time uses static analysis to identify

regions of data accessed by a loop nest in
terms of bounding boxes

● Runtime refines these initial bounding boxes
into a set of disjoint bounding boxes

The Bounding Box based memory
manager (BBMM)

● Compiler-assisted runtime scheme
● Compile-time uses static analysis to identify

regions of data accessed by a loop nest in
terms of bounding boxes

● Runtime refines these initial bounding boxes
into a set of disjoint bounding boxes

● All data transfers are done in terms of
bounding boxes

Overview of BBMM

Data allocation scheme

Buffer Management

● Two lists per GPU
○ inuse list
○ unused list

● Each bounding box has
an associated usage
count

● Flags to indicate read-
only/read-write etc

Important features of the Buffer
Manager

● Inter-tile data reuse
○ Reuse data already present on the GPU

● Box-in/box-out
○ Ability to make space on the GPU when it runs out of

memory

Inter-GPU coherency
● Based on our previous work:
 Roshan Dathathri, Chandan Reddy, Thejas Ramashekar, and Uday
 Bondhugula. Generating Efficient Data Movement Code for
 Heterogeneous Architectures with Distributed Memory. In ACM PACT
 2013.

Inter-GPU coherency
● Based on our previous work:
 Roshan Dathathri, Chandan Reddy, Thejas Ramashekar, and Uday
 Bondhugula. Generating Efficient Data Movement Code for
 Heterogeneous Architectures with Distributed Memory. In ACM PACT
 2013.

● Identify the data to be communicated from a source tile
due to flow (RAW) dependences called the Flow-out set

Inter-GPU coherency
● Based on our previous work:
 Roshan Dathathri, Chandan Reddy, Thejas Ramashekar, and Uday
 Bondhugula. Generating Efficient Data Movement Code for
 Heterogeneous Architectures with Distributed Memory. In ACM PACT
 2013.

● Identify the data to be communicated from a source tile
due to flow (RAW) dependences called the Flow-out set

● Further refine the Flow-out set using a technique called
source-distinct-partitioning

Inter-GPU coherency
● Based on our previous work:
 Roshan Dathathri, Chandan Reddy, Thejas Ramashekar, and Uday
 Bondhugula. Generating Efficient Data Movement Code for
 Heterogeneous Architectures with Distributed Memory. In ACM PACT
 2013.

● Identify the data to be communicated from a source tile
due to flow (RAW) dependences called the Flow-out set

● Further refine the Flow-out set using a technique called
source-distinct-partitioning

● Eliminates both unnecessary and duplicate data
transfers

Inter-GPU coherency
● Based on our previous work:
 Roshan Dathathri, Chandan Reddy, Thejas Ramashekar, and Uday
 Bondhugula. Generating Efficient Data Movement Code for
 Heterogeneous Architectures with Distributed Memory. In ACM PACT
 2013.

● Identify the data to be communicated from a source tile
due to flow (RAW) dependences called the Flow-out set

● Further refine the Flow-out set using a technique called
source-distinct-partitioning

● Eliminates both unnecessary and duplicate data
transfers

● The scheme has been demonstrated to work well on
both distributed memory and heterogeneous systems

Inter-GPU coherency (cont)

N=8, k=1
CPU’s copy

communication
set for k=1

Tile1 executed
on GPU1

Tile2
executed
on GPU2

Data for
Tile2 in k=1

Data for Tile1
in k=1● BBMM extracts the flow-out

sets as flow-out bounding
boxes

Inter-GPU coherency (cont)

N=8, k=1
CPU’s copy

communication
set for k=1

Tile1 executed
on GPU1

Tile2
executed
on GPU2

Data for
Tile2 in k=1

Data for Tile1
in k=1● BBMM extracts the flow-out

sets as flow-out bounding
boxes

● The flow-out bounding box of
a tile is copied out from the
source GPU onto the host
CPU

Inter-GPU coherency (cont)

N=8, k=1
CPU’s copy

communication
set for k=1

Tile1 executed
on GPU1

Tile2
executed
on GPU2

Data for
Tile2 in k=1

Data for Tile1
in k=1● BBMM extracts the flow-out

sets as flow-out bounding
boxes

● The flow-out bounding box of
a tile is copied out from the
source GPU onto the host
CPU

● If any other GPU contains
the same bounding box, it is
updated with a flow-in
transfer

● If no GPU currently has that
bounding box, the updated
data is retained on the CPU

Implementation

● The compile-time component integrated into polyhedral
source-to-source transformer - Pluto

Implementation

● The compile-time component integrated into polyhedral
source-to-source transformer - Pluto

● The input to the compile-time is the sequential C code
containing a set of affine loop nests

Implementation

● The compile-time component integrated into polyhedral
source-to-source transformer - Pluto

● The input to the compile-time is the sequential C code
containing a set of affine loop nests

● Pluto creates a tiled and parallelized version of the input
code

Implementation

● The compile-time component integrated into polyhedral
source-to-source transformer - Pluto

● The input to the compile-time is the sequential C code
containing a set of affine loop nests

● Pluto creates a tiled and parallelized version of the input
code

● BBMM’s compile-time component takes this tiled and
parallelized code as input and generates the following:
○ A set of initial and flow-out bounding boxes
○ The code similar to the host code structure shown in

Algorithm 4.

Implementation

● The compile-time component integrated into polyhedral
source-to-source transformer - Pluto

● The input to the compile-time is the sequential C code
containing a set of affine loop nests

● Pluto creates a tiled and parallelized version of the input
code

● BBMM’s compile-time component takes this tiled and
parallelized code as input and generates the following:
○ A set of initial and flow-out bounding boxes
○ The code similar to the host code structure shown

earlier
● The runtime component is implemented as stand-alone
 C library.

Evaluation and Results

Evaluation and Results

● Setup
○ A multi-GPU machine consisting of 3 NVIDIA Tesla

c2050 (fermi) GPUs and 1 NVIDIA Tesla K20 (Kepler)
with 2.5 GB of memory each

○ A 12-core CPU system as the host

Evaluation and Results

● Setup
○ A multi-GPU machine consisting of 3 NVIDIA Tesla

c2050 (fermi) GPUs and 1 NVIDIA Tesla K20 (Kepler)
with 2.5 GB of memory each

○ A 12-core CPU system as the host
● Benchmarks

Evaluation Parameters

Evaluation Parameters

● Overhead of the runtime library

Evaluation Parameters

● Overhead of the runtime library
● Comparison of data allocation sizes

Evaluation Parameters

● Overhead of the runtime library
● Comparison of data allocation sizes
● Performance with data scaling

Evaluation Parameters

● Overhead of the runtime library
● Comparison of data allocation sizes
● Performance with data scaling
● Comparison with manually written code

Evaluation Parameters

● Overhead of the runtime library
● Comparison of data allocation sizes
● Performance with data scaling
● Comparison with manually written code
● Performance with box-in/box-out

Evaluation Parameters

● Overhead of the runtime library
● Comparison of data allocation sizes
● Performance with data scaling
● Comparison with manually written code
● Performance with box-in/box-out
● Benefits of inter-tile data reuse

Evaluation Parameters

● Overhead of the runtime library
● Comparison of data allocation sizes
● Performance with data scaling
● Comparison with manually written code
● Performance with box-in/box-out
● Benefits of inter-tile data reuse
● Performance with access function split

Overhead of runtime library

total_execution_time = memory_mgmt_time + compute_time + flowout_time
 + flowin_time + writeout_time

overhead_percentage = (memory_mgmt_time / total_execution_time) * 100

● For all programs, the runtime overhead was less than
0.1% of the total execution time of the program
(hence insignificant)

Comparison of data allocation sizes

● Up to 75% reduction on
a 4-GPU machine
compared to convex
bounding box scheme

● Equal to the exact data
sizes required (manually
computed) for all cases

Performance with data scaling
● Data scaling similar to weak

scaling but with emphasis on
data size (memory utilization)
rather than on problem size
(computation)

● Hence we consider the per-
iteration speedup

● The per-iteration time includes
all overhead: data allocation
time, compute time, flow-out
time, flow-in time and write-out
time

● BBMM affects all the above
except compute time

● Mean speedup of 0.94
indicating near-ideal speedup

Comparison with manually written
code

● Manual code has following
optimizations:
○ Optimized to have

theoretically minimum data
allocation sizes and
coherency volume

○ Reuse exploitation was
theoretical maximum

● BBMM at least 88% as
efficient as manual
OpenCL code

● Outperforms the manual
OpenACC code

Benefit of box-in/box-out

● Significant performance
improvements with tiles
that have sufficient
compute-to-copy ratio

● Without it, significant
performance degradation

● With right tiling strategy,
the feature can allow
applications to work with
data sizes significantly
larger than available GPU
memory

Compute-Copy Overlap

● Hide the data movement
overhead within
computation time

● Split the computation
allocated to a GPU into
multiple tiles

● Register a callback to be
called at the completion of
each tile

● In the callback perform the
CopyOut() and CopyIn()

● CopyIn() does not conflict
because we work on a
distributed parallel loop

Time

Without
compute-copy
overlap

With
compute-copy
overlap

kernel execution copyout copyin

SINGLE LARGE TILE

TILE 1 TILE 2 TILE 3

Maximizing Compute-Copy Overlap

Time

Without
compute-copy
overlap

With
compute-copy
overlap

kernel execution copyout copyin

SINGLE LARGE TILE

TILE 1 TILE 2 TILE 3

Time

Without
Tile reordering

With
Tile reordering

kernel execution copyout copyin

TILE 1 TILE 2 TILE 3

TILE 2 TILE 3TILE 1

COPYOUT FROM
TILE 2

● Sort the tiles based on size
of the CopyOut data

● Schedule them in the
sorted order (largest
copyout size first)

Related Work

Conclusion
● We presented a fully automatic data allocation and memory management

framework for affine loop nests on multi-GPU machines
● Data allocation, buffer management, inter-GPU coherency were all done at

the granularity of bounding boxes

Conclusion
● We presented a fully automatic data allocation and memory management

framework for affine loop nests on multi-GPU machines
● Data allocation, buffer management, inter-GPU coherency were all done at

the granularity of bounding boxes
● On a 4-GPU machine our scheme was able to:

○ Achieve allocation size reductions of 75% compared existing schemes
○ Comparison to manual OpenCL and OpenACC code showed:

■ Our code yielded a performance of at least 88% of manual OpenCL
code

■ Outperformed OpenACC code in all the cases
○ Achieve excellent data scaling

Conclusion
● We presented a fully automatic data allocation and memory management

framework for affine loop nests on multi-GPU machines
● Data allocation, buffer management, inter-GPU coherency were all done at

the granularity of bounding boxes
● On a 4-GPU machine our scheme was able to:

○ Achieve allocation size reductions of 75% compared existing schemes
○ Comparison to manual OpenCL and OpenACC code showed:

■ Our code yielded a performance of at least 88% of manual OpenCL
code

■ Outperformed OpenACC code in all the cases
○ Achieve excellent data scaling

● All the above achieved with an insignificant runtime overhead of 0.1%

Conclusion
● We presented a fully automatic data allocation and memory management

framework for affine loop nests on multi-GPU machines
● Data allocation, buffer management, inter-GPU coherency were all done at

the granularity of bounding boxes
● On a 4-GPU machine our scheme was able to:

○ Achieve allocation size reductions of 75% compared existing schemes
○ Comparison to manual OpenCL and OpenACC code showed:

■ Our code yielded a performance of at least 88% of manual OpenCL
code

■ Outperformed OpenACC code in all the cases
○ Achieve excellent data scaling

● All the above achieved with an insignificant runtime overhead of 0.1%
● Our work is suited to any compiler/runtime system targeting GPUs
● Can bridge the data allocation gap that exists in programming these systems

Publications based on this work
1. Automatic Data Allocation and Buffer Management for Multi-GPU

Machines
Thejas Ramashekar, Uday Bondhugula, In the ACM Transactions on
Architecture and Code Optimization, Vol. 10, No. 4, Article 60, Publication
date: December 2013 . Selected for presentation at HiPEAC '14, Jan 2014,
Vienna, Austria.

2. Generating Efficient Data Movement Code for Heterogeneous
Architectures with Distributed-Memory
Roshan Dathathri, Chandan Reddy, Thejas Ramashekar, and Uday
Bondhugula, Proceedings of the 22nd International Conference on Parallel
Architectures and Compilation Techniques (PACT), September 2013.

References

References

Backup Slides

Data Allocation Scheme Algorithms

Structure of the generated host code

Structure of the generated kernel
code

Performance with inter-tile reuse

● compared to
performance of the
same code without
reuse

● mean speedup of
5.4x with maximum
speedup of upto
85x

Performance with access function
split

● compared to performance
of code without splits

● stencils did not undergo
performance degradation

● floyd in the worst case,
suffered 40%
performance loss. But still
much better compared to
CPU execution times

Table of contents

● HPC Setup
● Multi-GPU Machines
● Running a program on

multi-GPU machines
● Role of Data allocation

and memory
management

● Need for an automatic
memory manager

● Design goals
● Bounding boxes
● Overview of BBMM
● Data allocation scheme
● Buffer Management

● Inter-GPU coherency
● Structure of the

generated code
● Experimental setup
● Evaluation and Results
● Related Work
● Conclusion and Future

work

CPU GPU1

GPU2

GPU N

GLOBAL MEMORY

LOCAL
MEM

LOCAL
MEM

LOCAL
MEM

PE PEPE

CPU

GPU
NODE

DDR RAM

Distributed memory paradigm

