
PLUTO+: Near-Complete Modeling of Affine
Transformations for Parallelism and Locality

Aravind Acharya Uday Bondhugula

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560012
INDIA

{aravind.acharya, uday}@csa.iisc.ernet.in

Abstract

Affine transformations have proven to be very powerful for loop re-
structuring due to their ability to model a very wide range of trans-
formations. A single multi-dimensional affine function can repre-
sent a long and complex sequence of simpler transformations. Ex-
isting affine transformation frameworks like the Pluto algorithm,
that include a cost function for modern multicore architectures
where coarse-grained parallelism and locality are crucial, consider
only a sub-space of transformations to avoid a combinatorial ex-
plosion in finding the transformations. The ensuing practical trade-
offs lead to the exclusion of certain useful transformations, in par-
ticular, transformation compositions involving loop reversals and
loop skewing by negative factors. In this paper, we propose an ap-
proach to address this limitation by modeling a much larger space
of affine transformations in conjunction with the Pluto algorithm’s
cost function. We perform an experimental evaluation of both, the
effect on compilation time, and performance of generated codes.
The evaluation shows that our new framework, Pluto+, provides no
degradation in performance in any of the Polybench benchmarks.
For Lattice Boltzmann Method (LBM) codes with periodic bound-
ary conditions, it provides a mean speedup of 1.33× over Pluto.
We also show that Pluto+ does not increase compile times signif-
icantly. Experimental results on Polybench show that Pluto+ in-
creases overall polyhedral source-to-source optimization time only
by 15%. In cases where it improves execution time significantly, it
increased polyhedral optimization time only by 2.04×.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers, Optimization, Code generation

Keywords Affine transformations, polyhedral model, automatic
parallelization, tiling, affine scheduling, stencil computations

1. Introduction

Affine transformation frameworks for loop optimization have
known to be powerful due to their ability to model a wide vari-
ety of loop reordering transformations [1]. Affine transformations

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

PPoPP’15, February 7–11, 2015, San Francisco, CA, USA.
Copyright is held by the owner/author(s).
ACM 978-1-4503-3205-7/15/02.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

preserve the collinearity of points as well as the ratio of distances
between points lying on a line. This makes the problem of generat-
ing code, after application of such transformations, tractable. The
polyhedral compiler framework employs affine transformations for
execution reordering. The transformations are typically applied on
integer points in a union of convex polyhedra. A number of works
have studied the problem of code generation under affine trans-
formations of such integer sets [3, 7, 38] and code generators like
Cloog [10], Omega+ [7], and ISL [38] exist.

Dependence analysis, automatic transformation, and code gen-
eration are the three key stages of an automatic polyhedral op-
timizer. A number of model-driven automatic transformation al-
gorithms for parallelization exist in the literature. Among algo-
rithms that work for the entire generality of the polyhedral frame-
work, there are those of Feautrier [14, 15], Lim and Lam [24, 26],
Griebl [17], and Bondhugula et al. [4, 5]. The Pluto algorithm based
on [4, 5] is the most recent among these, and has been shown to
be suitable for architectures where extracting coarse-grained par-
allelism and locality are crucial — prominently modern general-
purpose multicore processors.

The Pluto algorithm employs an objective function based on
minimization of dependence distances [4]. The objective function
makes certain practical trade-offs to avoid a combinatorial explo-
sion in determining the transformations. The trade-offs restrict the
space of transformations modeled to a sub-set of all valid ones.
Although this does not affect the correctness of the algorithm and
a solution is guaranteed to be found (since the identity transfor-
mation corresponding to the original schedule still remains in its
space), transformations crucial for certain dependence patterns and
application domains are excluded. In particular, the excluded trans-
formations are those that involve a negative coefficient in the affine
transformations. Negative coefficients in affine functions capture
loop reversal, loop skewing by negative factors, and more impor-
tantly, those transformations which include the former (reversal and
negative skewing) as one or more components in a potentially long
composed sequence of simpler transformations.

The domains that are affected include, but are not limited to,
those that have symmetric dependence patterns, those of sten-
cil computations, Lattice Boltzmann Method (LBM) simulations,
and other computational techniques defined over periodic data do-
mains. Although loop reversal or skewing by negative factors are
just some among several well-known unimodular or affine trans-
formations, they can be composed in numerous ways with other
transformations in a sequence to form a compound transforma-
tion that may also enable loop tiling and fusion for example. All
such compound transformations currently end up being excluded
from Pluto’s space. This paper addresses this limitation and pro-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the author/owner(s). Publication rights licensed to ACM.

PPoPP’15, February 7–11, 2015, San Francisco, CA, USA
ACM 978-1-4503-3205-7/15/02
http://dx.doi.org/10.1145/2688500.2688512

54

poses an approach to model a larger space of transformations than
Pluto, while using the same objective function as the state-of-the-
art. Through experimental evaluation, we demonstrate that (1) the
enlarged transformation space includes transformations that pro-
vide a very significant improvement in parallel performance for
a number of benchmarks, and (2) the framework does not pose a
significant compilation time issue.

The rest of this paper is organized as follows. Section 2 provides
detail on the problem domains and patterns that motivate our work.
Section 3 describes our new framework in detail. Experimental
evaluation is presented in Section 4. Related work and conclusions
are presented in Section 5 and Section 6 respectively.

2. Motivation

There are a number of situations when a transformation that in-
volves a reversal is desired. In this section, we discuss these do-
mains and computation patterns. The examples presented here are
representative and very simple for explanation.

2.1 Index Sets and Transformations

We first introduce some basic terminology for the purpose of this
section. Complete notation will be introduced in the next section. In
the polyhedral compiler framework, iteration spaces of statements
surrounded by loops are modeled by integer sets called index sets.
Let IS be the index set of a statement S. A simple example is given
by:

IS = {[i, j] : 0 ≤ i, j ≤ N− 1}.

Here, i and j correspond to the original loop dimensions of S
from which a polyhedral representation was extracted, and N is
a program parameter. Then, an example of an affine transformation
on IS is given by:

TIS(i, j) = (i− j+ N, i+ j+ 1)

Both i− j+N and i+ j+1 are one-dimensional affine functions
of i, j, and N . Formally, an affine transformation, T , for a k-

dimensional vector, ~i ∈ IS is one that can be expressed in the
form:

T
(

~i
)

= M ·~i+ ~m0

where M is a n×k matrix and m0 is an n-dimensional vector. For
all purposes in this paper, all elements of these entities are integers,

i.e., M ∈ Zn×k, m0 ∈ Zn,~i ∈ Zk.
Consider the two statements in Figure 2a, S1 and S2, with index

sets:

IS1 = {[i] : 0 ≤ i ≤ N− 1}, IS2 = {[i] : 0 ≤ i ≤ N− 1}.

The schedule that corresponds to the original execution order is
given by:

TS1(i) = (0, i), TS2(i) = (1, i).

A transformation that exposes a parallel loop outside while fusing
and exploiting locality inside involves a reversal for S2, and is given
by:

TS1(i) = (i, 0), TS2(i) = (N− i− 1, 1).

The transformed code is shown in Figure 2b.

2.2 Skewing by Negative Factors for Communication-Free
Parallelization

Consider the code in Figure 1. It has a single read-after-write
(RAW) dependence represented by the distance vector (1,1).

The mapping T (i, j) = (i− j, j) leads to a loop nest where the
outer loop can be marked parallel while in the original code, the
outer loop cannot be marked parallel. θ(i, j) = i represents a valid
scheduling but is not useful in any way for performance by itself
unless a suitable placement is found for it.

for (i=0; i<N; i++) {
for (j=0; j<N; j++) {

A[i+1][j+1] = f (A[i][j]);
}

}

(a) Code

j

i

N-1

N-1

-1 0 1 2 3

0

1

(b) Visualization

Figure 1: Example with dependence (1,1)

2.3 Symmetric Dependences

Figures 2 and 3 show two other patterns where the dependences
are symmetric along a particular direction. Such examples were
also studied in the synthesis of systolic arrays [9, 41] where re-
searchers used folding or reflections to make dependences uniform
or long wires shorter. A more compiler or code generation -centric
approach is one where an index set splitting is applied to cut the do-
main vertically into two halves [6], and reverse and shift the halves
in a way illustrated for periodic stencils in the next sub-section.
Such cuts or index set splitting are automatically generated by ex-
isting work [6], and an implementation is available in Pluto.

for (i=0; i<N; i++){
b[i] = f (a[i]);

}
for (i=0; i<N; i++){

c[i] = f (b[N−1−i]);
}

(a) Code

for (i=0; i<N; i++){
b[i] = f (a[i]);
c[N−1−i] = f(b[i]);

}

(b) Optimized

Figure 2: Symmetric consumer

for (i=0; i<=N−1; i++) {
for (j=0; j<=N−1; j++) {

a[i+1][j] = f (a[i][N−j−1]);
}

}

(a) Code

j

i

N

N

-1 0 1 2

0

1

2

(b) Visualization

Figure 3: Symmetric dependences

2.4 Stencils on Periodic Domains

Stencils on periodic domains have long dependences in both direc-
tions along a dimension, as shown with red arrows in Figure 4b.
The corresponding code is shown in Figure 4a. Such long de-
pendences make tiling all loops invalid. Osheim et al [28] pre-
sented an approach to tile periodic stencils based on folding tech-
niques [9, 41]. Bondhugula et al. [6] recently proposed an index
set splitting technique that uses a hyperplane to cut close to the
mid-points of all long dependences (Figure 4c). It opens the possi-
bility of tiling through application of separate transformations on
the split index sets to make dependences shorter. The sequence
of transformations are shown in Figure 4g. However, these sepa-
rate transformations involve reversals as one in the sequence (Fig-
ure 4d). The sequence of transformations enable existing time tiling

55

for (t=0; t <T−1; t++) {
for (i=0; i<N; i++) {

A[(t+1)%2][i] = ((i+1==N?A[t%2][0]:A[t%2][i+1])
+ 2.0∗A[t%2][i] + (i==0?A[t%2][N−1]:A[t%2][i−1]))/4.0;

}
}

(a) A stencil on a periodic domain

i

t

N-1

T-1

-1 0 1 2 3 4 5 6 7 8 9 10 11

0

1

(b) Visualization for (a)

i

t

N-1

T-1

2i = N

-1 0 1 2 3 4 5 6 7 8 9 10 11

0

1

(c) Index Set Splitting

i

t

N-1

T-1

-1 0 1 2 3 4

0

1

(d) Reversal of S+: TS+ (t, i) → (t,−i)

i

t

N-1

T-1

-1 0 1 2 3 4 5

0

1

2

(e) Parametric shift (all dependences
have become short)

i

t

N-1

T-1

-1 0 1 2 3 4 5

0

1

2

(f) Tiling: skewing to make depen-
dences non-negative

(a) ISS: IS− = IS ∩ {2i ≤ N − 1}, S+ = IS ∩ {2i ≥ N}
(b) Reversal: TI

S−

(t, i) = (t, i), TI
S+

(t, i) = (t,−i)

(c) Parametric shift: TI
S−

(t, i) = (t, i), TI
S+

(t, i) = (t,−i+N)
(d) Diamond tiling [2, 34]:

T
I
−

S
(t, i) = (t+ i, t− i)

T
I
+

S
(t, i) = (t− i+N, t+ i−N)

(g) Transformations

Figure 4: A sequence of transformations that allows tiling for periodic stencils (with wrap-around boundary dependences)

techniques [2, 5, 34, 40] resulting in code that has been shown
to provide dramatic improvement in performance including on a
SPEC benchmark (swim from SPECFP2000) [6]. In addition, Lat-
tice Boltzmann Method (LBM) codes share similarities with sten-
cils, and are thus a very significant class of codes that benefit from
the approach we will propose.

3. Expanding the Space of Transformations

Modeled

In this section, we present our key contribution – the modeling of a
larger, and nearly the complete space of affine transformations.

3.1 Notation

The data dependence graph for polyhedral optimization has a pre-
cise characterization of the dependence edges. Each dependence
edge is a relation between source and target iterations. Although, in
some works, it is represented as a conjunction of constraints called
the dependence polyhedron, it can be viewed as a relation between
source and target iterations involving affine constraints as well as
existential quantifiers. Let De be the relation associated with an
edge e in the data dependence graph. Then, an iteration ~s of state-

ment Si depends on ~t of Sj through edge e when 〈~s → ~t〉 ∈ De.
The set of iterations or statement instances to be executed for

a statement S is the domain or index set of S, and is denoted

by IS . Let ~iS be an iteration vector of S, i.e., ~iS ∈ IS , and let

mS be its dimensionality. ~iS has components corresponding to
loops surrounding S from outermost to innermost. Let mp be the

number of global program parameters, i.e., symbols appearing in
the program (typically representing problem sizes), and ~p be the
vector of those program parameters. Then, a one-dimensional affine
transformation for S is given by the function:

φS

(

~iS

)

= (c1 c2 . . . cmS
) ·

(

~iS

)

+
(

d1 d2 . . . dmp

)

· (~p) + c0,

c0, c1, . . . , cmS
, d1, d2, . . . , dmp ∈ Z (1)

Each statement thus has its own set of ci and di coefficients. The
ci’s, 1 ≤ i ≤ mS correspond to dimensions of the index set of the
statement and we will refer to them as the statement’s dimension
coefficients. The dSi , 1 ≤ i ≤ mp correspond to parameters and

thus represent parametric shifts. Finally, cS0 represents a constant
shift. As an example, for the transformation for the first dimension
of S2 in Fig. 4e, the ci’s, di’s, and c0 would be:

φS2

(

t
i

)

= (0,−1) ·

(

t
i

)

+ (0, 1) ·

(

T
N

)

+ 0

The φ function can also be viewed as a hyperplane, and in the
rest of this paper we refer to it as hyperplane or a transformation at
a particular level. For convenience, at some places we will drop the
superscript S from ci’s and di’s.

3.2 Background and Challenges

The Pluto algorithm [4] iteratively finds one-dimensional affine
transformations, or hyperplanes, starting from outermost to the
innermost while looking for tilable bands, i.e., φs satisfying the

56

following constraint for all unsatisfied dependence relations 〈~s →
~t〉 ∈ De:

φSj (~t)− φSi(~s) ≥ 0. (2)

The objective function it uses is that of reducing dependence
distances using a bounding function. Intuitively, this reduces a fac-
tor in the reuse distances, and in cache misses after synchronization
or communication volume in the case of distributed-memory. All
dependence distances are bounded in the following way:

φsj (~t)− φsi(~s) ≤ ~u· ~p+ w, 〈~s,~t〉 ∈ De (3)

The bounding function for the dependence distances is ~u.~p + w,
and the coefficients of ~u and the constant w are then minimized, in
order of decreasing priority, by finding the lexicographic minimum:

lexmin
(

~u,w, . . . , c
S
i , d

S
i , . . .

)

. (4)

The lexicographic minimum objective, lexmin for an ILP formu-
lation was a special minimization objective first introduced by
Feautrier [13] for purposes of program analysis. It is a slight vari-
ation of a typical linear objective function. The objective finds the
lexicographically smallest vector with respect to the order of vari-
ables specified in the ILP. For (4), the best solution of ~u = 0, w = 0
corresponds to a parallel loop.

Note that (2) and (3) both have a trivial zero vector solution,
and getting rid of it is non-trivial if the dimension coefficients of

φS , the ci’s, i ≥ 1, are allowed to be negative. Alternatively, if we
trade-off expressiveness for complexity and assume that all ci ≥ 0,
the zero solution is avoided easily with:

mS
∑

i=1

ci ≥ 1.

Pluto currently makes the above trade-off [5]. On the other hand,
when negative coefficients are allowed, the removal of the zero
solution from the full space, leads to a union of a large number
of convex spaces. For example, for a 3-d statement, it leads to eight
sub-spaces. For multiple statements, one would get a product of
the number of these sub-spaces across all statements, leading to a
combinatorial explosion. We now propose a scalable and compact
approach to exclude the zero solution.

3.3 Excluding the Zero Solution

Intuitively, the challenge involved here is that removing a single
point from the “middle” of a polyhedral space gives rise to a large
disjunction of several polyhedral spaces, i.e., several different cases
to consider. As explained earlier, the possibilities grow exponen-
tially with the sum of the dimensionalities of all statements.

The approach we propose relies on the following observation.
The magnitudes of ci, 1 ≤ i ≤ mS represent loop scaling and
skewing factors, and in practice, we never need them to be very
large. Let us assume ∀i,−b ≤ ci ≤ b, for b ≥ 1. Although the
description that follows will work for any constant b ≥ 1, we will
use b = 4 to make resulting expressions more readable. It also
turns out to be the value we chose for our implementation. Thus,

−4 ≤ cSi ≤ 4, 1 ≤ i ≤ mS , ∀S. When cSi ’s are bounded this way,
the scenario under which all ci’s 1 ≤ i ≤ mS are zero is captured
as follows:

(c1, c2, . . . , cmS
) = ~0 ⇔

i=mS
∑

i=1

5i−1
ci = 0.

The reasoning being: since −4 ≤ ci ≤ 4, each ci can be treated

as an integer in base 5. Since 5i >
∑

5i−1ci for every ci in base
5, ci, 1 ≤ i ≤ mS will all be simultaneously zero only when

∑i=mS
i=1

5i−1ci is zero. This in turn means:

(c1, c2, . . . , cmS
) 6= ~0 ⇔

∣

∣

∣

∣

∣

i=mS
∑

i=1

5i−1
ci

∣

∣

∣

∣

∣

≥ 1.

The absolute value operation can be eliminated by introducing a
binary decision variable δS ∈ {0, 1}, and enforcing the constraints:

i=mS
∑

i=1

5i−1
ci ≥ 1− δS5

mS , (5)

−

i=mS
∑

i=1

5i−1
ci ≥ 1− (1− δS)5

mS . (6)

Explanation: Note that 5mS −1 and 1−5mS are the largest and
the smallest values that the LHSs of (5) and (6) can take. Hence,
when δS = 0, constraint (5) enforces the desired outcome and (6)
does not restrict the space in any way. Similarly, when δS = 1,
constraint (6) is enforcing and constraint (5) does not restrict the
space. Thus, δS = 0 covers the half-space given by

i=mS
∑

i=1

5i−1
ci ≥ 1,

and δS = 1 covers the half-space given by

i=mS
∑

i=1

5i−1
ci ≤ −1.

3.4 Modeling the Complete Space of Linearly Independent
Solutions

When searching for hyperplanes at a particular depth, the Pluto
algorithm incrementally looks for linearly independent solutions
until all dependences are satisfied and transformations are full
column-ranked, i.e., one-to-one mappings for index sets. Determin-
ing constraints that enforce linear independence with respect to a
set of previously found hyperplanes, introduces a challenge similar
in nature to, but harder than that of zero solution avoidance.

Let HS be the matrix with rows representing a statement’s

dimension coefficients (cSi , 1 ≤ i ≤ mS) already found from

the outermost level to the current depth. Let H⊥

S be the sub-space

orthogonal to HS , i.e., each row of H⊥

S has a null component along

the rows of HS (H⊥

S ·HT
S = 0). As an example, let HS be [1 0 0].

Then,

H
⊥

S =

[

0 1 0
0 0 1

]

.

For a hyperplane to be linearly independent of previous ones,
it should have a non-zero component in the orthogonal sub-space
of previous ones, i.e., a non-zero component along at least one of

the rows of H⊥

S . We thus have two choices for every row of H⊥

S ,
for the component being ≥ 1 or ≤ −1. The Pluto algorithm cur-
rently chooses c2 ≥ 0, c3 ≥ 0, c2 + c3 ≥ 1, a portion of the
linearly independent space that can be called the non-negative or-
thant. However, the complete linearly independent space is actually
given by: | c2 | + | c3 |≥ 1. The restriction to the non-negative
orthant among the four orthants may lead to the loss of interesting
solutions, as the most profitable transformations may involve hy-
perplanes with negative coefficients. On the other hand, considering
all orthants for each statement leads to a combinatorial explosion.
For a 3-d statement, the space of linearly independent solutions has
four orthants once the first hyperplane has been found. If there are
multiple statements, the number of cases to be considered, if all of
the orthants have to be explored, is the product of the number of
orthants across all statements.

We address the above problem in a way similar to the way we
avoid the zero solution in the previous section. We consider each of

57

the rows of H⊥

S , and compute the minimum and maximum values it
could take given that the coefficients are bounded below and above
by −b and b. An expression is then constructed similar to (5) and
(6) to avoid all of the components in the orthogonal sub-space being
simultaneously zero. As an example, consider HS = [1 1 0]. Then,

H⊥

S = [[1 − 1 0], [0 0 1]]. If b = 4, the maximum value taken
by any row will be 8. To ensure linear independence, we require at
least one of the rows to be non-zero, i.e.,

(c1 − c2, c3) 6= ~0 ⇔ |c1 − c2|+ |c3| ≥ 1.

The above can be captured through a single decision variable δl as
follows:

9(c1 − c2) + c3 ≥ 1− δ
l
S9

2
,

−9(c1 − c2)− c3 ≥ 1− (1− δ
l
S)9

2
.

A strength of the above technique from a scalability viewpoint
is that only a single decision variable per statement is required irre-
spective of the dimensionality of the statement or the level at which
the transformation is being found. One may observe that linear in-
dependence constraints, whenever they are added, automatically
imply zero solution avoidance. However, we have proposed a so-
lution to both of these problems in order to maintain generality and
flexibility for future customization of modeling, and to make the
presentation clearer as the latter follows from the former.

3.5 Bounds on Coefficients

Recall that we bounded all ci, 1 ≤ i ≤ mS by b and −b where
we chose b = 4 for clearer illustration in the previous sub-section.
Besides these coefficients, the constant shifts c0’s, and parametric
shifts di’s are relative between statements, and thus there is no
loss of generality in assuming that all of them are non-negative.
In addition, the coefficients of ~u and w are non-negative. Hence,
all variables in our Integer Linear Programming (ILP) formulation
are bounded from below while the statement dimension coefficients
and the binary decision variables are bounded from both above and
below.

3.6 Keeping the Coefficients Small

In the scenario where all or a number of the coefficient values
are valid solutions with the same cost, for practical reasons, it is
desirable to choose smaller ones, i.e., ones as close to zero as
possible. A technique that is perfectly suited to achieve this goal

is one of minimizing the sum of the absolute values of cSi for each

statement S, i.e., for each S, we define an additional variable, cSsum
such that:

c
S
sum =

i=mS
∑

i=1

|cSi |.

This in turn can be put in a linear form by expressing the RHS
as a variable larger than the maximum of 2mS constraints, each
generated using a particular sign choice for ci, and then minimizing
csum. For example, for a 2-d statement, we obtain

csum ≥ max(c1 + c2,−c1 + c2, c1 − c2,−c1 − c2).

In general, for each statement S, we have:

c
S
sum ≥ max

(

±c
S
1 ± c

S
2 · · · ± c

S
mS

)

. (7)

cSsum is then included in the minimization objective at a particular
position that we will see in Section 3.7 so that it is guaranteed to be

minimized to be equal to the sum of the absolute values of cSi .

3.7 The Objective Function

Now, with constraints (5), (6), and similar ones for linear inde-
pendence, the δS , δlSs can be plugged into Pluto’s lexicographic

minimum objective at the right places with the following objective
function:

lexmin (~u,w,

...

cSi
sum, c

Si
1 , c

Si
2 , . . . , cSi

mS
, d

Si
1 , d

Si
2 , . . . dSi

mp
, c

Si
0 , δSi , δ

l
Si
,

...

) . (8)

Note that csum coefficients appear ahead of the statement’s di-
mension coefficients, and since (7) are the only constraints involv-
ing csum, minimizing csum minimizes the sum of the absolute val-
ues of each statements’ dimension coefficients, with csum in the
obtained solution becoming equal to that sum.

3.8 Complexity

In summary, to implement our approach on top of the Pluto algo-

rithm, we used three more variables for each statement, csum, δ, δl,
the last two of which are binary decision variables, i.e.,

1. δS to avoid the zero solution,

2. δlS for linear independence,

3. and cSsum to minimize the sum of absolute values of a state-
ment’s dimension coefficients.

Since the number of variables in the ILP formulation increases by
three times the number of statements, this extension to the Pluto
algorithm does not change its time complexity with respect to the
number of statements and number of dependences. Note that our
approach does not change the top-level iterative algorithm used in
Pluto, but only the space of transformations modeled.

3.9 Completeness

Our formulation is still dimension-relative and characterizes the
space of all valid schedules at a given level (nesting depth), on
which an objective function is applied – it is thus not the com-
plete space of all multi-dimensional schedules at once. When com-
pared to the current Pluto algorithm, although transformations that
involve negative coefficients are included in the space, due to the
bounds we place on coefficients corresponding to statement’s di-
mensions (−b and b), we are also excluding transformations that
originally existed in Pluto’s space. To some extent, this bound (b
in Section 3) can be adjusted and increased to reasonable limits if
desired – the caveat being larger numbers in the ILP formulation.
Though this does not pose a problem for correctness, it can make
the ILP more complex and longer to solve. However, we did not
find the need to experiment with larger values of b because, (1) co-
efficients larger than the value used were not needed for any of the
kernels we came across, and (2) large values (of the order of loop
bounds when the latter are constant) introduce spurious shifts and
skews and should anyway be avoided. Note that no upper bound
is placed on the shift coefficients of transformations. In summary,
though we cannot theoretically claim a complete modeling of the
transformation space, it is near-complete and apparently complete
for all practical purposes.

4. Experiments

In this section, we study: (1) the scalability of our new approach,
and (2) the impact of newly included transformations on perfor-
mance.

We implemented the techniques proposed in Section 3 by mod-
ifying the automatic transformation component in Pluto version
0.11.2 (from the ‘pet’ branch of its public git repository) — we

58

refer to our system as PLUTO+. In the rest of this section, Pluto
refers to the existing Pluto version 0.11.2 (git branch ‘pet’), while
Pluto+ refers to our new approach that models the larger space of
transformations. Other than the component that automatically de-
termines transformations, Pluto+ shares all remaining components
with Pluto. With both Pluto and Pluto+, the Clang-based pet [39]
frontend was used for polyhedral extraction from C, ISL [38] for
dependence testing, Cloog-isl [3] 0.18.2 for code generation, and
PIP [12] 1.4.0 as the lexmin ILP solver. For large ILPs with Pluto+
(100+ variables), GLPK [16] (version 4.45) was used. It was sig-
nificantly faster than PIP or ISL’s solver for such problems. With
Pluto, GLPK did not make any significant difference as the ILP
formulations were smaller. Typical options used for generating par-
allel code with Pluto were used for both Pluto and Pluto+; these
were: ‘–isldep –lastwriter –parallel –tile’. Index set splitting (ISS)
implementation made available by [6] was enabled (‘–iss’ flag). For
periodic stencils, diamond tiling [2] was enabled (‘–partlbtile’).

All performance experiments were conducted on a 2-way SMP
Intel Xeon E5 2680 system (Sandybridge microarchitecture) run-
ning at 2.7 GHz with 64 GB of DDR3-1600 RAM, and with Intel’s
C compiler (icc) 14.0.1. Details of the setup along with compiler
flags are provided in Table 1. The default thread to core affinity
of the Intel KMP runtime was used (KMP AFFINITY granularity
set to fine, scatter), i.e., threads are distributed as evenly as pos-
sible across the entire system. Hyperthreading was disabled, and
the experiments were conducted with up to 16 threads running on
16 cores. Both Pluto and Pluto+ themselves were compiled using
gcc 4.8.1 and run single-threaded.

Table 1: Architecture details

Intel Xeon E5-2680

Clock 2.7 GHz
Cores / socket 8
Total cores 16
L1 cache / core 32 KB
L2 cache / core 512 KB
L3 cache / socket 20 MB
Peak GFLOPs 172.8

Compiler Intel C compiler (icc) 14.0.1
Compiler flags -O3 -xHost -ipo

-restrict -fno-alias -ansi-alias
-fp-model precise -fast-transcendentals

Linux kernel 3.8.0-44

Benchmarks: Evaluation was done on 27 out of the 30 bench-
marks/kernels from Polybench/C version 3.2 [30]; three of the
benchmarks — namely, trmm, adi, and reg-detect were excluded
as they were reported to be clearly not representative of computa-
tions intended [42]. Polybench’s standard dataset sizes were used.
In addition, we also evaluate Pluto+ on 1-d, 2-d, and 3-d heat equa-
tion applications with periodic boundary conditions. These can be
found in the Pochoir suite [36]. Then, we also evaluate on Lat-
tice Boltzmann Method (LBM) simulations that simulate lid-driven
cavity flow (lbm-ldc) [8], flow past cylinder (lbm-fpc-d2q9), and
Poiseuille flow [43] (lbm-poi-d2q9). An mrt version of LBM [11]
involves multiple relaxation parameters for a single time step, and
therefore a higher operational intensity. Periodic boundary condi-
tions were employed for these. We consider two different configu-
ration classes for lbm: d2q9 and d3q27. ‘d3q27’ signifies a 3-d data
grid with a 27 neighbor interaction while ‘d2q9’, a 2-d one with
9 neighbor interactions. These are full-fledged real applications as
opposed to kernels. And finally, we also evaluate on 171.swim from

Table 2: Problem sizes for heat, swim, and LBM benchmarks

Benchmark Problem size

heat-1dp 1.6 · 106 × 1000
heat-2dp 160002 × 500
heat-3dp 3003 × 200
swim 13352 × 800
lbm-ldc-d2q9 10242 × 50000
lbm-ldc-d2q9-mrt 10242 × 20000
lbm-fpc-d2q9 1024 × 256 × 40000
lbm-poiseuille-d2q9 1024 × 256 × 40000
lbm-ldc-d3q27 2563 × 300

the SPECFP2000 suite. The swim benchmark [33, 35] solves shal-
low water equations on a 2-d grid with periodic boundary condi-
tions.

4.1 Impact on Transformation and Compilation Times

Table 3 provides the time spent in automatic transformation as well
as the total time spent in source-to-source polyhedral transforma-
tion. The automatic transformation time reported therein is the time
taken to compute or determine the transformations as opposed to
the total time taken to transform the source. The total time taken
during polyhedral optimization to transform the source is reported
as “Total polyhedral compilation time”. Dependence analysis and
code generation times are two other key components besides au-
tomatic transformation. The Misc/other component primarily in-
cludes time spent in post-transformation analyses such as comput-
ing hyperplane properties (parallel, sequential, tilable), and precise
tilable band detection. This is potentially done multiple times for
various late transformations like intra-tile optimization for better
vectorization and spatial locality, and creating tile wavefronts. The
lower part of Table 3 lists those benchmarks where Pluto+ actually
finds a significantly different transformation involving a negative
coefficient — to enable tiling and other optimization. All of these
are partial differential equation solvers of some form where peri-
odic boundary conditions are used. When there is no periodicity,
both Pluto and Pluto+ find the same transformations.

Figure 5 shows the breakdown across various components of the
polyhedral source-to-source parallelization. Note that code gener-
ation time as well as other post-transformation analysis times are
affected by transformations obtained. We observe from Table 3 and
Figure 5 that in a majority of cases, the auto-transformation time
is at most few tens of milliseconds, and that the code generation
time dominates for both Pluto and Pluto+ in many cases. Surpris-
ingly, auto-transformation times are on average lower with Pluto+
— 11% lower on Polybench and 38% lower on the periodic stencil
benchmarks. This is due to the fact that additional checks had been
used in Pluto to ensure that the single orthogonal sub-space chosen
to derive linear independence constraints was a feasible one. Such
checks are obviously not needed with Pluto+. Swim presented the
most challenging case with 219 variables in the Pluto+ ILP, and
was the only benchmark for which Pluto+ used GLPK.

We find Pluto+ to be surprisingly scalable and practical on
such a large set of kernels, benchmarks, and real applications from
certain domains. None of these posed a serious scalability issue
on the total polyhedral source-to-source transformation time. In
a majority of the cases, the overall compilation time itself was
low, from under a second to a few seconds. In nearly all cases
where the total compilation time was significant and showed a
significant increase with Pluto+, it was because code generation
had taken much longer since a non-trivial transformation had been
performed with Pluto+ while Pluto did not change the original

59

 0

 0.2

 0.4

 0.6

 0.8

 1

pluto
pluto+

pluto
pluto+

pluto
pluto+

pluto
pluto+

pluto
pluto+

pluto
pluto+

pluto
pluto+

pluto
pluto+

pluto
pluto+

pluto
pluto+

pluto
pluto+

pluto
pluto+

pluto
pluto+

pluto
pluto+

P
o

ly
h

ed
ra

l
co

m
p

il
at

io
n

 t

im
e

(n
o

rm
al

iz
ed

)

Dependence-analysis
Auto-transformation
Code-generation
Misc/other

syr2ksymmmvtgesummvgemvergemmdoitgencholeskybicgatax3mm2mmcovarcorrel

 0

 0.2

 0.4

 0.6

 0.8

 1

pluto
pluto+

pluto
pluto+

pluto
pluto+

pluto
pluto+

pluto
pluto+

pluto
pluto+

pluto
pluto+

pluto
pluto+

pluto
pluto+

pluto
pluto+

pluto
pluto+

pluto
pluto+

pluto
pluto+

P
o

ly
h

ed
ra

l
co

m
p

il
at

io
n

 t

im
e

(n
o

rm
al

iz
ed

)

Dependence-analysis
Auto-transformation
Code-generation
Misc/other

seidel-2djac-2djac-1dfdtd-apmlfdtd-2dfloyd-w.ludcmplugram-sch.dynpr.durbintrisolvsyrk

 0

 0.2

 0.4

 0.6

 0.8

 1

pluto
pluto+

pluto
pluto+

pluto
pluto+

pluto
pluto+

pluto
pluto+

pluto
pluto+

pluto
pluto+

pluto
pluto+

pluto
pluto+

P
o

ly
h

ed
ra

l
co

m
p

il
at

io
n

 t

im
e

(n
o

rm
al

iz
ed

)

Dependence-analysis
Auto-transformation
Code-generation
Misc/other

swimlbm-poi-d2q9lbm-fpc-d2q9lbm-ldc-d2q9lbm-ldc-d3q27lbm-ldc-d2q9heat-3dpheat-2dpheat-1dp

Figure 5: Polyhedral compilation time breakdown into dependence analysis, transformation, code generation, and miscellaneous (some
benchmark names have been abbreviated; full names can be found in Table 3); both, Pluto and Pluto+ times are individually normalized to
their respective total times for readability. Table 3 can be used in conjunction to determine the absolute time for any component.

60

Table 3: Impact on polyhedral compilation time (all times reported are in seconds)

Benchmark Automatic transformation time (s) Total polyhedral compilation time (s) Factor of increase due to Pluto+

Pluto Pluto+ Pluto Pluto+ in transformation overall

correlation 0.470 0.214 0.726 0.719 0.45 0.99
covariance 0.043 0.027 0.188 0.227 0.62 1.21
2mm 0.023 0.033 0.246 0.282 1.47 1.15
3mm 0.070 0.126 0.423 0.536 1.81 1.27
atax 0.004 0.004 0.041 0.061 0.97 1.49
bicg 0.002 0.003 0.112 0.151 1.21 1.36
cholesky 0.048 0.025 0.328 0.366 0.52 1.12
doitgen 0.018 0.017 0.178 0.198 0.94 1.11
gemm 0.005 0.006 0.066 0.095 1.23 1.44
gemver 0.010 0.007 0.070 0.097 0.73 1.37
gemvsumv 0.004 0.004 0.039 0.064 1.12 1.63
mvt 0.002 0.003 0.026 0.036 1.28 1.38
symm 0.052 0.039 0.564 0.281 0.75 0.50
syr2k 0.009 0.010 0.100 0.147 1.20 1.48
syrk 0.004 0.005 0.066 0.095 1.24 1.44
trisolv 0.004 0.004 0.055 0.081 1.02 1.48
durbin 0.045 0.029 0.101 0.105 0.63 1.05
dynprog 0.171 0.103 0.545 1.007 0.60 1.85
gramschmidt 0.098 0.069 0.250 0.260 0.71 1.04
lu 0.006 0.005 0.117 0.164 0.88 1.40
ludcmp 0.973 0.263 1.209 0.569 0.27 0.47
floyd-warshall 0.009 0.012 0.298 0.400 1.29 1.34
fdtd-2d 0.043 0.057 2.424 2.527 1.31 1.04
fdtd-apml 1.581 0.563 2.158 1.475 0.36 0.68
jacobi-1d-imper 0.006 0.007 0.130 0.13 1.28 1.00
jacobi-2d-imper 0.015 0.026 0.705 0.751 1.71 1.07
seidel-2d 0.011 0.009 0.249 0.260 0.75 1.04

Mean (geometric) 0.89 1.15

heat-1dp 0.033 0.016 0.337 0.648 0.48 1.92
heat-2dp 0.190 0.078 2.430 9.282 0.41 3.82
heat-3dp 2.585 0.810 10.77 16.86 0.31 1.57
lbm-ldc-d2q9 0.701 0.330 3.535 8.152 0.47 2.31
lbm-ldc-d3q27 8.726 2.704 35.52 56.36 0.31 1.59
lbm-mrt-d2q9 0.321 0.177 5.180 9.068 0.55 1.75
lbm-fpc-d2q9 0.324 0.175 5.282 9.017 0.54 1.71
lbm-poi-d2q9 0.323 0.176 5.226 9.001 0.55 1.72
swim 1.489 14.46 16.74 47.35 9.71 2.83

Mean (geometric) 0.62 2.04

schedule (Table 3). We thus see this as an opportunity to further
improve code generation techniques including integrating hybrid
polyhedral and syntactic approaches like PrimeTile [18] where
suitable. In conclusion, the increase in compilation time due to
Pluto+ itself is quite acceptable.

4.2 Performance Impact on Periodic Heat Equation, LBM
Simulations, and Swim

On all benchmarks from Polybench, Pluto+ obtained the same
transformation (or equivalent ones) as Pluto. Polybench does not
include any kernels where negative coefficients help, at least as per
our cost function. We thus obtain the same performance on all of
Polybench.

Figure 6 shows results where we compare Pluto, Pluto+, and
ICC on the heat equation, swim, and LBM simulations. icc-omp-
vec represents the original code optimized with little effort — by
manually inserting an OpenMP pragma on the outermost space

loop and ‘#pragma ivdep’ for the innermost space loop to
enable vectorization. The problem sizes used are shown in Table 2.

Pluto is unable to perform time tiling or any useful optimization
on stencils with periodicity: this includes the LBM codes consid-
ered, swim, and heat equation codes. Its performance is thus the
same as that achieved via icc-omp-vec through parallelization of the
space loop immediately inside the time loop and vectorization of
the innermost loop. On the other hand, Pluto+ performs time tiling
for all periodic stencils using the diamond tiling technique [2]. We
obtain speedups of 2.72, 6.73 and 1.4 over icc-omp-vec or Pluto for
heat-1dp, heat-2dp, and heat-3dp respectively. For LBM, we also
compare with Palabos [29], a well-known stable library package
for LBM computations where a user manually provides the specifi-
cation in C++. Palabos results are provided as a reference point as
opposed to for a direct comparison since the approach falls into a
different class. The performance of LBM benchmarks is usually re-
ported in million lattice site updates per second (MLUPS). MLUPS
is computed by dividing the total of grid updates (time steps times

61

 0

 0
.5

 1

 1
.5

 2

 2
.5

 3

 0 2 4 6 8 10 12 14 16

E
x
ec

u
ti

o
n
 t

im
e

(s
ec

o
n
d
s)

Number of cores

icc-omp-vec / pluto
pluto+

(a) heat-1d

 0

 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 0 2 4 6 8 10 12 14 16

E
x
ec

u
ti

o
n
 t

im
e

(s
ec

o
n
d
s)

Number of cores

icc-omp-vec / pluto
pluto+

(b) heat-2d

 0

 5

 1
0

 1
5

 2
0

 2
5

 0 2 4 6 8 10 12 14 16

E
x
ec

u
ti

o
n
 t

im
e

(s
ec

o
n
d
s)

Number of cores

icc-omp-vec / pluto
pluto+

(c) heat-3d

 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 0 2 4 6 8 10 12 14 16

M
L

U
P

S

Number of cores

palabos
icc-omp-vec / pluto
pluto+

(d) lbm-ldc-d2q9

 0

 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 0 2 4 6 8 10 12 14 16

M
L

U
P

S

Number of cores

palabos
icc-omp-vec / pluto
pluto+

(e) lbm-mrt-d2q9

 0

 5

 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 0 2 4 6 8 10 12 14 16

M
L

U
P

S

Number of cores

palabos
icc-omp-vec / pluto
pluto+

(f) lbm-ldc-d3q27

 0

 5
0

 1
00

 1
50

 2
00

 2
50

 0 2 4 6 8 10 12 14 16

M
L

U
P

S

Number of cores

icc-omp-vec / pluto
pluto+

(g) lbm-fpc-d2q9

 0
 5

0
 1

00
 1

50
 2

00
 2

50
 3

00
 3

50
 4

00
 4

50
 5

00

 0 2 4 6 8 10 12 14 16

M
L

U
P

S

Number of cores

icc-omp-vec / pluto
pluto+

(h) lbm-poi-d2q9

 0

 5

 1
0

 1
5

 2
0

 2
5

 3
0

 0 2 4 6 8 10 12 14 16

E
x
ec

u
ti

o
n
 t

im
e

(s
ec

o
n
d
s)

Number of cores

icc-omp-vec / pluto
pluto+

(i) swim

Figure 6: Performance Impact

number of grid points) by the execution time. For flow-past cylin-
der and Poiseuille flow, we could not find a way to express them in
Palabos, and hence those comparisons are not provided. For LBM,
we obtain a mean speedup of 1.33× over icc-omp-vec and Pluto,
and 1.62× over Palabos. All of these performance improvements
are due to the improved locality as a result of time tiling enabled
by Pluto+: due to reduced memory bandwidth utilization, besides
improvement in single thread performance, it led to better scaling
with the number of cores.

For the benchmarks on three-dimensional data grids (heat-3d
and lbm-ldc-d3q27), we see little or no improvement in some
cases. The 3-d benchmarks were particularly hard to optimize and
we found that more work was necessary to automate for certain
complementary aspects. For lbm-ldc-d3q27, the drop in icc-omp-
vec or Pluto’s performance was due to NUMA locality effects, an
aspect that we do not model or optimize for. This was deduced from
the observation that changing KMP’s affinity setting from ‘scatter’

to ‘compact’ made the results follow a predictable pattern when
running on 12 threads or more. However, we found the default
‘scatter’ setting to be delivering the best performance. Effective
vectorization is also more difficult for 3-d stencils than for lower
dimensional ones. Previous works that studied this problem in
detail [19–21] demonstrated little or no improvement for 3-d cases.

For the swim benchmark, our tool takes as input a C translation
of it (since the frontend only accepts C) with all three calc routines
inlined. We verified that the Intel compiler provided exactly the
same performance on this C version as on the original Fortran
version. The inlining thus does not affect icc’s optimization. Index
set splitting application is fully automatic (from [6]) just like for
the other periodic stencils. On swim, we obtain a speedup of 2.73×
over icc’s auto-parallelization.

62

5. Related Work

Affine schedules computed by Feautrier’s scheduling algorithms
[14, 15] allow for coefficients to be negative. However, the objec-
tives used in finding such schedules are those of reducing the di-
mensionality of schedules and typically minimizing latency. Thus,
they do not capture conditions for the validity of tiling, pipelined
parallelism, communication-free parallelism, and are thus very dif-
ferent from the objective used in Pluto or Pluto+. The latter objec-
tive requires additional constraints for zero solution avoidance and
linear independence which in turn necessitates techniques devel-
oped in this paper for modeling the space of affine transformations.

Griebl’s approach [17] finds forward communication only
(FCO) placements for schedules found by [14, 15]: placements
determine where (processor) iterations execute while schedules de-
termine when they execute. The FCO constraint is same as the tiling
constraint in (2). FCO placements, when found, will allow tiling of
both schedule dimensions and placement dimensions. Once the
FCO constraint is enforced, the approach proposed to pick from
the space of valid solutions relies on finding the vertices, rays,
and lines (extremal solutions) of the space of valid transforma-
tions. From among these extremal solutions, the one that leads to a
zero communication (zero dependence distance) for the maximum
number of dependences is picked ([17], Section 7.4). Linear in-
dependence is not an issue since all extremal solutions are found,
and those linearly dependent on scheduling dimensions can be ex-
cluded. Finding the vertices, rays, and lines of the space of valid
transformations is very expensive given the number of dimensions
(transformation coefficients) involved. The practicality and scala-
bility of such an approach has not been demonstrated.

Lim and Lam’s framework [24–26] was the first affine trans-
formation framework to take a partitioning view, as opposed to a
scheduling-cum-placement view, with the objective to reduce the
frequency of synchronization and improve locality. The algorithm
proposed to finally determine transformation coefficients, Algo-
rithm A in [25], does not use a specific objective or cost function to
choose among valid ones. It instead proposes an iterative approach
to finding linearly independent solutions to the set of constraints
representing the space of valid solutions. There is no bound on the
number of steps it takes, or an assertion on its completeness or on
the quality of the solution beyond maximizing the number of de-
grees of parallelism. The latter was a significant advance over prior
art and provided better parallelization with tiling for a much more
general class of codes. It has already been shown that only maxi-
mizing the number of degrees of parallelism is not sufficient, and
solutions which exhibit the same number of degrees of parallelism
can perform very differently [5].

Pouchet et al. [31]’s approach for iterative optimization is driven
by search and empirical feedback as opposed to by a model, and is
on the same space of schedules as those modeled in [14]. In spite
of supporting negative coefficients in schedules, there is no notion
of tiling or communication-free parallelization, whether or not they
required negative coefficients. Its limitations are thus independent
of our contributions here.

Vasilache [37] proposes a formulation that models the entire
space of multi-dimensional schedules, i.e., all levels at a time. How-
ever, the modeling does not include an objective function. An ob-
jective function like that of Pluto and Pluto+ requires linear inde-
pendence and trivial solution avoidance, and there is no known
way to achieve this with the formulation in [37]. Constraints to
ensure linear independence often necessitate a level by level ap-
proach [4, 23], and doing so without losing interesting valid solu-
tions requires modeling such as the one we proposed in this pa-
per. Pouchet et al. [32] developed a hybrid iterative cum analyti-
cal model-driven approach to explore the space of all valid loop
fusion/distributions, while ensuring tilability and parallelization of

the fused loop nests. The transformation coefficients were limited
to non-negative ones to enable use of Pluto.

Kong et al. [21] presented a framework that finds schedules that
enable vectorization and better spatial locality in addition to the
dependence minimization objective of Pluto or Pluto+. Their work
is thus complementary, and the limitations addressed by Pluto+
exist in their modeling of the space of transformations too.

The RSTREAM compiler [27] includes techniques that model
negative coefficients [22]. The approach is different from ours and
uses a larger number of decision variables. For each statement, one
decision variable is used to model the direction choice (positive or
negative) associated with each row of the orthogonal sub-space ba-

sis (H⊥

S in Section 3.4) — in effect, multiple decision variables for
each statement capture the choice of the orthant. In contrast, our
approach encodes linear independence for a statement using a sin-
gle decision variable, and we achieved this by exploiting bounds on

the components associated with each row of H⊥

S . The RSTREAM
approach is not available for a direct experimental comparison.

Bondhugula et al. [6] presented an automatic index set split-
ting technique to enable tiling for periodic stencils. The approach
requires techniques developed in this work to be able to ultimately
find the right transformations once such index set splitting has been
performed. The same index set splitting technique is used in con-
junction with Pluto+ to enable a richer variety of transformations,
and we are able to reproduce performance improvements similar
to those reported in [6] for 1-d, 2-d, and 3-d heat equations with
periodicity, and the swim benchmark.

6. Conclusions

In this paper, we proposed Pluto+, an approach to model a sig-
nificantly larger space of affine transformations than previous ap-
proaches in conjunction with a cost function. Experimental evalua-
tion showed that Pluto+ provided no degradation in performance in
any case. For Lattice Boltzmann Method (LBM) simulations with
periodic boundary conditions, it provided a mean improvement of
1.33× over Pluto while running on 16 cores of a modern multicore
SMP. On the swim benchmark from SPECFP2000, Pluto+ obtains
a speedup of 2.73× over Intel C compiler’s auto-parallelization.
We also showed that Pluto+ does not pose a scalability issue and is
often as scalable as Pluto. Experimental results show that Pluto+ in-
creases overall polyhedral compilation time on Polybench by only
15% on average. In cases where it improved execution time signif-
icantly due to a different transformation, the total polyhedral com-
pilation time was increased by 2.04×. As for the time component
involved in computing transformations, Pluto+ is faster than Pluto
on average. We believe our approach and these results present a
significant advance in the field of static loop nest optimization.

Acknowledgments

We gratefully acknowledge the anonymous reviewers of PPoPP’15,
in particular, Reviewer-#2, for insightful comments that have im-
proved the paper. We thank Albert Cohen for several discussions on
key aspects of this work. We thank the Parallel Computing group
at Intel Labs Bangalore for donating us Intel compiler software,
loaning equipment that was used in part for the experimental eval-
uation, and for discussions related to optimization of LBM applica-
tions. We also thank Microsoft Research India for partly supporting
Aravind Acharya’s travel to PPoPP’15.

References

[1] A. V. Aho, R. Sethi, J. D. Ullman, and M. S. Lam. Compilers:
Principles, Techniques, and Tools (second edition). Prentice Hall,
2006.

63

[2] V. Bandishti, I. Pananilath, and U. Bondhugula. Tiling stencil com-
putations to maximize parallelism. In Supercomputing, pages 40:1–
40:11, 2012.

[3] C. Bastoul. Code generation in the polyhedral model is easier than
you think. In International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 7–16, 2004. .

[4] U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan. Automatic transformations for
communication-minimized parallelization and locality optimization in
the polyhedral model. In International conference on Compiler Con-
struction (ETAPS CC), 2008.

[5] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A
practical automatic polyhedral parallelizer and locality optimizer. In
ACM SIGPLAN symposium on Programming Languages Design and
Implementation (PLDI), pages 101–113, 2008.

[6] U. Bondhugula, V. Bandishti, A. Cohen, G. Potron, and N. Vasi-
lache. Tiling and optimizing time-iterated computations on periodic
domains. In International conference on Parallel Architectures and
Compilation Techniques (PACT), pages 39–50, 2014.

[7] C. Chen. Polyhedra scanning revisited. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages
499–508, 2012.

[8] S. Chen and G. D. Doolen. Lattice boltzmann method for fluid flows.
Annual review of fluid mechanics, 30(1):329–364, 1998.

[9] C. Choffrut and K. Culik. Folding of the plane and the design of
systolic arrays. Information Processing Letters, 17(3):149 – 153,
1983.

[10] Cloog. The Chunky Loop Generator. http://www.cloog.org.

[11] D. d’Humières. Multiple–relaxation–time lattice boltzmann models in
three dimensions. Philosophical Transactions of the Royal Society of
London. Series A: Mathematical, Physical and Engineering Sciences,
360(1792):437–451, 2002.

[12] P. Feautrier. Parametric integer programming. RAIRO Recherche
Opérationnelle, 22(3):243–268, 1988.

[13] P. Feautrier. Dataflow analysis of scalar and array references. Interna-
tional Journal of Parallel Programming, 20(1):23–53, Feb. 1991.

[14] P. Feautrier. Some efficient solutions to the affine scheduling problem:
Part II, multidimensional time. International Journal of Parallel
Programming, 21(6):389–420, 1992.

[15] P. Feautrier. Some efficient solutions to the affine scheduling prob-
lem: Part I, one-dimensional time. International Journal of Parallel
Programming, 21(5):313–348, 1992.

[16] GNU. GLPK (GNU Linear Programming Kit).
https://www.gnu.org/software/glpk/.

[17] M. Griebl. Automatic Parallelization of Loop Programs for Dis-
tributed Memory Architectures. University of Passau, 2004. Habil-
itation thesis.

[18] A. Hartono, M. Baskaran, C. Bastoul, A. Cohen, S. Krishnamoorthy,
B. Norris, and J. Ramanujam. A parametric multi-level tiler for
imperfect loop nests. In International conference on Supercomputing
(ICS), 2009.

[19] T. Henretty, K. Stock, L.-N. Pouchet, F. Franchetti, J. Ramanujam, and
P. Sadayappan. Data layout transformation for stencil computations
on short simd architectures. In ETAPS International conference on
Compiler Construction (CC’11), pages 225–245, Mar. 2011.

[20] T. Henretty, R. Veras, F. Franchetti, L.-N. Pouchet, J. Ramanujam, and
P. Sadayappan. A stencil compiler for short-vector SIMD architec-
tures. In ACM International Conference on Supercomputing, 2013.

[21] M. Kong, R. Veras, K. Stock, F. Franchetti, L.-N. Pouchet, and P. Sa-
dayappan. When polyhedral transformations meet simd code genera-
tion. In ACM SIGPLAN conference on Programming Language De-
sign and Implementation (PLDI), June 2013.

[22] A. Leung, N. Vasilache, B. Meister, and R. Lethin. Methods and
apparatus for joint parallelism and locality optimization in source code
compilation, June 3 2010. WO Patent App. PCT/US2009/057,194.

[23] W. Li and K. Pingali. A singular loop transformation framework
based on non-singular matrices. International Journal of Parallel
Programming, 22(2):183–205, 1994.

[24] A. Lim and M. S. Lam. Maximizing parallelism and minimizing
synchronization with affine transforms. In ACM SIGPLAN-SIGACT
symposium on Principles of Programming Languages, pages 201–214,
1997.

[25] A. Lim and M. S. Lam. Maximizing parallelism and minimizing
synchronization with affine partitions. Parallel Computing, 24(3-4):
445–475, 1998.

[26] A. Lim, G. I. Cheong, and M. S. Lam. An affine partitioning algo-
rithm to maximize parallelism and minimize communication. In ACM
International Conference on Supercomputing (ICS), pages 228–237,
1999.

[27] B. Meister, N. Vasilache, D. Wohlford, M. Baskaran, A. Leung, and
R. Lethin. R-Stream Compiler. In Encyclopedia of Parallel Comput-
ing, pages 1756–1765. 2011.

[28] N. Osheim, M. M. Strout, D. Rostron, and S. Rajopadhye. Smashing:
Folding space to tile through time. In Workshop on Languages and
Compilers for Parallel Computing (LCPC), pages 80–93. Springer-
Verlag, 2008.

[29] Palabos. Palabos. http://www.palabos.org/.

[30] Polybench. Polybench suite. http://polybench.sourceforge.net.

[31] L.-N. Pouchet, C. Bastoul, J. Cavazos, and A. Cohen. Iterative opti-
mization in the polyhedral model: Part II, multidimensional time. In
ACM SIGPLAN symposium on Programming Languages Design and
Implementation (PLDI), June 2008.

[32] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam,
P. Sadayappan, and N. Vasilache. Loop transformations: Convexity,
pruning and optimization. In ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL’11), Jan. 2011.

[33] R. Sadourny. The dynamics of finite-difference models of the shallow-
water equations. J. Atm. Sciences, 32(4), Apr. 1975.

[34] R. Strzodka, M. Shaheen, D. Pajak, and H.-P. Seidel. Cache accu-
rate time skewing in iterative stencil computations. In International
conference on Parallel Processing (ICPP), pages 571–581, 2011.

[35] P. N. Swarztrauber. 171.swim spec cpu2000 benchmark description
file. Standard Performance Evaluation Corporation.
http://www.spec.org/cpu2000/CFP2000/171.swim/docs/171.swim.html,
2000.

[36] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E.
Leiserson. The Pochoir stencil compiler. In ACM symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 117–128,
2011.

[37] N. Vasilache. Scalable Program Optimization Techniques in the Poly-
hedral Model. PhD thesis, Université de Paris-Sud, INRIA Futurs,
Sept. 2007.

[38] S. Verdoolaege. ISL: An Integer Set Library for the Polyhedral
Model. In K. Fukuda, J. Hoeven, M. Joswig, and N. Takayama, edi-
tors, Mathematical Software - ICMS 2010, volume 6327, pages 299–
302. Springer, 2010.

[39] S. Verdoolaege and T. Grosser. Polyhedral extraction tool. In Inter-
national workshop on Polyhedral Compilation Techniques (IMPACT),
2012.

[40] D. Wonnacott. Using time skewing to eliminate idle time due to
memory bandwidth and network limitations. In IPDPS, pages 171
–180, 2000.

[41] Y. Yaacoby and P. R. Cappello. Converting affine recurrence equations
to quasi-uniform recurrence equations. VLSI Signal Processing, 11(1-
2):113–131, 1995.

[42] T. Yuki. Understanding PolyBench/C 3.2 kernels. In International
workshop on Polyhedral Compilation Techniques (IMPACT), Jan.
2014.

[43] Q. Zou and X. He. On pressure and velocity boundary conditions for
the lattice Boltzmann BGK model. Physics of Fluids (1994-present),
9(6):1591–1598, 1997.

64

